Machine learning for extreme values

Sebastian Engelke www.sengelke.com

Jointly with Nicola Gnecco, Edossa M. Terefe, Olivier Pasche and Gloria Buriticá

> COSMOSTATS, Asiago September 14, 2023

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

– Graphical models: sparsity and efficient computations [1] [2]

- Causal inference for extremes [3] [4]
-

[2] S. Engelke and J. Ivanovs. "Sparse structures for multivariate extremes". In: Annu. Rev. Stat. Appl. 8 (2021), pp. 241–270.

^[1] S. Engelke and A. S. Hitz. "Graphical models for extremes (with discussion)". In: J. R. Stat. Soc. Ser. B. Stat. Methodol. 82.4 (2020), pp. 871–932.

^[3] D. Deuber, J. Li, S. Engelke, and M. H. Maathuis. "Estimation and inference of extremal quantile treatment effects for

- Graphical models: sparsity and efficient computations [1] [2]
- Causal inference for extremes [3] [4]
- Machine learning: prediction beyond the data range

- [1] S. Engelke and A. S. Hitz. "Graphical models for extremes (with discussion)". In: J. R. Stat. Soc. Ser. B. Stat. Methodol. 82.4 (2020), pp. 871–932.
- [2] S. Engelke and J. Ivanovs. "Sparse structures for multivariate extremes". In: Annu. Rev. Stat. Appl. 8 (2021), pp. 241–270.
- [3] D. Deuber, J. Li, S. Engelke, and M. H. Maathuis. "Estimation and inference of extremal quantile treatment effects for heavy-tailed distributions". In: J. Amer. Statist. Assoc. (2023). to appear.
- [4] N. Gnecco, N. Meinshausen, J. Peters, and S. Engelke. "Causal discovery in heavy-tailed models". In: Ann. Statist. 49.3 (2021), pp. 1755–1778.
- Graphical models: sparsity and efficient computations [1] [2]
- Causal inference for extremes [3] [4]
- Machine learning: prediction beyond the data range

^[3] D. Deuber, J. Li, S. Engelke, and M. H. Maathuis. "Estimation and inference of extremal quantile treatment effects for

– Prediction of conditional quantile at level $\tau \in (0,1)$:

$$
Q_{\mathsf{x}}(\tau) = \mathsf{F}_{\mathsf{Y}}^{-1}(\tau \mid \mathsf{X} = \mathsf{x})
$$

– Prediction of conditional quantile at level $\tau \in (0,1)$:

$$
Q_{\mathsf{x}}(\tau) = \mathsf{F}_\mathsf{Y}^{-1}(\tau \mid \mathsf{X} = \mathsf{x})
$$

– If τ is close to 1, we speak of extreme quantile regression

– Prediction of conditional quantile at level $\tau \in (0,1)$:

$$
Q_{\mathsf{x}}(\tau) = \mathsf{F}_\mathsf{Y}^{-1}(\tau \mid \mathsf{X} = \mathsf{x})
$$

- If τ is close to 1, we speak of extreme quantile regression
- Again, classical machine learning methods perform poorly

Extreme quantile regression: Aare river in Bern

Extreme quantile regression: Aare river in Bern

– Late warnings during flood in August 2005

Extreme quantile regression: Aare river in Bern

– Late warnings during flood in August 2005

- $-$ Y is daily discharge at Bern station
- X contains discharge and precipitation from previous days, etc.

 $-$ For independent copies $({\bf X}_1,Y_1),\ldots,({\bf X}_n,Y_n)$ of ${\bf X}\in\mathbb{R}^p$ and $\,\in\mathbb{R},$ the goal is to predict the conditional quantile at level $\tau \in (0,1)$

 $Q_{\mathbf{x}}(\tau) = F_{\mathbf{Y}}^{-1}(\tau \mid \mathbf{X} = \mathbf{x})$

^[5] V. Chernozhukov. "Extremal quantile regression". In: The Annals of Statistics 33.2 (2005), pp. 806–839. [6] V. Chavez-Demoulin and A. C. Davison. "Generalized additive modelling of sample extremes". In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.1 (2005), pp. 207–222.

