

Università degli Studi di Padova

Statistical Analysis & Exploitation of Sky Maps for Cosmic Microwave Background Observations

Carlo Baccigalupi, SISSA, Trieste, th September 14 , 2023

Outline

- Cosmic Microwave Background
- CMB Maps
- Cosmological Gravitational Waves
- Roadmap for Future Observations

CMB

Primeval Fireball

- compression in the early stages of an expanding universe causes lots of radiation arising from thermonuclear explosions
- Reactions are rapid enough to achieve thermalization and a black body spectrum
- It is possible to compute the rarefaction caused by the expansion since that epoch
- The relic radiation is predicted to peak in microwaves, temperature of a few Kelvin, known today as the Cosmic Microwave Background (CMB, Gamow et al. 1948)

George Gamow, three years old in Odessa, Ukraine, 1907

Discovery

Arno Penzias and Robert Wilson

Early 1960s - Penzias and Wilson are hired by Bell Labs to evaluate the performance of the new radio telescope to be used in trans-Atlantic telephone communications.

They find a small, unexplained signal regardless of the direction the telescope is pointed. It is not enough to be a problem, but they are curious.

1964 - They become aware that the noise in their telescope is the cosmic background radiation predicted by the Big Bang theory.

CMB: where and when?

• Opacity:

 $\lambda = 1/n\sigma \ll horizon$

where the horizon is the distance at which information get at each time, inverse of the Hubble expansion rate

- Decoupling: $\lambda \approx$ horizon
- Free streaming: λ » horizon
- Cosmological expansion, Thomson cross section and electron abundance conspire to activate decoupling about 380000 years after the Big Bang, at about 3000 K CMB photon temperature

A postcard from the Big Bang

- From the Stephan Boltzmann law, regions at high temperature should carry high density
- The latter is activated by perturbations which are intrinsic of the fluid as well as of spacetime
- Thus, the maps of the CMB temperature is a kind of snapshot of primordial cosmological perturbations

COsmic Background Explorer

From COBE to the Wilkinson Microwave Anisotropy Probe (WMAP) to Planck

- About 40 years of scientific and technological progresses
- Lots of experiments, people
- See lambda.gfsc.nasa.gov

The Planck Satellite

- ESA Medium Size Mission, NASA participation for the construction of part of the cooling systems
- About 400 scientists all over the world
- Two Data Analysis Centers, in Paris (IAP, High Frequency Insteument) and Trieste (INAF-Trieste & SISSA, Low Frequency Instrument)
- About 17 years from the initial ideas to the launch in 2009

- End of operations in 2009
- Data Analysis in progress, two main Data Releases happened in 2013, 2015, the last and definitive one is expected within 2017 or early 2018
- Tens of papers impacting all major aspects of Cosmology, Astrophysics

CMB as seen by Planck

CMB as seen by Planck

CMB Angular Power Spectrum

Angle \approx 200/l Degrees

CMB physics: Boltzmann equation

d photons

_____ = gravity + Compton scattering dt

d baryons+leptons

= gravity + Compton scattering

dt

CMB physics: Boltzmann equation

d neutrinos

= gravity + weak interaction dt

d dark matter

= gravity + weak interaction (?)

dt

CMB physics: Boltzmann equation

d neutrinos

_____ = gravity + weak interaction dt

d dark matter

_____ = gravity + weak interaction (?) dt

gravity = photons + neutrinos + baryons + leptons + dark matter

CMB Physics: Compton scattering

- Compton scattering is anisotropic
- An anisotropic incident intensity determines a linear polarization in the outgoing radiation
- At decoupling that happens due to the finite width of last scattering and the cosmological local quadrupole

CMB anisotropy: Total Intensity

CMB anisotropy: polarization

Gradient (E):

