The Euclid Spectroscopic Sample a unique opportunity to test General Relativity

Elena Sarpa

Density

Credits: M. Norman & H. Xu, B. O'Shea, M. J. WiseKyungjin Ahn, Chosun U.

A journey that just began

Launched the 1st Jul 2023

The widest galaxy survey to date

1st data released in 2025

GET READY !

HI Density

THE DARK UNIVERSE

Dark Matter (DM)

- * Infer the DM distribution and abundance from light deflection
- * Trace the growth of structures as a function of time

Dark Energy (DE)

- * Constrain the expansion history of the Universe and growth of structures from the observed 3D distribution of galaxies
- Study the properties of the source of expansion
 (e.g. DE equation of state)

WEAK GRAVITATIONAL LENSING

GALAXY CLUSTERING

SDSS-BOSS DR9 (Anderson et al. 2012)

HE WILL SUKVEY

Euclid preparation: I. The Euclid Wide Survey [Scaramella et al. 2021, arXiv:2108.01201]

The instruments

- * VISible instrument (VIS): imaging in the visible light, used for weak lensing
- * Near infrared Spectrometer and Photometer (NISP):

galaxies angular positions and spectra, used for galaxy clustering studies

Survey specifics

- * Area: 15000 deg², 1/3 full sky
- * Redshift range: $z \in [0.9, 1.8]$, (look-back time $\in [7.4, 10.3]$ Gyr)

* Objects: 1.5 billions of photometric galaxies, 30 millions of spectra

Public data release

- * DR1: mid 2025 (1/6 of the survey)
- * DR2: mid 2027 (1/2 of the survey)
- * DR3: mid 2031 (full survey)

THE SPECTROSCOPIC SURVEY

Imaging

* Direct images in 3 bandpasses

* Grism (slitless):

projects spectra of every source along one axis

* Individual spectra identified trough rotation (0°,180° + telescope rotations)

EUCLID FIRST LIGHT (Jul 28th 2023)

Imaging mode

Grism mode

spectra superposition

Multiple angles

REDSHIFT DETERMINATION

Cosmological redshift

- * The source spectral light gets progressively "stretched" (redshifted) by the Universe's expansion in its journey from the galaxy to Euclid
- * A proxy of distance and time of emission
- * With angular position, gives the 3D map of the galaxy distribution

Redshift extraction

- * Identify emission/absorption lines
- * Estimate the redshift by comparison with fiducial templates

SOURCE SPECTRA

REDSHIFT POSTERIOR

RELABILTY

Problematic spectra

- * Low signal-to-noise ratio
- * Single emission line

Redshift posterior

- * Multimodal
- * Highly disperse

Reliability flag

* likelihood of the redshift to be well determined

SOURCE SPECTRA

REDSHIFT POSTERIOR

FIICI IN SOFTWARE

Jamal et al 2017

Machine learning redshift classification, based on bayesian inference

Reliability classes

- * C1: highly dispersed PDFs with multiple equiprobable modes
- * C2: less dispersedPDFs, with few modes and low probabilities
- * C3: low σ , intermediate probabilities
- * C4: unimodal PDFs with low dispersion, higher probabilities
- * C5: strong unimodal PDFs with extremely low dispersion,

Results on Euclid mocks

	Fraction of spectra with $\varepsilon_z \leq 10^{-3}$					
Set	" <i>C</i> 1"	<i>"C2"</i>	<i>"C3"</i>	<i>"C</i> 4"	<i>"C5"</i>	
S 1	1/3	59 /61	313/313	835/835	1957 /1957	
S 2	260/383	1221/1275	550/555	662/662	294/294	

Credits: Jamal et al. 2017 8

_	_	_	_
			-
			. 1
			_
			-
			- 1
			-
			. 1
			- 1
			_
			_
			. 1
			- 1
			. 1
			-4
			. 1
			- 1
_	_		_
_	-		-1
			_
			-

			-
			_
			_
			_
			_
			_
_	_		_
_	-	-	_
			- 1

- Angular position: RA, DEC
- Redshift
- Statistical weight (e.g. seeing, ...)
- Local density (for Power-spectrum)
- **Reliability flag**
- **Galaxy type: central or satellite**
- Magnitude in different bans