 $-$ For independent copies $({\bf X}_1,Y_1),\ldots,({\bf X}_n,Y_n)$ of ${\bf X}\in\mathbb{R}^p$ and $\,\in\mathbb{R},$ the goal is to predict the conditional quantile at level $\tau \in (0,1)$

$$
Q_{\mathbf{x}}(\tau) = F_{\mathsf{Y}}^{-1}(\tau \mid \mathbf{X} = \mathbf{x})
$$

- There are different scenarios depending on the quantile level $\tau = \tau_n$:
	- $\tau_n \equiv \tau_0 < 1$ (classical case)
	- $\tau_n \rightarrow 1$, and $n(1 \tau_n) \rightarrow \infty$ (intermediate case)
	- $-\tau_n \to 1$, and $n(1-\tau_n) \to c \in [0,\infty)$ (extreme case)

^[5] V. Chernozhukov. "Extremal quantile regression". In: The Annals of Statistics 33.2 (2005), pp. 806–839. [6] V. Chavez-Demoulin and A. C. Davison. "Generalized additive modelling of sample extremes". In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.1 (2005), pp. 207-222.

 $-$ For independent copies $({\bf X}_1,Y_1),\ldots,({\bf X}_n,Y_n)$ of ${\bf X}\in\mathbb{R}^p$ and $\,\in\mathbb{R},$ the goal is to predict the conditional quantile at level $\tau \in (0,1)$

$$
Q_{\mathbf{x}}(\tau) = F_{\mathsf{Y}}^{-1}(\tau \mid \mathbf{X} = \mathbf{x})
$$

– There are different scenarios depending on the quantile level $\tau = \tau_n$:

- $\tau_n \equiv \tau_0 < 1$ (classical case)
- $\tau_n \rightarrow 1$, and $n(1 \tau_n) \rightarrow \infty$ (intermediate case)
- $-\tau_n \to 1$, and $n(1-\tau_n) \to c \in [0,\infty)$ (extreme case)
- Classical methods for quantile regression only work well in the case of fixed $\tau_n \equiv \tau_0 < 1$

^[5] V. Chernozhukov. "Extremal quantile regression". In: The Annals of Statistics 33.2 (2005), pp. 806–839. [6] V. Chavez-Demoulin and A. C. Davison. "Generalized additive modelling of sample extremes". In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.1 (2005), pp. 207-222.

 $-$ For independent copies $({\bf X}_1,Y_1),\ldots,({\bf X}_n,Y_n)$ of ${\bf X}\in\mathbb{R}^p$ and $\,\in\mathbb{R},$ the goal is to predict the conditional quantile at level $\tau \in (0,1)$

$$
Q_{\mathbf{x}}(\tau) = F_{\mathsf{Y}}^{-1}(\tau \mid \mathbf{X} = \mathbf{x})
$$

- There are different scenarios depending on the quantile level $\tau = \tau_n$:
	- $\tau_n \equiv \tau_0 < 1$ (classical case)
	- $\tau_n \rightarrow 1$, and $n(1 \tau_n) \rightarrow \infty$ (intermediate case)
	- $-\tau_n \to 1$, and $n(1-\tau_n) \to c \in [0,\infty)$ (extreme case)
- Classical methods for quantile regression only work well in the case of fixed $\tau_n \equiv \tau_0 < 1$
- $-$ Existing methods from extreme value theory are not flexible enough or do not generalize well to higher dimensions [5] [6]

^[5] V. Chernozhukov. "Extremal quantile regression". In: The Annals of Statistics 33.2 (2005), pp. 806–839. [6] V. Chavez-Demoulin and A. C. Davison. "Generalized additive modelling of sample extremes". In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.1 (2005), pp. 207–222.

 $-$ For independent copies $({\bf X}_1,Y_1),\ldots,({\bf X}_n,Y_n)$ of ${\bf X}\in\mathbb{R}^p$ and $\,\in\mathbb{R},$ the goal is to predict the conditional quantile at level $\tau \in (0,1)$

$$
Q_{\mathbf{x}}(\tau) = F_{\mathsf{Y}}^{-1}(\tau \mid \mathbf{X} = \mathbf{x})
$$

- There are different scenarios depending on the quantile level $\tau = \tau_n$:
	- $\tau_n \equiv \tau_0 < 1$ (classical case)
	- $\tau_n \to 1$, and $n(1 \tau_n) \to \infty$ (intermediate case)
	- $-\tau_n \to 1$, and $n(1-\tau_n) \to c \in [0,\infty)$ (extreme case)
- Classical methods for quantile regression only work well in the case of fixed $\tau_n \equiv \tau_0 < 1$
- $-$ Existing methods from extreme value theory are not flexible enough or do not generalize well to higher dimensions [5] [6]
- Goal: Develop a new method for extreme quantile regression that works well with high-dimensional and complex data

[6] V. Chavez-Demoulin and A. C. Davison. "Generalized additive modelling of sample extremes". In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.1 (2005), pp. 207–222.

^[5] V. Chernozhukov. "Extremal quantile regression". In: The Annals of Statistics 33.2 (2005), pp. 806–839.