E and B modes have opposite parity

Angular power spectrum

Angle \approx 200/l degrees

Angle \approx 200/l degrees

Angle \approx 200/l degrees

CMB and Large Scale Structure

Categories for LSS effects on CMB

- Re-scattering
- Gravitation

Categories for LSS effects on CMB

- Re-scattering

 Re-ionization
- Gravitation
 - Dynamics in the metric tensor
 - Deflection

Categories for LSS effects on CMB

- Re-scattering

 Re-ionization
- Gravitation
 Dynamics in the metric tensor
 Deflection

CMB lensing

CMB lensing

CMB lensing

CMB lensing

CMB angular power spectrum

Higher Order Statistics

ISW-Lensing Cross-Correlation

Primordial non-Gaussianities

 $\Phi = \phi_{G} + f_{NL}(\phi_{G}^{2} - \langle \phi_{G}^{2} \rangle)$

Gangui et al. 1994

Analysis

CMB Data Analysis: Titanic Compression

CMB Data Analysis: Titanic Compression

CMB angular power spectrum

Higher Order Statistics

Isotropy & Statistics

Astronomy & Astrophysics manuscript no. Planck 2018 Isotropy and Statistics C ESO 2020 September 15, 2020

Planck 2018 results. VII. Isotropy and Statistics of the CMB

 Planck Collaboration: Y. Akrami^{14,49,51}, M. Ashdown^{58,5}, J. Aumont⁸⁵, C. Baccigalupi⁶⁸, M. Ballardini^{20,36}, A. J. Banday^{85,8},
R. B. Barreiro⁵³, N. Bartolo^{25,54}, S. Basak⁷⁵, K. Benabed^{48,54}, M. Bersanelli^{28,40}, P. Bielewicz^{67,60,68}, J. J. Bock^{75,10},
J. R. Bond⁷, J. Borrill^{12,82}, F. R. Bouchet^{48,79}, F. Boulanger^{78,47,48}, M. Bucher^{2,6}, C. Burigana^{30,26,42}, R. C. Butler³⁶, E. Calabrese²², J.-F. Cardoso⁴⁸, B. Casaponsa⁵³, H. C. Chiang^{22,6}, L. P. L. Colombo²⁸, C. Combet⁶⁰, D. Contreras¹⁹ B. P. Crill^{55,10}, P. de Bernardis²⁷, G. de Zotti³⁷, J. Delabrouille², J.-M. Delouis^{48,84}, E. Di Valentino⁵⁶, J. M. Diego⁵⁵ O. Doré^{55,10}, M. Douspis⁴⁷, A. Ducout⁵⁹, X. Dupac³¹, G. Efstathiou^{58,50}, F. Elsner⁶³, T. A. Enßlin⁶³, H. K. Eriksen⁵¹ Y. Fantave^{3,18}, R. Fernandez-Cobos⁵³, F. Finelli^{36,42}, M. Frailis³⁸, A. A. Fraisse²², E. Franceschi³⁶, A. Frolov⁷⁷, S. Galeotta³⁸, S. Galli³⁷, K. Ganga², R. T. Génova-Santos^{52,15}, M. Gerbino⁸³, T. Ghosh^{71,9}, J. González-Nuevo¹⁶, K. M. Górski^{55,86} * A. Gruppuso^{36,42}, J. E. Gudmundsson^{33,22}, J. Hamann⁷⁶, W. Handley^{58,5}, F. K. Hansen⁵¹, D. Herranz⁵³, E. Hivon^{48,84}, Z. Huang⁷³, A. H. Jaffe⁴⁶, W. C. Jones²², E. Keihänen²¹, R. Keskitalo¹², K. Kiiveri^{21,35}, J. Kim⁶³, N. Krachmalnicoff⁶⁸ M. Kunz^{13,47,3}, H. Kurki-Suonio^{21,35}, G. Lagache⁴, J.-M. Lamarre⁷⁸, A. Lasenby^{5,58}, M. Lattanzi^{26,43}, C. R. Lawrence⁵⁵, M. Le Jeune², F. Levrier⁷⁸, M. Liguori^{25,54}, P. B. Lilje⁵¹, V. Lindholm^{21,35}, M. López-Caniego³¹, Y.-Z. Ma^{56,70,65}, J. F. Macías-Pérez⁶⁰ G. Maggio³⁸, D. Maino^{28,40,44}, N. Mandolesi^{36,26}, A. Mangilli⁸, A. Marcos-Caballero⁵³, M. Maris³⁸, P. G. Martin⁷, E. Martínez-González⁵³ ***, S. Matarrese^{25,54,33}, N. Mauri⁴², J. D. McEwen⁶⁴, P. R. Meinhold²³, A. Mennella^{28,40}, M. Migliacci^{30,45}, M.-A. Miville-Deschènes^{1,47}, D. Molinari^{26,36,43}, A. Moneti⁴⁸, L. Montier^{85,8}, G. Morgante³⁰, A. Mess⁷⁴ P. Natoli^{26,81,43}, L. Pagano^{47,78}, D. Paoletti^{36,42}, B. Partridge³⁴, F. Perrotta⁶⁸, V. Pettorino¹, F. Piacentini²⁷, G. Polenta⁸¹ J.-L. Puget^{47,48}, J. P. Rachen¹⁷, M. Reinecke⁶³, M. Remazeilles⁵⁶, A. Renzi⁵⁴, G. Rocha^{35,10}, C. Rosset², G. Roudie^{2,78,55}, J. A. Rubiño-Martin^{52,15}, B. Ruiz-Granados^{52,15}, L. Salvati⁴⁷, M. Savelainen^{21,35,62}, D. Scott¹⁹, E. P. S. Shellard¹¹, C. Sirignano^{25,54}, R. Sunvaev^{63,80}, A.-S. Suur-Uski^{21,35}, J. A. Tauber³², D. Tavagnacco^{38,29}, M. Tenti⁴¹, L. Toffolatti¹⁶, M. Tomasi^{28,40}, T. Trombetti^{39,43}, L. Valenziano³⁶, J. Valiviita^{21,35}, B. Van Tent⁶¹, P. Vielva⁵³[†], F. Villa³⁶, N. Vittorio³⁰, B. D. Wandelt^{48,84,24}, I. K. Wehus⁵¹, A. Zacchei³⁸, J. P. Zibin¹⁹, and A. Zonca⁶⁹