Use it wisely! Know your instrument, know your data Density

CHOCSE YOUR GATALOGUE MAIN CONTAMINANTS: INTERLOPERS

COMPLETE

CHOCSE YOUR GATALOGUE MAIN CONTAMINANTS: INTERLOPERS

clustering signal

5

clustering signal Target Target clustering signal Target + Noise 2 0 -Target clustering signal Target + Line 2 o qi qi 0 ering signal Target All 1+⁺++1 ৾৽৽৾৾৾৻৻৾ঀ৾ঀ৾৽৻৽৾ cluste - 0 ╺┙╔╞╪╪_{╋╋}╋╤╸╸ -2 0 -4 2 -6 6 4 separation

COMPLETE

What are we searching for? Redshift, distances, and standard spheres Observe, translate, and compare

HI Density

COSMOLOGICAL DISTANCES

Goal:

Find the imprint of the Universe expansion in the galaxy distribution

From Redshift, z_{obs} , to distances, χ

$$\chi(z_{\rm obs}) = \int_0^{z_{\rm obs}} \frac{cdz}{H(z)}$$

*H(z) traces the expansion of the Universe as a function of time

Assuming a cosmology

* separation along the line-of-sight $s_{\parallel}^{\text{true}} = s_{\parallel}^{\text{fiducial}} \frac{H^{\text{fiducial}}(z)}{H^{\text{true}}(z)}$

* separation transfers to the line-of-sight

$$s_{\perp}^{\text{true}} = s_{\perp}^{\text{fiducial}} \frac{D_{\text{A}}^{\text{true}}(z)}{D_{\text{A}}^{\text{fiducial}}(z)}$$

Find the true cosmology

- * Observe features of known size and symmetry (e.g. spherical)
- * Measure their observed shape and size
- * Model the distortions to constrain true cosmology

OBSERVING A SPHERE

 $H^{\text{fiducial}} < H^{\text{true}}$

BARYON ACOUSTIC OSCILLATIONS

BAO as a standard ruler

- * Ripples in the galaxy distribution formed in the primordial Universe
- * Peaks/isotropic rings in the 2-point clustering statistics of galaxies, ξ
- * True size well known from Cosmic Microwave Background Measurements (Planck)

Observed distortions

- * Fiducial cosmology different from true one
- * Peculiar motion of galaxies: redshift-space distortions

$$z_{\rm obs} = (z_{\rm cosmo} + 1)(z_{\rm pec} + 1),$$

 $z_{\rm pec} = v/c$: Doppler shift

- Growth of structures, f

* Regulates the velocity response of a galaxy to an underling over-density, δ $v(x) \sim f\delta(x)$

200

175

150

125

100

75

50

25

-25

-50

TRUE SIGNAL

OBESRVED SIGNAL

Credits: Padmanabhan et al 2012

BAO DETECTION

Required data

- * Galaxy catalogue: RA, DEC, redshift, weights, (reliability)
- * Random catalogue, unclustered distribution: RA, DEC, redshift, weights, (reliability)
 - same footprint of galaxy catalogue
 - same redshift range of galaxy catalogue
 - same selection function (and reliability cut)
 - higher number density (usually 50x)
- **2PCF estimator**, Landy-Szalay (1993)

 $\xi(r,\mu) = \frac{DD(r,\mu) + RR(r,\mu) - 2DR(r,\mu)}{RR(r,\mu)}$

 $DD(r,\mu)$: data-data counts $RR(r,\mu)$: random-random counts $DR(r,\mu)$: data-random counts

Ready to use code (DESI): 2PCF: <u>https://github.com/cosmodesi/pycorr</u> P(k): <u>https://github.com/cosmodesi/pypower</u>

2PCF multipoles (isolate isotropies)

$$\xi_l(r) = \frac{2l+1}{2} \int_{-1}^{1} \xi(r,\mu) P_l(\mu) d\mu$$

eBOSS ELG 2PCF MULTIPOLES

Credits: Tamone et al 2020

KEUSHIFI BINS

Redshift as a proxy of time

- * Galaxies observed at different redshifts belong to different epochs
- * The clustering amplitude, expansion of the Universe, and growth of structures vary with time (redshift)

Redshift slices:

a compromised between statistics and clustering evolution

- * One mean "epoch" for all galaxies in the bin
- * Deepness: > 4x BAO scale

Keep in mind

- * Correlation between clustering signal in different bins
- * The measured clustering is a weighted time average