 $\mathbb{P}(Y > y)$

$$
\mathbb{P}(Y>y)=\mathbb{P}(Y>u)\times\mathbb{P}(Y>y\mid Y>u)
$$

$$
\mathbb{P}(Y > y) = \mathbb{P}(Y > u) \times \mathbb{P}(Y > y | Y > u)
$$

$$
\approx \mathbb{P}(Y > u) \times (1 - H_{\sigma,\gamma}(y - u))
$$

where $H_{\sigma,\gamma}$ is the cdf of the GPD with scale $\sigma > 0$ and shape $\gamma \in \mathbb{R}$.

$$
\mathbb{P}(Y > y) = \mathbb{P}(Y > u) \times \mathbb{P}(Y > y | Y > u)
$$

\n
$$
\approx \mathbb{P}(Y > u) \times (1 - H_{\sigma,\gamma}(y - u))
$$

\n
$$
= \mathbb{P}(Y > u) \times (1 + \gamma \frac{y - u}{\sigma})^{-1/\gamma}
$$

where $H_{\sigma,\gamma}$ is the cdf of the GPD with scale $\sigma > 0$ and shape $\gamma \in \mathbb{R}$.

$$
\mathbb{P}(Y > y) = \mathbb{P}(Y > u) \times \mathbb{P}(Y > y | Y > u)
$$

\n
$$
\approx \mathbb{P}(Y > u) \times (1 - H_{\sigma,\gamma}(y - u))
$$

\n
$$
= \mathbb{P}(Y > u) \times (1 + \gamma \frac{y - u}{\sigma})^{-1/\gamma}
$$

where $H_{\sigma,\gamma}$ is the cdf of the GPD with scale $\sigma > 0$ and shape $\gamma \in \mathbb{R}$.

The sign of γ characterizes the domain of attraction (DOA) of Y

- $-\gamma > 0$: Y has heavy tails (Fréchet DOA)
- $-\gamma = 0$: Y has light tails (Gumbel DOA)
- $-\gamma$ < 0: Y has finite upper endpoint (Weibull DOA)

Estimation

- Consider i.i.d. data Y_1, \ldots, Y_n and estimate empirically the quantile $u = \hat{Q}(\tau_0)$ for an intermediate quantile level $\tau_0 < 1$.
- Define the exceedances above the threshold as

$$
Z_i = \left(Y_i - \hat{Q}(\tau_0)\right)_+
$$

follow approximately a GPD $H_{\sigma,\gamma}$,

Estimation

– Consider i.i.d. data Y_1, \ldots, Y_n and estimate empirically the quantile $u = \hat{Q}(\tau_0)$ for an intermediate quantile level $\tau_0 < 1$.

– Define the exceedances above the threshold as

$$
Z_i = \left(Y_i - \hat{Q}(\tau_0)\right)_+
$$

follow approximately a GPD $H_{\sigma,\gamma}$, with log-likelihood of the parameters $\theta = (\sigma,\gamma)$

$$
\ell_{Z_i}(\theta) = -\left[(1+1/\gamma) \log \left(1+\gamma \frac{Z_i}{\sigma}\right) + \log \sigma \right] \mathbb{I}\{Z_i > 0\}.
$$

Estimation

– Consider i.i.d. data Y_1, \ldots, Y_n and estimate empirically the quantile $u = \hat{Q}(\tau_0)$ for an intermediate quantile level $\tau_0 < 1$.

– Define the exceedances above the threshold as

$$
Z_i = \left(Y_i - \hat{Q}(\tau_0)\right)_+
$$

follow approximately a GPD $H_{\sigma,\gamma}$, with log-likelihood of the parameters $\theta = (\sigma,\gamma)$

$$
\ell_{Z_i}(\theta) = -\left[(1+1/\gamma) \log \left(1+\gamma \frac{Z_i}{\sigma}\right) + \log \sigma \right] \mathbb{I}\{Z_i > 0\}.
$$

Estimate the parameters by maximum likelihood

$$
\hat{\theta} = \underset{\theta = (\sigma, \gamma)}{\arg \max} \sum_{i=1}^{n} \ell_{Z_i}(\theta).
$$

Extreme quantile estimation

 $-$ Approximation of quantile $Q(\tau)=F_Y^{-1}(\tau)$ for probability level $\tau>\tau_0$ by inverting the cdf $H_{\hat\sigma,\hat\gamma}$ of the GPD

$$
\hat{Q}(\tau)=\hat{Q}(\tau_0)+\hat{\sigma}\frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}}-1}{\hat{\gamma}}.
$$

Extreme quantile estimation

 $-$ Approximation of quantile $Q(\tau)=F_Y^{-1}(\tau)$ for probability level $\tau>\tau_0$ by inverting the cdf $H_{\hat\sigma,\hat\gamma}$ of the GPD

$$
\hat{Q}(\tau)=\hat{Q}(\tau_0)+\hat{\sigma}\frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}}-1}{\hat{\gamma}}.
$$

– Compute a T-year event as $\hat{Q}(1 - 1/(n_Y T))$, where n_Y is the number of observations per year.