(Affiliations can be found after the references)

Preprint online version: September 15, 2020

ABSTRACT

Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the ACDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, Q and U. or the E-mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., l ≤ 400). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the ACDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scale

Key words. Cosmology: observations - cosmic background radiation - polarization - methods: data analysis - methods: statistical

1. Introduction

This paper, one of a set associated with the 2018 release of data from the Planck¹ mission (Planck Collaboration I 2020), describes a compendium of studies undertaken to

Corresponding author: A. J. Banday anthony.banday@irap.

** Corresponding author: K. M. Górski Krzysztof.M.Gorski@ jpl.nasa.gov *** Corresponding author: E. Martínez-Gonzáleznartinez@

ifca.unican.es

[†] Corresponding author: P. Vielva vielva@ifca.unican.es

¹ Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states and led by Principal Investigators from France and Italy, telescope re-

determine the statistical properties of both the temperature and polarization anisotropies of the cosmic microwave background (CMB).

The ACDM model explains the structure of the CMB in detail (Planck Collaboration VI 2020), yet it remains entirely appropriate to look for hints of departures from, or tensions with, the standard cosmological model, by examining the statistical properties of the observed radiation. Indeed, in recent years, tantalizing evidence has emerged from the WMAP and Planck full-sky measurements of the CMB temperature fluctuations of the presence of such "anomalies," and indicating that a modest degree of devia-

flectors provided through a collaboration between ESA and a scientific consortium led and funded by Denmark, and additional contributions from NASA (USA).

Planck 2018

202(

ep

S

4

0

ph.

CT.

á

025

906.

X

Sky as seen by Planck

The sky as seen by Planck

F=A (sky direction) × F(frequency)

F=A (sky direction) × F(frequency)

Gas too thick, lots of processes ongoing, very hard to describe with simple models

F=A (sky direction) × F(frequency)

Gas thickness decreases to a few Kpc simple parametrization is possible

Gas too thick, lots of processes ongoing, very hard to describe with simple models

Gas thickness decreases to a few Kpc simple parametrization is possible

Foregrounds and frequency

X = A S + N

- On foregrounds you...
 - Know nothing
 - Know something

- Thus if you...
 - Know nothing, you
 - Look for minimum variance internal linear combination
 - Know something, you
 - Model foreground unknowns and fit

- If you know nothing, you
 - Look for minimum variance internal linear combination, constrained to scale as a black body:

- Opearting domains: you can choose to cast your minimum variance search, or your fit, in
 - Pixel domain
 - Harmonic domain
 - Intermediate (needlets, wavelets) domain

- Thus if you...
 - Know nothing, you
 - Look for minimum variance internal linear combination
 - In the pixel domain
 - In the needlet domain
 - Know something, you
 - Model foreground unknowns and fit
 - In the pixel domain
 - In the needlet domain

- Thus if you...
 - Know nothing, you
 - Look for minimum variance internal linear combination
 - In the pixel domain SEVEM
 - In the needlet domain NILC
 - Know something, you
 - Model foreground unknowns and fit
 - In the pixel domain COMMANDER
 - In the needlet domain SMICA

- Thus if you...
 - Know nothing, you
 - Look for minimum variance internal linear combination
 - In the pixel domain SEVEM (CMB only)
 - In the needlet domain NILC (CMB only)
 - Know something, you
 - Model foreground unknowns and fit
 - In the pixel domain COMMANDER (CMB and foregrounds)
 - In the needlet domain SMICA (CMB and foregrounds)

Planck 2013, XII, 2015, IX

The Planck Legacy Archive

← → C								G	☆ 0						
EUROPEAN SPACE AGENCY @ SCIENCE & TECHNOLOGY @										SIGN IN					
Pla	nck Legacy /	Archive	5											- De C	esa
														Release PR2 - 2015	•
Â	PR2 - 201	PR2 - 2015 MAPS												▲ Í	
Q,	Frequency maps	CMB maps	Foregro	und maps Corre	ection maps Ma	asks Simulations	DatesObs	maps External m	ups					Explanatory Supplement ↓ ⊡	
R				S	SMICA	Commander		NILC	SEVEM	Fg	jsub-sevem	Common masks			
									IQU NS1024			I NS2048			
		FULL MISSION						(168 MB)		(240 MB)					
		FULL MISSION RINGHALF-1				(144 MB)			(192 MB)						
	FULL MISSION RINGHALF-2						(144 MB) (192 MB)								
				HALF MISSION-1					(144 MB)			(192 MB)			
				HALF MISSION-2					(144 MB)			(192 MB)			
		YEAR-1						(144 MB)			(192 MB)				
				YEAR-2					(144 MB)			(192 MB)			

Cosmological Gravitational Waves

Astrophysical vs Cosmological GWs

Polarized Foregrounds are worse

Planck 2018

Polarized Foregrounds are worse

Planck 2018

Sky masking in polarization

WMAP 2007

WMAP polarised foregrounds

WMAP 2007

Polarized synchrotron

- Amplitude: cosmic ray electrons spilarizing around the Galactic magnetic field
- Frequency scaling: approximate decaying power law frequency scaling ($F_{RJ} \sim f^{-3}$), determined by the electron distribution in energy
- Data: total intensity and polarization, several surveys at radio frequencies, WMAP and Planck at microwave frequencies
- Data at the required quality for B-mode cleaning: none

Polarized dust

- Amplitude: magnetized dust grains emitting almost thermally, linearly polarized via local alignment with the Galactic magnetic field
- Frequency scaling: grey body F_{RJ}~BB(f)×f^{1.5}
- Total intensity data: high resolution (few arcminutes) and sensitivity (IRAS and Planck) at 3000, 857, 545, 353 GHz for total intensity, degree scale mapping of temperature and emissivity
- Polarization data: Planck 2015 at 353 GHz
- Data at the required quality for B-mode cleaning: none

Early 2014

March 2014

March 2014

The B-modes at degree scale

BICEP 2014

Planck observed dust polarization at high latitudes

Planck observed dust polarization in the BICEP2 area

Planck × Bicep2 × KEcK

Measuring the Abundance of Cosmological Gravitational Waves through the Tensor to Scalar Ratio

$r = \frac{Power in GWs}{Power in Density}$

Measuring the Abundance of Cosmological Gravitational Waves through the Tensor to Scalar Ratio

Tensors Scalars

Planck × Bicep2 × KEcK

r < 0.036 at 95% C.L.

