A Statistical Formulation of

Conjunction Assessment

Soumaya Elkantassi¹ and Anthony Davison²

¹Department of Operations, Université de Lausanne (UNIL)

²Institute of Mathematics, École polytechnique fédèrale de Lausanne (EPFL)

soumaya.elkantassi@unil.ch

Amil

UNIL | Université de Lausanne

Motivation

With the new space race

- Hundreds of satellites are launched into Earth's orbit every year for different purposes.
- In total, there are nearly 6,000 satellites circling our planet and this number keeps growing.
- About 60% of these satellites are defunct, contributing to the growing problem of space debris or "space

junk".

- Managing the increasing number of space objects poses a significant challenge in collision avoidance.

Most existing literature focuses on the probability of collision p_c , i.e., the integral of the density of x over the Hard body Ratio (HBR or ψ_{min}) disk, i.e.,

Figure 1: Collision of Kosmos 2251 and Iridium 33 on February 10, 2009.

In this work

- \rightarrow We point out that the usual collision probability estimate can be badly biased.
- ➥ We formulate an approach to satellite conjunction assessment based on a statistical model.
- \rightarrow We discuss inference on the miss distance between

1) $p_c(x)$ is the probability that the observation x lies inside the HBR, not the probability that the second object will hit the first object.

 $\ell(\vartheta)=-$ 2 $(x - \xi)^{\mathrm{T}}D(x - \xi).$

1. Probability of collision

We consider two space objects in close conjunction described relative to an origin 'O' at the first satellite. We assume that the velocity vector is known, and we consider x and ξ as the projections of the observed position and the true position into the plane perpendicular to the velocity vector (encounter plane), i.e., $x = (x_1, x_2)$ and $\xi = (\xi_1, \xi_2) = (\psi \cos \lambda, \psi \sin \lambda)$.

2) P $\{\widehat{p}_c < p_c(\xi)\} \, > \, 1/2, \,$ i.e., $\,\widehat{p}$ יי
ח \mathbf{r} ^{\mathbf{r}} \hat{c} is too small more often than not. og10 probability 0 Log10 probability

where $\beta \in (\pi/2, 3\pi/2)$. For $\vartheta = (\psi, \lambda)$, the log likelihood is

$$
\widehat{p}_c = p_c(x), \quad \text{where} \quad p_c(\xi) = \int_{\{x': \|x'\| \le \psi_{\min}\}} f(x'; \xi) \, dx'
$$

which can be seen as a plug-in estimate of $p_c(\xi)$. What is the problem with \hat{p}_c ?

Aim for interpretation of significance probabilities to be like \widehat{p} \mathbf{r} ^{\mathbf{r}} $_c$, we take

We hope that the 'null' will be rejected so we don't have to take evasive action. Under H_0 , we expect

```
small 1-\Phi\left\{ r\left( \psi_{0}\right) \right\} \equiv \, small \widehat{p}\mathbf{r}<sup>\mathbf{r}</sup>
                                                                                                       \overline{c}.
```


Figure 2: Simulated \hat{p}_c when $\psi \approx 12$, HBR=20m. The blue lines show $p_c(\xi)$, the red the averaged $\hat p_c$.

3) Probability of collision has a dilution region, seen in the literature as a 'paradox' in need of clarification, see [1] on false confidence.

> $\mathbb F$ Promising results $+$ can be used in parallel with conventional tools, see [3].

2.1 First-order likelihood theory

The measured data in the encounter plane is assumed to be normally distributed $x \sim \mathcal{N}_2(\xi, D)$, where D is a known diagonal matrix. The minimum distance between the two objects is

 $\psi = \|\xi\| \cos \beta,$

1

$\hat{p}_c = 1.14 \times 10^{-5}$ (no action)

r
A • Significance probabilities for $\psi_0=20\;\mathrm{m}$ are 1.2×10^{-3} (Wald and r) and $7.2 \times 10^{-3} (r^*)$ (take action).

Computations are more complicated in the general 6D case.

If ψ scalar, first order inference based on limiting $N(0, 1)$ laws of

҂likelihood root, $r(\psi) = \text{sign}(\widehat{\psi} - \psi)[2\{\ell(\widehat{\psi})\}]$ $[-\ell(\psi)]^{1/2},$ $\textbf{\texttt{*}}$ Wald statistic, $t(\psi) = j(\widehat{\psi})$ φ $)^{1/2}(\hat{\psi} - \psi).$

as $n \to \infty$ have, for instance,

$$
\mathrm{P}\left\{r(\psi) \leq r_{\text{obs}}\right\} = \Phi\left(r_{\text{obs}}\right) + O\left(n^{-1/2}\right).
$$

which yields tests and confidence sets for ψ_0 based on an observed $r_{\text{obs}} = r(\psi_0)$.

2.2 Higher-order likelihood theory

For continuous responses, third-order inference can be based on limiting $N(0, 1)$ distribution of the modified likelihood root

$$
r^*(\psi) = r(\psi) + \frac{1}{r(\psi)} \log \left\{ \frac{q(\psi)}{r(\psi)} \right\},\,
$$

where $q(\psi)$ depends on the model, and for which

$$
\mathrm{P}\left\{r^*(\psi_0)\leq r^*_{\text{obs}}\right\}=\Phi\left(r^*_{\text{obs}}\right)+O\left(n^{-3/2}\right).
$$

3. Decision making

$$
H_0: \psi = \psi_0 \quad H_A: \psi > \psi_0.
$$

Proposed procedure:

- \rightarrow choose ψ_0 to represent a 'safe' minimum distance,
- \rightarrow choose ε (typically 10^{-4} but it could depend on potential losses),
- \rightarrow if $1 \Phi \left\{ r^{*}(\psi_{0}) \right\} > \varepsilon$, then plot $\Phi \left\{ r^{*}(\psi) \right\}$ as measure of evidence about ψ relative to ψ_0 ,

→ decide whether to take evasive action or not.

4. Example: The 2009 event

Figure 4: Significance function for the US and Russian satellite collision event.

✠ Operationally, needs further testing. Conjunction

Assessment and Risk Analysis (CARA) group at NASA offered to collaborate.

Acknowledgements

The work was supported by the Swiss National Science Foundation.

References

[1] M. S. Balch, R. Martin, and S. Ferson. Satellite conjunction analysis and the false confidence theorem. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 475(2227), 2019.

[2] L. Chen, X. Z. Bai, Y. G. Liang, and K. B. Li. *Orbital Data Applications for Space Objects: Conjunction Assessment and Situation Analysis*. Springer, Singapore, 2017.

[3] S. Elkantassi and A. C. Davison. Space oddity? a statistical formulation of conjunction assessment. *Journal of Control Guidance and Dynamics (revised)*, 2022.