During the 2005 flood in Bern

– Daily observations during the 2005 flood in Bern together with 100-year return level estimate.

– Assume the GPD model

$$
(Y - \hat{Q}(\tau_0) | Y > \hat{Q}(\tau_0), \qquad) \sim H_{\sigma_-, \gamma}
$$

where τ_0 is an intermediate quantile level

– Assume the conditional GPD model

$$
(Y - \hat{Q}_x(\tau_0) \mid Y > \hat{Q}_x(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})}
$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_x(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid X = x$

– Assume the conditional GPD model

$$
(Y - \hat{Q}_x(\tau_0) \mid Y > \hat{Q}_x(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})}
$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_x(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid X = x$

 $-\hat{Q}_{x}(\tau_0)$ can be estimated with classical methods, e.g., a quantile random forest.

– Assume the conditional GPD model

$$
(Y - \hat{Q}_x(\tau_0) \mid Y > \hat{Q}_x(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})}
$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_x(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid X = x$

- $\hat{Q}_x(\tau_0)$ can be estimated with classical methods, e.g., a quantile random forest.
- For an extreme level $\tau > \tau_0$ we can estimate

$$
\hat{Q}_{\mathsf{x}}(\tau) = \hat{Q}_{\mathsf{x}}(\tau_0) + \hat{\sigma}(\mathsf{x})\frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}(\mathsf{x})}-1}{\hat{\gamma}(\mathsf{x})},
$$

where $\hat{\theta}(\mathbf{x}) = (\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$ is an estimate of the conditional GPD parameters.

– Assume the conditional GPD model

$$
(Y - \hat{Q}_x(\tau_0) \mid Y > \hat{Q}_x(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})}
$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_x(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid X = x$

- $\hat{Q}_x(\tau_0)$ can be estimated with classical methods, e.g., a quantile random forest.
- For an extreme level $\tau > \tau_0$ we can estimate

$$
\hat{Q}_{\mathsf{x}}(\tau) = \hat{Q}_{\mathsf{x}}(\tau_0) + \hat{\sigma}(\mathsf{x})\frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}(\mathsf{x})}-1}{\hat{\gamma}(\mathsf{x})},
$$

where $\hat{\theta}(\mathbf{x}) = (\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$ is an estimate of the conditional GPD parameters.

– The triple $(\hat{Q}_x(\tau_0), \hat{\sigma}(x), \hat{\gamma}(x))$ provides a model for the tail of Y | $X = x$.
– Generalized random forests (GRF) [7] are ensemble methods based on trees that can be seen as adaptive nearest neighbors that optimize

$$
\hat{\theta}(\mathbf{x}) = \arg\min_{\theta} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) L(\theta, Y_i),
$$

where L is a loss function and $w_n(x, X_i)$ are localizing weights from the GRF

^[7] S. Athey, J. Tibshirani, and S. Wager. "Generalized random forests". In: Ann. Statist. 47.2 (2019), pp. 1148–1178.

– Generalized random forests (GRF) [7] are ensemble methods based on trees that can be seen as adaptive nearest neighbors that optimize

$$
\hat{\theta}(\mathbf{x}) = \arg\min_{\theta} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) L(\theta, Y_i),
$$

where L is a loss function and $w_n(x, X_i)$ are localizing weights from the GRF

[7] S. Athey, J. Tibshirani, and S. Wager. "Generalized random forests". In: Ann. Statist. 47.2 (2019), pp. 1148–1178.

– Generalized random forests (GRF) [7] are ensemble methods based on trees that can be seen as adaptive nearest neighbors that optimize

$$
\hat{\theta}(\mathbf{x}) = \arg\min_{\theta} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) L(\theta, Y_i),
$$

where L is a loss function and $w_n(x, X_i)$ are localizing weights from the GRF

 $-$ Least squares regression: loss $L(\theta,Y) = (Y - \theta)^2$ and

 $\hat{\theta}(\mathbf{x}) \approx \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$

^[7] S. Athey, J. Tibshirani, and S. Wager. "Generalized random forests". In: Ann. Statist. 47.2 (2019), pp. 1148–1178.