Roadmap till 2030

Future B-Mode Probes: Datasets

A Moore's Law of CMB sensitivity

Future B-Mode Probes: Timeline

simonsobservatory.org

Tenerife, Spain, October 15-13, 2018

CMB foregrounds for B-mode studies

LiteBIRD

Masashi Hazumi

1) Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)

- 2) Kavli Institute for Mathematics and Physics of the Universe (Kavli IPMU), The University of Tokyo
- 3) Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA)
- 4) Graduate School for Advanced Studies (SOKENDAI)

for LiteBIRD Joint Study Group

LiteBIRD Joint Study Group

About 180 researchers from Japan, North America & Europe

Experience: CMB exp., X-ray satellites, other large proj. (HEP, ALMA etc.)

Y. Sekimoto^{14,37}, P. Ade², K. Arnold⁴⁹, J. Aumont¹², J. Austermann²⁹, C. Baccigalupi¹¹, A. Banday¹², R. Banerji⁴⁵, J. Banash^{2,11}, S. Beckman⁹, M. Bersanell⁴⁴, J. Borrill²⁵, F. Boulanger⁴, M.L. Brown¹⁸, M. Bucher¹, E. Calabrese², F.J. Casas¹⁰, A. Challimo^{50,054}, Y. Chinone^{16,47}, F. Columbro⁴⁶, A. Cukierman^{47,36}, D. Curtis⁴⁷, P. de Bernardis⁴⁶, M. de Petris⁴⁶, M. Dobbs²³, T. Dotani^{14,37}, L. Duband³, JM. Duval³, A. Ducout¹⁶, K. Ebisawa¹⁴ T. Elleflot⁴⁹, H. Eriksen⁵⁶, J. Errard¹, R. Flauger⁴⁹, C. Franceschet⁵⁴, U. Fuskeland⁵⁶ K. Ganga¹, J.R. Gao³⁵, T. Ghigna^{16,57}, J. Grain⁹, A. Gruppuso⁶, N. Halverson⁵¹, P. Hargrave² T. Hasebe¹⁴, M. Hasegawa^{5,37}, M. Hattori⁴², M. Hazumi^{5,14,16,37}, S. Henrot-Versille¹⁹ C. Hill^{21,47}, Y. Hirota³⁸, E. Hivon⁶¹, D.T. Hoang^{1,63}, J. Hubmayr²⁹, K. Ichiki²⁴, H. Imada¹⁹ C. Hillia^{1,0,+}, Y. Hirota^{6,0}, E. Hivon^{9,+}, D. T. Hongu^{1,0,+}, J. Hubmay^{1,0,+}, K. Ichiki^{4,+}, H. Imada^{1,0,+}, H. Ishin^{0,0,+}, G. Jachni^{4,1}, H. Kana^{1,0,+}, S. Kashima^{2,+}, K. Katoka^{1,0,+}, K. Katayama^{1,0,+}, Y. Kobayashi^{1,0,+}, N. Kogiso^{1,0,+}, K. Kibayashi^{10,+}, T. Kikuchi^{1,4}, K. Kimura^{1,1}, T. Kisne^{2,0,4,}, Y. Kobayashi^{10,+}, N. Kogiso^{1,0,+}, K. Kurinsk^{1,0,+,1,0,+}, K. Komatsu^{10,+}, K. Konishi^{10,+}, N. Krachmahnicoff^{1,+}, C. L. Kuo^{4,1,4,0,+}, K. Musk^{1,0,+}, A. Muski^{10,+}, K. Musk^{10,+}, A. Maga^{10,+}, T. Leo^{2,1,0,+}, E. Indef^{2,1,4,+}, B. Maffe^{1,0,+}, Mak^{1,+}, A. Mangl^{10,1,1,-}, K. Kusk^{10,+}, M. Maga^{10,+}, T. Maga^{10,+}, C. Marayash^{10,+}, B. Maffe^{1,0,+}, Mask^{10,+}, A. Mush^{10,+}, A. Musk^{10,+}, A. Maga^{10,+}, C. Musk^{10,+}, M. Mus L. Montier¹², G. Morgante⁶, B. Mot¹², Y. Murata¹⁴, A. Murphy²⁸, M. Nagai²⁵, R. Nagata⁵ S. Nakamura⁵⁹, T. Namikawa²⁷, P. Natoli⁵², T. Nishibori¹⁵, H. Nishino⁵, C. O'Sullivan²⁸ H. Ochi⁵⁹, H. Ogawa³¹, H. Ogawa¹⁴, H. Ohsaki³⁸, I. Ohta⁵⁸, N. Okada³¹, G. Patanchon¹ F. Piacentini⁴⁶, G. Pisano², G. Polenta¹³, D. Poletti¹¹, G. Puglisi³⁶, C. Raum⁴⁷, S. Realini⁵ M. Remazeilles⁵³, H. Sakurai³⁸, Y. Sakurai¹⁶, G. Savini⁴³, B. Sherwin^{50,65,21}, K. Shinozaki¹¹ M. Shiraishi²⁶, G. Signorelli⁸, G. Smecher⁴¹, R. Stompor¹, H. Sugai¹⁶, S. Sugiyama³² A. Suzuki²¹, J. Suzuki⁵, R. Takaku^{14,40}, H. Takakura^{14,39}, S. Takakura¹⁶, E. Taylor⁴⁸ Y. Terao³⁸, K.L. Thompson^{34,36}, B. Thorne⁵⁷, M. Tomasi⁴⁴, H. Tomida¹⁴, N. Trappe² Lerao, K.L. Homigson, B. Houlie, M. Tomas, H. Tomas, M. Happe, M. Tistiram⁹, M. Tsujino's, M. Sujimo's, S. Uozum⁹, S. Utsunoniya⁴, N. Vittorio⁴, N. Watanabe⁴, I. Wehus⁴⁹, B. Westbrook⁴⁷, B. Winter⁴⁹, R. Yamanoto⁴⁴, N.Y. Yamaski¹⁴, M. Yanagisaw³⁰, T. Yoshida¹, J. Yumoto³⁸, M. Zamoni⁴⁸, A. Zonea³⁸,