Credits: simulated lightcone of the COSMOS field, Aaron Yung et al 2022

CONSTRAINING COSMOLOGICAL PARAMETERS: A TEST FOR GENERAL RELATIVITY MODELLING BAO AT DIFFERENT REDSHIFTS

13.8 • Lookback time [Gyrs]

12.0

10.0

5.0

0.0

13.5

eBOSS + BOSS Lyman- α (2008-2019) eBOSS + SDSS I-II Quasars (1998-2019) eBOSS Young Blue Galaxies (2014-2019) eBOSS Old Red Galaxies (2014-2019) BOSS Old Red Galaxies (2008-2014) SDSS I-II Nearby Galaxies (1998-2008)

Credits: Raichoor, Ross, and the SDSS Collaboration

MODELLING BAO SIGNAL

Construct 2PCF template with fiducial cosmology $\xi^{\text{fiducial}}(r, \mu), \ \xi_l^{\text{fiducial}}(r)$

Introduce distortions

 $\xi^{\text{observed}}(r,\mu,\alpha_{\parallel},\alpha_{\perp},f), \quad \xi_l^{\text{observed}}(r,\alpha_{\parallel},\alpha_{\perp},f)$

 $\alpha_{\parallel} = \frac{H^{\text{fiducial}} r_d^{\text{true}}}{H^{\text{true}} r_d^{\text{fiducial}}}$

$$\alpha_{\perp} = \frac{D_{\rm A}^{\rm true} r_d^{\rm true}}{D_{\rm A}^{\rm fiducial} r_d^{\rm fiducial}}$$

-

Construct covariance matrix

* Mocks: covariance of several synthetic realisations

* Analytical: Gaussian covariance constructed from the fiducial template

* Semi-Analytical: fiducial template + polynomials fitted to match the data

Ready ti use code (Euclid) BeXiCov (Sarpa et al in prep): https://github.com/esarpa/BeXiCov

Model the clustering signal in each redshift bin * $\alpha_{\parallel}(z), \alpha_{\perp}(z), f$

CORRELATION MATRIX

LIKELIHOOD PROFILES

TEST GENERAL RELATIVITY

Dark energy (DA)

- * Source of Universe accelerated expansion
- * "Exotic" fluid with negative pressure
- * In GR: energy density, ho_Λ , constant in time (ΛCDM)

- Is ΛCDM correct?:

$$\rho_{\rm DE}(z) = \rho_{\rm DE,0}(1+z)^{3(1+w_0+w_a)} \exp\left[-3w_a \frac{z}{1+z}\right]$$

* $\Lambda CDM : w_0 = -1; w_a = 0$

Testing ΛCDM

- * impact of w_0, w_a on H(z), f(z)
- * need to probe a wide redshift range

VARYING THE DA MODEL

Credits: Veropalumbo

STATE-OF-THE-ART

Credits: Hou et al. 2023

TRY YOURSELF: TD-CLUSTERING EXERCISES BY A. DE MATTIA

https://github.com/adematti/TD_clustering

Repo for exercises given at the Euclid summer school

Everything (including installation of packages and data) should be included in the notebooks.

- Inspecting catalogues: statistical weights to correct observational systematics
- Measure the clustering: 2PCF and Power-spectrum multipoles

Y2: Cosmological constraints with BAO

See cosmo_bao.ipynb

- **Build the fiducial isotropic BAO Power-spectrum template**
- Construct and sample the likelihood (MCMC) to constrain cosmological distortions
- **Constrain cosmological parameters from distortion measurements**

SUMMARY & OPEN QUESTIONS (PROPAGATE YOUR CHOICE)

EUCLID GOAL: TEST GENERAL RELATIVITY, THE NATURE OF DARK ENERGY

- Data: 3D galaxy positions via imaging and spectroscopic survey
- Measurements: clustering signal at different epochs
- Cosmological constraints: $\{H(z), f(z)\}_7$
- Test General relativity: $w_0, w_a, \Omega_m, \Omega_b, \Omega_A$
- **HI** Density

Spectra reliability: accounting for interlopers contamination

Correlation between measurements, "internal" evolution, optimal choice of redshift slices

- How to:

* Two steps extraction $\{H(z), f(z)\}_{z} \rightarrow w_{0}, w_{a}, \Omega_{m}, \Omega_{b}, \Omega_{A}$ * Joint fit: from clustering signal to $w_0, w_a, \Omega_m, \Omega_b, \Omega_\Lambda$