– Generalized random forests (GRF) [7] are ensemble methods based on trees that can be seen as adaptive nearest neighbors that optimize

$$
\hat{\theta}(\mathbf{x}) = \arg\min_{\theta} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) L(\theta, Y_i),
$$

where L is a loss function and $w_n(x, X_i)$ are localizing weights from the GRF

 $-$ Least squares regression: loss $L(\theta,Y) = (Y - \theta)^2$ and

$$
\hat{\theta}(\textbf{x}) \approx \mathbb{E}[Y \mid \textbf{X} = \textbf{x}]
$$

– Quantile regression at $\tau \in (0,1)$: $L(\theta, Y) = \rho_{\tau}(\theta, Y)$ is quantile loss and

 $\hat{\theta}(\mathbf{x}) \approx Q_{\mathbf{x}}(\tau)$

^[7] S. Athey, J. Tibshirani, and S. Wager. "Generalized random forests". In: Ann. Statist. 47.2 (2019), pp. 1148–1178.

– Generalized random forests (GRF) [7] are ensemble methods based on trees that can be seen as adaptive nearest neighbors that optimize

$$
\hat{\theta}(\mathbf{x}) = \arg\min_{\theta} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) L(\theta, Y_i),
$$

where L is a loss function and $w_n(x, X_i)$ are localizing weights from the GRF

 $-$ Least squares regression: loss $L(\theta,Y) = (Y - \theta)^2$ and

$$
\hat{\theta}(\textbf{x}) \approx \mathbb{E}[Y \mid \textbf{X} = \textbf{x}]
$$

– Quantile regression at $\tau \in (0,1)$: $L(\theta, Y) = \rho_{\tau}(\theta, Y)$ is quantile loss and

 $\hat{\theta}(\mathbf{x}) \approx Q_{\mathbf{x}}(\tau)$

– For extreme quantile levels $\tau \approx 1$, this does not work well

^[7] S. Athey, J. Tibshirani, and S. Wager. "Generalized random forests". In: Ann. Statist. 47.2 (2019), pp. 1148-1178.

^[8] N. Gnecco, E. M. Terefe, and S. Engelke. "Extremal random forests". In: J. Amer. Statist. Assoc. (2023). conditionally accepted.

– Estimate intermediate quantile $\hat{Q}_{x}(\tau_0)$

^[8] N. Gnecco, E. M. Terefe, and S. Engelke. "Extremal random forests". In: J. Amer. Statist. Assoc. (2023). conditionally accepted.

- Estimate intermediate quantile $\hat{Q}_{x}(\tau_0)$
- Compute exceedances $Z_i = (Y_i \hat{Q}_x(\tau_0))_+$ and weights $w_n(x, X_i)$

^[8] N. Gnecco, E. M. Terefe, and S. Engelke. "Extremal random forests". In: J. Amer. Statist. Assoc. (2023). conditionally accepted.

- Estimate intermediate quantile $\hat{Q}_{\mathbf{x}}(\tau_0)$
- Compute exceedances $Z_i = (Y_i \hat{Q}_x(\tau_0))_+$ and weights $w_n(x, X_i)$
- Our extremal random forest uses negative GPD log-likelihood as loss $L(\theta, Z) = \ell_{\theta}(Z)$ and solves

$$
(\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x})) = \argmin_{\theta = (\sigma, \gamma)} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) \ell_{\theta}(Z_i)
$$

^[8] N. Gnecco, E. M. Terefe, and S. Engelke. "Extremal random forests". In: J. Amer. Statist. Assoc. (2023). conditionally accepted.

- Estimate intermediate quantile $\hat{Q}_{\mathbf{x}}(\tau_0)$
- Compute exceedances $Z_i = (Y_i \hat{Q}_x(\tau_0))_+$ and weights $w_n(x, X_i)$
- Our extremal random forest uses negative GPD log-likelihood as loss $L(\theta, Z) = \ell_{\theta}(Z)$ and solves

$$
(\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x})) = \argmin_{\theta = (\sigma, \gamma)} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) \ell_{\theta}(Z_i)
$$

^[8] N. Gnecco, E. M. Terefe, and S. Engelke. "Extremal random forests". In: J. Amer. Statist. Assoc. (2023). conditionally accepted.