2018/10/16

LiteBIRD @ Tenerife foregrounds conference

LiteBIRD project overview

- JAXA L-class mission candidate with a solid basis in Japan
 - JAXA prefers a focused mission even for L-class
 - Test of inflation is one of the most important objectives in JAXA roadmap
 - MEXT (funding agency) chose LiteBIRD as one of 10 flag-ship future large projects among all areas of research
- Phase-A1 concept development at ISAS/JAXA (Sep.2016 Aug. 2018) completed
 - The most advanced status among all CMB space mission proposals in the world
- Strong international contributions
 - US: Focal plane/cold readout technology development (NASA)
 - Canada: Science contribution studies and science maturity studies (CSA)
 - Europe:
 - Studies at Concurrent Design Facility (ESA) with the European consortium
 - Italy: Phase A commitment (ASI)
 - France: Phase A commitment (CNES)

2018/10/16

LiteBIRD @ Tenerife foregrounds conference

Schedule after Phase-A1

- LiteBIRD or OKEANOS (solar-power sail), i.e. only two candidates remain

LiteBIRD @ Tenerife foregrounds conferenc

• Launch in 2027

2018/10/16

• Observation in L2 for 3 years

LiteBIRD full success

- 1. The mission shall measure the tensor-to-scalar ratio r with a total uncertainty of $\delta r < 1 \times 10^{-3}$. This value shall include contributions from instrument statistical noise fluctuations, instrumental systematics, residual foregrounds, lensing B-modes, and observer bias, and shall not rely on future external datasets.
- 2. The mission shall obtain full-sky CMB linear polarization maps for achieving >5 σ significance using data between ell =2 and ell =10, data between ell=11 and ell=200 separately, assuming r=0.01. We assume a fiducial optical depth of $\tau = 0.05$ for this calculation.

