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Framework and Motivation

Discovering and locating γ-ray sources in the whole sky map is a

declared target of the Fermi LAT Collaboration [1].

The light emitted by celestial bodies is the primary carrier of astro-

nomical information from the Universe to us. Hence, the identifi-

cation of γ-ray sources allows us to gain a deeper insight on their

origins and the physical mechanisms that power them.

The Large Area Telescope (LAT) onboard the Fermi spacecraft, de-

signed to perform an all-sky survey, detects γ-rays in the galactic

and extra-galactic space.

Figure 1. Image map of the γ-ray counts at energies larger than 1 GeV

accumulated by the Fermi Large Area Telescope over five years of operation.

State of the art

The problem of detecting γ-ray sources has been widely issued in

literature and it offers a wide field of application for different sta-

tistical techniques, from parametric to non-parametric approaches,

both in the Frequentist and in the Bayesian paradigms [3, 5, 7].

Main goal and Statistical Framework

Since γ-ray sources are intended as peaks of energy arising from the

background, their identification can be recast to a clustering prob-

lem, which is treated in a non-parametric framework, while tackling

obstacles dictated by the specific nature of the data available, that

pose both conceptual and computational limits to the study.

Data and Complications

Statistical units are photons detected by the LAT. The event is re-

constructed using the tracker and the calorimeter. The former re-

constructs the direction of each event, while the latter reconstructs

the photon energy. Thus, together with the direction of the emis-

sion, additional information is provided, such as photon energy and

quality.

The geometry of the data: directions in three-dimensional space

can be represented by Cartesian coordinates as vectors x of unit

norm, i.e. points on the sphere (Figure 3)

Ω2 = {x ∈ R3 : ‖x‖2 = x2
1 + x2

2 + x2
3 = 1}.

→ Modal clustering for directional data.

Figure 2. Representation of the coordinate system.

The clustering structure: hundreds of sources, heterogeneous in

size and variability, usually leptokurtic.

→ Non-parametric framework.

The background noise: most of photon emission origins from a

background noise. The diffuse γ-ray background spreads over the

entire area observed by the telescope and is concentrated at the

Galactic plane.

→ It is required to identify the sources, locate them, and

odistinguish them from the diffuse background.

Computational complexity: problems are due to highly

concentrated sources and huge moles of data.

→ Binned kernel density estimation and sphere partition into

oindependent subregions.

Figure 3. Source data from the 3FHL catalog of the Fermi LAT collaboration

(orange), and the diffuse background (light blue).

Methods

Modal Clustering

The data (x1, ..., xn)′ are sampled from a probability density

function f .

Clusters correspond to the domains of attraction of the modes of

the underlying density [2].

Two main strands can be identified, depending on whether the

modes are given explicitely or not [4].

Modes are implicitly found via the identification of the connected

components of density level sets.

→ For 0 ≤ λ ≤ max f , define the level set L(λ) as:

L(λ; f ) =
{

x ∈ Rd : f (x) ≥ λ
}

.

→ Identify the maximum connected components of L(λ).
→ When λ varies, the number of connected components of L(λ)
ovaries and a hierarchical tree structure, the cluster tree, is

ogenerated.

For each mode there exists some λ for which one of the

connected components of the associated L(λ) includes that
mode at most and identifies the excess mass of that mode [6].

Clusters are not bounded to have a particular shape and the

cluster tree naturally defines different levels of cluster resolution.

Figure 4. A section of a three-modal density function and the identified level set

(middle panel) formed by two disconnected regions. In the right panel, the

associated cluster tree.

Mesh creation

Due to the huge mole of available data, streamlining is firstly

pursued via data discretization.

The sphere is partitioned into a thick triangular mesh.

→ An icosahedron is recursively subdivided and projected onto a

ospherical surface.

Figure 5. Representation of an icosahedron (left), the figure obtained by

dividing each of its edges in two (center) and the projection onto the sphere

(right).

Working with fewer observations makes the density estimation

phase and cluster identification less computationally burdensome.

Density estimation

Each of the B bins of the mesh is associated with the count nb of

its inner photons.

Density of photon emissions is estimated nonparametrically, via

binned directional kernel methods:

f̂ (x) = 1
n

B∑
b=1

nbKh(x − mb)

where Kh(·) is the von Mises-Fisher kernel with concentration

parameter 1/h2, n is the sample size, and mb is the centroid of the

bth bin. This already produces by itself a computational gain in

efficiency.

Photons emitted by sources are more concentrated along the

direction of emission.

→ Variable bandwidth parameter: hi = h0
[

1
g f̃h0(xi)

]−0.5
, where

of̃h0 is a pilot density obtained with a normal-scale parameter

oand g is the geometric mean of f̃h0.

Cluster identification

Detection of the connected components of each level set is

performed by finding the connected components of a suitable

graph, whose nodes are the bins’ centroids.

Grid cells are grouped in place of sample observations.

Outskirt photons are labelled as background, since a mode (a

source) is present where a higher concentration of probability

mass is identified.

Computational aspects

The use of binned kernel density estimate must be supported by

finding the right trade-off between computational gain and

estimation bias.

To avoid multiple sources falling into a single bin, a finer grid is

used.

Empty cells between regions occupied by photons are removed in

order to split the sphere into independent portions.

→ Remarkable gain in efficiency.

Figure 6. Portion of the sphere where empty cells are deleted in order to work

on independent regions.

Since photons are more concentrated at the Galactic plane, the

chosen grid is finer at latitude 0°, while cells are bigger

everywhere else.

Results

We applied the proposed procedure to a set of data drawn from the

3FHL catalog of the Fermi LAT Collaboration (Figure 3) and spread

on the whole sky map, along with the diffuse background. The data

set include 469784 photons, among which 73318 are emitted by 1529
sources, whose size range from 4 to 3572 photons. Since the data are
drawn from a catalogue of already detected sources, we may evalu-

ate the performance of the procedurewith respect to the knowledge

of the pertaining source of each photon emission.

Results show a good performance in terms of source detection.

Several spurious clusters are identified.

→ This is due to the sphere partition: many subregions only

ocontain photons emitted from the background noise, which

oare classified as emitted from a source.

→ High False Positive Rate.

→ The number of individual misclassifications increases.

background sources

̂background 310430 7239

̂sources 86036 66079

MED 0.1985

TPR 0.8947

FPR 0.8515

Discussion and FutureWork

Promising results, yet much room for improvement.

Choosing a finer grid leads to multiple small regions containing

photons emitted from the background.

→ Several spurious clusters are identified.

→ The sphere should be split in a different way.

Need to focus on bandwidth selection.

Need to evaluate the significance of the identified clusters.
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