- Estimate intermediate quantile $\hat{Q}_{x}(\tau_0)$
- Compute exceedances $Z_i = (Y_i \hat{Q}_{x}(\tau_0))_{+}$ and weights $w_n(x, X_i)$
- Our extremal random forest uses negative GPD log-likelihood as loss $L(\theta, Z) = \ell_{\theta}(Z)$ and solves

$$
(\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x})) = \underset{\theta = (\sigma, \gamma)}{\arg \min} \sum_{i=1}^{n} w_n(\mathbf{x}, \mathbf{X}_i) \ell_{\theta}(Z_i)
$$

– Under some assumptions, ERF estimates are consistent

$$
\hat{\theta}(\mathbf{x}) \stackrel{\mathbb{P}}{\rightarrow} \theta(\mathbf{x}), \quad \text{for all } \mathbf{x} \in [-1,1]^p
$$

^[8] N. Gnecco, E. M. Terefe, and S. Engelke. "Extremal random forests". In: J. Amer. Statist. Assoc. (2023). conditionally accepted.

Simulation study

– Sample $n = 2000$ iid copies of (X, Y) from

$$
\begin{cases}\n\mathbf{X} \sim U\left([-1,1]^p\right),\\ \n\left(Y \mid \mathbf{X} = \mathbf{x}\right) \sim s(\mathbf{x})\mathcal{T}_4,\n\end{cases}
$$

where $s(x) = 1 + 1\{x_1 > 0\}$ and $\gamma(x) = 1/4$.

- Compare ERF and GBEX with quantile regression and other extreme value methods
- $-$ On a test data set $\{{\bf x}_i\}_{i=1}^{n'}$, evaluate the integrated squared error (ISE)

$$
\mathsf{ISE} = \frac{1}{n'} \sum_{i=1}^{n'} \left(\hat{Q}_{x_i}(\tau) - Q_{x_i}(\tau) \right)^2.
$$

[9] N. Gnecco, E. M. Terefe, and S. Engelke. "Extremal random forests". In: J. Amer. Statist. Assoc. (2023). conditionally accepted.

[10] J. Velthoen, C. Dombry, J.-J. Cai, and S. Engelke. "Gradient boosting for extreme quantile regression". In: Extremes (2023). to appear.

Simulation study results

Extreme quantile regression neural networks (EQRN)

- $-$ If there is sequential dependence as in time series, then this structure can be used in recurrent neural networks
- Predict quantiles of Y_t (discharge at time t) using past observations

$$
\mathbf{X} = (Y_{t-1}, Y_{t-2}, \dots, X_{t-1}^1, X_{t-2}^1, \dots)
$$

from response on other covariates X^1,X^2,\ldots (e.g., precipitation at locations 1, 2, etc.)

^[11] O. C. Pasche and S. Engelke. Neural networks for extreme quantile regression with an application to forecasting of flood risk. Available on https://arxiv.org/abs/2208.07590. 2022.

Results for the 2005 flood in Bern

 $-$ Top: One-day-ahead forecasted conditional 100-year return level $\hat{Q}_{\mathsf{x}}^{100}$ (blue line)

Results for the 2005 flood in Bern

- $-$ Top: One-day-ahead forecasted conditional 100-year return level $\hat{Q}_{\mathsf{x}}^{100}$ (blue line)
- Bottom: Ratio of conditional exceedance probability compared to unconditional estimate

$$
\frac{\hat{\mathbb{P}}(\boldsymbol{\Upsilon}>\hat{Q}^{100}\mid\boldsymbol{X}=\boldsymbol{x})}{\hat{\mathbb{P}}(\boldsymbol{\Upsilon}>\hat{Q}^{100})}
$$

evtGAN: combining EVT and GANs

Climate model data

- We use 2000 years of large ensemble simulations with the EC -Earth global climate model $[12]$.
- Present-day climate conditions, stationary in time; see [13] for details.
- Data at $d = 18 \times 22$ grid points over western Europe.
- We consider annual maxima of precipitation and temperature, giving us $n = 2000$ observations of a random vector $\mathbf{Z} = (Z_1, \ldots, Z_d)$.

^[12] W. Hazeleger et al. "EC-Earth V2. 2: description and validation of a new seamless earth system prediction model". In: Climate dynamics 39.11 (2012), pp. 2611–2629.

^[13] K. Van der Wiel, N. Wanders, F. Selten, and M. Bierkens. "Added value of large ensemble simulations for assessing extreme river discharge in a 2 C warmer world". In: Geophysical Research Letters 46.4 (2019), pp. 2093–2102.

^[14] Y. Boulaguiem et al. "Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks". In: Environmental Data Science 1 (2022), e5.

Climate model data

- We use 2000 years of large ensemble simulations with the EC -Earth global climate model $[12]$.
- Present-day climate conditions, stationary in time; see [13] for details.
- Data at $d = 18 \times 22$ grid points over western Europe.
- We consider annual maxima of precipitation and temperature, giving us $n = 2000$ observations of a random vector $\mathbf{Z} = (Z_1, \ldots, Z_d)$.