Fι	all Success (simplified version)
•	$\delta r < 1 \ge 10^{-3}$ (for r=0)
•	$2 \leq \ell \leq 200$

2018/10/16

LiteBIRD @ Tenerife foregrounds conference

LiteBIRD extra success

Topic	Method	Example Data					
Delensing	Large CMB telescope array	CMB-S4 data Namikawa and Nagata, JCAP 1409 (2014) 009					
	Cosmic infrared background	Herschel data Sherwin and Schmittfull, Phys. Rev. D 92, 043005 (2015)					
	Radio continuum survey	SKA data Namikawa, Yamauchi, Sherwin, Nagata, Phys. Rev. D 93, 043527 (2016)					
Foreground cleaning	Lower frequency survey	C-BASS, S-PASS, QUIJOTE etc. and their upgrades					
 Delensing improvement to σ(r) can be factor ~2 or more. e.g. ~6sigma observation in case of Starobinsky model Need to make sure systematic uncertainties are under control 							

2018/10/16 LiteBIRD @ Tenerife for

teBIRD @ Tenerife foregrounds conference

Sensitivity

- Good sensitivities under available focal planes
- Further optimization possible w/ minor design impact

LiteBIRD Collaboration, PTEP 2022 ui.adsabs.harvard.edu/abs/arXiv:2202.02773

LiteBIRD Collaboration, PTEP 2022 ui.adsabs.harvard.edu/abs/arXiv:2202.02773

	ID	ν	$\delta \nu$ [GHz]	Beam size	No. of	NETarr	Sensitivity
		[GHz]	$(\delta \nu / \nu)$	[arcmin]	detectors	$[\mu K\sqrt{s}]$	[µK-arcmin]
LFT	1	40	12(0.30)	70.5	48	18.50	37.42
LFT	2	50	15(0.30)	58.5	24	16.54	33.46
LFT	3	60	14(0.23)	51.1	48	10.54	21.31
LFT	4	68	16(0.23)	(41.6, 47.1)	(144, 24)	(9.84, 15.70)	(19.91, 31.77)
comb.						8.34	16.87
LFT	5	78	18(0.23)	(36.9, 43.8)	(144, 48)	(7.69, 9.46)	(15.55, 19.13)
comb.						5.97	12.07
LFT	6	89	20 (0.23)	(33.0, 41.5)	(144, 24)	(6.07, 14.22)	(12.28, 28.77)
comb.						5.58	11.30
LFT/	7	100	23(0.23)	30.2/	144/	5.11/	10.34
MFT				37.8	366	4.19	8.48
comb.						3.24	6.56
LFT/	8	119	36 (0.30)	26.3/	144/	3.8/	7.69
MFT				33.6	488	2.82	5.70
comb.						2.26	4.58
LFT/	9	140	42 (0.30)	23.7/	144/	3.58/	7.25
MFT				30.8	366	3.16	6.38
comb.						2.37	4.79
MFT	10	166	50(0.30)	28.9	488	2.75	5.57
MFT/	11	195	59(0.30)	28.0/	366/	3.48/	7.05
HFT				28.6	254	5.19	10.50
comb.						2.89	5.85
HFT	12	235	71(0.30)	24.7	254	5.34	10.79
HFT	13	280	84 (0.30)	22.5	254	6.82	13.80
HFT	14	337	101 (0.30)	20.9	254	10.85	21.95
HFT	15	402	92 (0.23)	17.9	338	23.45	47.45
Total					4508		2.16

