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Motivation

With the new space race

- Hundreds of satellites are launched into Earth’s orbit
every year for different purposes.

- In total, there are nearly 6,000 satellites circling our
planet and this number keeps growing.

- About 60% of these satellites are defunct, contribut-
ing to the growing problem of space debris or “space
junk”.

- Managing the increasing number of space objects
poses a significant challenge in collision avoidance.

Figure 1: Collision of Kosmos 2251 and Iridium 33 on February 10, 2009.

In this work

➥ We point out that the usual collision probability esti-
mate can be badly biased.

➥ We formulate an approach to satellite conjunction
assessment based on a statistical model.

➥ We discuss inference on the miss distance between
two space objects.

1. Probability of collision

We consider two space objects in close conjunction
described relative to an origin ‘O’ at the first satel-
lite. We assume that the velocity vector is known,
and we consider x and ξ as the projections of the
observed position and the true position into the plane
perpendicular to the velocity vector (encounter plane),
i.e., x = (x1, x2) and ξ = (ξ1, ξ2) = (ψ cosλ, ψ sinλ).
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Most existing literature focuses on the probability of
collision pc, i.e., the integral of the density of x over
the Hard body Ratio (HBR or ψmin) disk, i.e.,

p̂c = pc(x), where pc(ξ) =

∫
{x′:∥x′∥≤ψmin}

f (x′; ξ) dx′

which can be seen as a plug-in estimate of pc(ξ).

What is the problem with p̂c?

1) pc(x) is the probability that the observation x lies in-
side the HBR, not the probability that the second
object will hit the first object.

2)P {p̂c < pc(ξ)} > 1/2, i.e., p̂c is too small more often
than not.
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Figure 2: Simulated p̂c when ψ ≈ 12, HBR=20m. The blue lines show
pc(ξ), the red the averaged p̂c.

3) Probability of collision has a dilution region,
seen in the literature as a ‘paradox’ in need
of clarification, see [1] on false confidence.
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Figure 3: Dilution region of pc.

2. Inference on the miss distance

2.1 First-order likelihood theory

The measured data in the encounter plane is as-
sumed to be normally distributed x ∼ N2 (ξ,D) ,
where D is a known diagonal matrix. The minimum
distance between the two objects is

ψ = ∥ξ∥ cos β,

where β ∈ (π/2, 3π/2). For ϑ = (ψ, λ), the log likeli-
hood is

ℓ(ϑ) = −1

2
(x− ξ)TD(x− ξ).

Computations are more complicated in the general 6D
case.
If ψ scalar, first order inference based on limiting
N(0, 1) laws of

✽ likelihood root, r(ψ) = sign(ψ̂−ψ)[2{ℓ(ψ̂)−ℓ(ψ)}]1/2,
✽ Wald statistic, t(ψ) = j(ψ̂)1/2(ψ̂ − ψ).

as n→ ∞ have, for instance,

P {r(ψ) ≤ robs } = Φ (robs ) +O
(
n−1/2

)
.

which yields tests and confidence sets for ψ0 based on
an observed robs = r(ψ0).

2.2 Higher-order likelihood theory

For continuous responses, third-order inference can
be based on limiting N(0, 1) distribution of the modi-
fied likelihood root

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
q(ψ)

r(ψ)

}
,

where q(ψ) depends on the model, and for which

P {r∗(ψ0) ≤ r∗obs } = Φ (r∗obs ) +O
(
n−3/2

)
.

3. Decision making

Aim for interpretation of significance probabilities to be
like p̂c, we take

H0 : ψ = ψ0 HA : ψ > ψ0.

We hope that the ‘null’ will be rejected so we don’t
have to take evasive action. Under H0, we expect

small 1− Φ {r (ψ0)} ≡ small p̂c.

Proposed procedure:

➔ choose ψ0 to represent a ‘safe’ minimum distance,
➔ choose ε (typically 10−4 but it could depend on po-

tential losses),
➔ if 1−Φ {r∗ (ψ0)} > ε, then plot Φ {r∗(ψ)} as measure

of evidence about ψ relative to ψ0,
➔ decide whether to take evasive action or not.

4. Example: The 2009 event

• p̂c = 1.14× 10−5 (no action )
• Significance probabilities for ψ0 = 20 m are 1.2×10−3

(Wald and r ) and 7.2× 10−3 (r∗) (take action).
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Figure 4: Significance function for the US and Russian satellite collision
event.

✠ Promising results + can be used in parallel with con-
ventional tools, see [3].

✠ Operationally, needs further testing. Conjunction
Assessment and Risk Analysis (CARA) group at
NASA offered to collaborate.
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