Goal: Realistic simulations of Z for stress testing and extreme event simulation. [14]

^[12] W. Hazeleger et al. "EC-Earth V2. 2: description and validation of a new seamless earth system prediction model". In: Climate dynamics 39.11 (2012), pp. 2611–2629.

^[13] K. Van der Wiel, N. Wanders, F. Selten, and M. Bierkens. "Added value of large ensemble simulations for assessing extreme river discharge in a 2 C warmer world". In: Geophysical Research Letters 46.4 (2019), pp. 2093–2102.

^[14] Y. Boulaguiem et al. "Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks". In: Environmental Data Science 1 (2022), e5.

Climate model data

- We use 2000 years of large ensemble simulations with the EC -Earth global climate model $[12]$.
- Present-day climate conditions, stationary in time; see [13] for details.
- Data at $d = 18 \times 22$ grid points over western Europe.
- We consider annual maxima of precipitation and temperature, giving us $n = 2000$ observations of a random vector $\mathbf{Z} = (Z_1, \ldots, Z_d)$.

Goal: Realistic simulations of Z for stress testing and extreme event simulation. [14] Here we use $n_{\text{train}} = 50$ years for training, and $n_{\text{test}} = 1950$ for evaluation.

^[12] W. Hazeleger et al. "EC-Earth V2. 2: description and validation of a new seamless earth system prediction model". In: Climate dynamics 39.11 (2012), pp. 2611–2629.

^[13] K. Van der Wiel, N. Wanders, F. Selten, and M. Bierkens. "Added value of large ensemble simulations for assessing extreme river discharge in a 2 C warmer world". In: Geophysical Research Letters 46.4 (2019), pp. 2093–2102.

^[14] Y. Boulaguiem et al. "Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks". In: Environmental Data Science 1 (2022), e5.

Marginal GEV parameters

Figure: GEV parameters for temperature (a-c) and precipitation (d-f): mean parameter μ (left), scale parameter σ (center) and shape parameter $ξ$ (right).

Two approaches

Classical EVT approach

- $-$ Spatial extreme value theory provides statistical models for Z , e.g., a spatial max-stable model [15].
- If the region is very large and heterogeneous, such models may not be flexible enough, because of:
	- spatial non-stationarities;
	- asymptotic independence between some stations;
	- etc.

[16] I. Goodfellow et al. "Generative adversarial nets". In: Advances in neural information processing systems. 2014, pp. 2672–2680.

^[15] A. C. Davison and M. M. Gholamrezaee. "Geostatistics of extremes". In: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012), pp. 581–608.

Two approaches

Classical EVT approach

- $-$ Spatial extreme value theory provides statistical models for Z , e.g., a spatial max-stable model [15].
- If the region is very large and heterogeneous, such models may not be flexible enough, because of:
	- spatial non-stationarities;
	- asymptotic independence between some stations;
	- etc.

Our ML approach

- Generative Adversarial Networks (GANs) [16] are a flexible way of learning and sampling from a multivariate distribution Z.
- $-$ They are usually used to sample from image data using convolutional neural networks.
- $-$ We can treat our spatial climatological data Z as an image.

[16] I. Goodfellow et al. "Generative adversarial nets". In: Advances in neural information processing systems. 2014, pp. 2672–2680.

^[15] A. C. Davison and M. M. Gholamrezaee. "Geostatistics of extremes". In: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012), pp. 581–608.

GAN architecture: generator and discriminator

GAN architecture: generator and discriminator

GANs for extremes

- GANs are trained on the bulk of the distribution.
- $-$ There are two main challenges concerning extremes:
	- accurate extrapolation of the marginal distributions;
	- accurate modeling of the extremal dependence structure.

^[17] M. Wiese, R. Knobloch, and R. Korn. Copula & Marginal Flows: Disentangling the Marginal from its Joint. 2019. [18] T. Huster et al. Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions. 2021. [19] M. Allouche, S. Girard, and E. Gobet. "EV-GAN: Simulation of extreme events with ReLU neural networks". hal-03250663v2. 2021.

^[20] S. Bhatia, A. Jain, and B. Hooi. "ExGAN: Adversarial Generation of Extreme Samples". In: arXiv preprint arXiv:2009.08454 (2020).

GANs for extremes

- GANs are trained on the bulk of the distribution.
- $-$ There are two main challenges concerning extremes:
	- accurate extrapolation of the marginal distributions;
	- accurate modeling of the extremal dependence structure.
- If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed [17].
- [18] and [19] develop GANs that can generate heavy-tailed output.
- [20] propose a conditional GAN for importance sampling of extreme events.