LiteBIRD Collaboration, PTEP 2022 ui.adsabs.harvard.edu/abs/arXiv:2202.02773

Campeti et al., 2021
Future B-Mode Probes: LiteBIRD

Campeti et al. 2021

Future B-Mode Probes: CMB-Stage IV

Future B-Mode Probes: CMB-Stage IV

Future B-Mode Probes: CMB-Stage IV LAT and SAT Receivers

Property	ULE LE ME			F	н	F	1									
Center frequency (CHz)	20		20	02	145	225	979	1								
Center frequency (GHz)	20	21	- 39	95	145	220	218	1								
FWHM (arcmin)	10.0	7.4	5.1	2.2		0 10										n
Fractional bandwidth	0.25	0.22	0.46	0.38	0	Property				F	CF High		CF Low		HF	
NET ($\mu K \sqrt{s}$) per detector	438	383	250	302	3	Center fr	equency	(GHz)	30	40	85	145	95	155	220	270
$N_{\text{detectors}}$ per tube	160	320	320	3460	3	conter in	equency	(dinz)		10		110		100		
N_{wafers} per tube	4		4	4		Primary lens diameter (cm)			55	55	55	55	55	55	44	44
		u			-10	FWHM ((arcmin))	72.8	72.8	25.5	25.5	22.7	22.7	13	13
Chile (Wide Field Survey –	2 LATs					Fractiona	al bandy	width	0.3	0.3	0.24	0.22	0.24	0.22	0.22	0.22
$N_{\rm tubes}$ per LAT	0		2	1	2	NET ($\mu K\sqrt{s}$) per detector			177	224	270	238	309	331	747	1281
Data rate (2 LATs) 10.8 TB/day				lay	N _{det} per optics tube			288	288	3524	3524	3524	3524	8438	8438	
						N	1			2		6		5		1
South Pole (Delensing Surve	ey – 1 L	AT)				tubes				4		0	- ·	,		*
$N_{ m tubes}$	1		2	1	2	N _{wafers}			2	.4	7	2	7	2	3	6
Data rate (1 LAT)	(1 LAT) 5.0 TB/day				lay	$N_{\rm wafers}$ total			204							
Total (2 I ATa)						N _{detectors}			576	576	21144	21144	21144	21144	33752	33752
Ndetectors	160	1920	1920	124560	12	Ndetectors	total					1	53232			
N _{detectors} total	357952					Data rate (18 optics tubes)			1.7 TB/day							
N _{wafers}	4	2	24	14	4											
$N_{\rm wafers}$ total			1	228				1								
								1								

Future B-Mode Probes: CMB-Stage IV

arxiv.org/abs/2208.12619

CMB-Stage IV

WBS	PY 1	PY 2	PY 3	PY 4	PY 5	PY 6	PY 7	PY 8	PY 9	
1.02 Detectors	Wafer Proto	Waf	er PreProduction			-				
1.03 Delectors	Train Proto	1000			Wafer Production			-	1	
1.04 Readout	Electronics Pre	ototypes Electro	onics PreProducti	on Electron	Electronics Production					
1.05 Module Assembly & Test	Prok	otypes	PreProd	uction	Production					
		Prototype T								
			Fabricate Rema	ining Test Cryost	ets					
1.06 Large Aperture Telescope	South Pol	e LAT Engineeri	ng Design		SP LAT Const	ruction				
	CHLA	Ts Engineering	Design		CH LATs 1&2 Construction			-		
	LATI	R Engineering D	esign		SP LATR Construction		_			
					-	CH LATR 182	Construction			
1.07 Small Aperture Telescope	SA	T Engineering D	lesign		SA	Ts 1-6 Assembly	& Integration			
		P	ototype Cyrostat	Cryostat & Moun	t Fabrication					
1.08 Data Acquisition	De	esign & Engineer	ring		Prod	uction				
1.09 Data Management	* Data Chu	allenge 1A Data Challenna 1B	* Data Challenge 2	* Data	Challenge 3		Data Ch	ellenge 4 ★		
		Design Engineer	ing		Site Construction	n				
1.10 Chile Infrastructure, Integration, & Commissioning					Chile LAT 1 Integration & Commissioning					
						Chile L/	T 2 Integration &	Commissioning		
		Design Engineer	ing		Site Const					
	-					SP LATR Integration & Commiss			9	
1.11 South Pole Infrastructure, Integration, & Commissioning							SAT 1-3 Mount	Construction SAT 1-3 I&C SAT 1-3 Mount	Construction	
Infrastructure, Integration, & Commissioning							SAT 1-3 Mount	Construction SAT 1-3 I&C SAT 1-3 Mount	Constructio SAT 1-3 I&	

Concluding Remarks

- Maps of the CMB contain most important effects from the Early Universe and Large Scale Structure
- Effects extend from the whole sky down to the Arcminute Scale
- Probes are Signal Dominated till the Arcminute Scale
- Huge Analysis Infrastructure in Place, mostly focused on the Two Point Correlation Function, with most important constraints from the 3 point correlation function and overall distribution of perturbations across the Sky
- B-Mode Probes Primary Targets are Cosmological Gravitational Waves and Gravitational Lensing
- Huge Program Ahead, Towards a Network of Ground and Space Based Probes
- Discussion!