^[17] M. Wiese, R. Knobloch, and R. Korn. Copula & Marginal Flows: Disentangling the Marginal from its Joint. 2019. [18] T. Huster et al. Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions. 2021.

^[19] M. Allouche, S. Girard, and E. Gobet. "EV-GAN: Simulation of extreme events with ReLU neural networks". hal-03250663v2. 2021.

^[20] S. Bhatia, A. Jain, and B. Hooi. "ExGAN: Adversarial Generation of Extreme Samples". In: arXiv preprint arXiv:2009.08454 (2020).

GANs for extremes

- GANs are trained on the bulk of the distribution.
- $-$ There are two main challenges concerning extremes:
	- accurate extrapolation of the marginal distributions;
	- accurate modeling of the extremal dependence structure.
- If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed [17].
- [18] and [19] develop GANs that can generate heavy-tailed output.
- [20] propose a conditional GAN for importance sampling of extreme events.

Our $evtGAN$ is copula approach where marginals use EVT approximations and dependence the structure is generated by the GAN.

^[17] M. Wiese, R. Knobloch, and R. Korn. Copula & Marginal Flows: Disentangling the Marginal from its Joint. 2019. [18] T. Huster et al. Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions. 2021.

^[19] M. Allouche, S. Girard, and E. Gobet. "EV-GAN: Simulation of extreme events with ReLU neural networks". hal-03250663v2. 2021.

^[20] S. Bhatia, A. Jain, and B. Hooi. "ExGAN: Adversarial Generation of Extreme Samples". In: arXiv preprint arXiv:2009.08454 (2020).

Input: Annual maxima $\mathbf{Z}_i = (Z_{i1}, \ldots, Z_{id})$, $i = 1, \ldots, n$.

Input: Annual maxima $\mathbf{Z}_i = (Z_{i1}, \ldots, Z_{id})$, $i = 1, \ldots, n$.

1. Fit a GEV distribution \widehat{G}_j to the *j*th marginal with parameters $(\hat{\mu}_i, \hat{\sigma}_i, \hat{\xi}_i)$.

Input: Annual maxima $\mathbf{Z}_i = (Z_{i1}, \ldots, Z_{id})$, $i = 1, \ldots, n$.

- 1. Fit a GEV distribution \widehat{G}_i to the *j*th marginal with parameters $(\hat{\mu}_i, \hat{\sigma}_i, \hat{\xi}_i)$.
- 2. Normalize empirically to a std uniform distribution to obtain pseudo observations

$$
\mathbf{U}_i=(\widehat{F}_1(Z_{i1}),\ldots,\widehat{F}_d(Z_{id})),\quad i=1,\ldots,n,
$$

where \widehat{F}_i is the empirical distribution function of the Z_{1j}, \ldots, Z_{nj} .

3. Train a GAN G on the normalized data U_1, \ldots, U_n .

Input: Annual maxima $\mathbf{Z}_i = (Z_{i1}, \ldots, Z_{id})$, $i = 1, \ldots, n$.

- 1. Fit a GEV distribution \widehat{G}_i to the *j*th marginal with parameters $(\hat{\mu}_i, \hat{\sigma}_i, \hat{\xi}_i)$.
- 2. Normalize empirically to a std uniform distribution to obtain pseudo observations

$$
\mathbf{U}_i=(\widehat{F}_1(Z_{i1}),\ldots,\widehat{F}_d(Z_{id})),\quad i=1,\ldots,n,
$$

where \widehat{F}_i is the empirical distribution function of the Z_{1j}, \ldots, Z_{nj} .

- 3. Train a GAN G on the normalized data $\mathbf{U}_1, \ldots, \mathbf{U}_n$.
- 4. Generate n^* new data points $\mathbf{U}_1^*,\ldots,\mathbf{U}_{n^*}^*$ from G with uniform margins.
- 5. Normalize back to the scale of the original observations

$$
\mathbf{Z}_{i}^{*}=(\widehat{G}_{1}^{-1}(U_{i1}^{*}),\ldots,\widehat{G}_{d}^{-1}(U_{id}^{*})), i=1,\ldots,n^{*}.
$$

Output: Set of new generated observations $\mathbf{Z}_{i}^{*} = (Z_{i1}, \ldots, Z_{id}^{*}), i = 1, \ldots, n^{*}.$

Bivariate samples of temperature

Bivariate samples of precipitation

Extremal correlation plots

Thank you!