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Extreme value theory and statistics

— Analysis of rare phenomena with small
probabilities

— Impact on various risks (health,
environment, economy,...)
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My research interests

— Graphical models: sparsity and efficient computations [1] [2]

[1] S. Engelke and A. S. Hitz. “Graphical models for extremes (with discussion)”. In: J. R. Stat. Soc. Ser. B. Stat.
Methodol. 82.4 (2020), pp. 871-932.

[2] S. Engelke and J. lvanovs. “Sparse structures for multivariate extremes”. In: Annu. Rev. Stat. Appl. 8 (2021),
pp. 241-270.
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My research interests

— Graphical models: sparsity and efficient computations [1] [2]

— Causal inference for extremes [3] [4]

[1] S. Engelke and A. S. Hitz. “Graphical models for extremes (with discussion)”. In: J. R. Stat. Soc. Ser. B. Stat.
Methodol. 82.4 (2020), pp. 871-932.
[2] S. Engelke and J. lvanovs. “Sparse structures for multivariate extremes”. In: Annu. Rev. Stat. Appl. 8 (2021),

pp. 241-270.

[3] D. Deuber, J. Li, S. Engelke, and M. H. Maathuis. “Estimation and inference of extremal quantile treatment effects for
heavy-tailed distributions”. In: J. Amer. Statist. Assoc. (2023). to appear.

[4] N. Gnecco, N. Meinshausen, J. Peters, and S. Engelke. “Causal discovery in heavy-tailed models”. In: Ann. Statist. 49.3

(2021), pp. 1755-1778.
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My research interests

— Machine learning: prediction beyond the data range
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Beyond data range: extreme quantile regression
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— Prediction of conditional quantile at level 7 € (0,1):

Q1) = Fy (T | X =x)
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Response Y

E[Y|X =x]
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Predictor vector X

— Prediction of conditional quantile at level 7 € (0,1):
Q1) = Fy (T | X =x)

— If 7 is close to 1, we speak of extreme quantile regression

— Again, classical machine learning methods perform poorly
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Extreme quantile regression: Aare river in Bern
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Extreme quantile regression: Aare river in Bern

— Late warnings during flood in August 2005
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Extreme quantile regression: Aare river in Bern

— Late warnings during flood in August 2005
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o — Y is daily discharge at Bern station
— X contains discharge and precipitation from
N previous days, etc.
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Extreme quantile regression

— For independent copies (X1, Y1),...,(Xn, Y») of X € R? and Y € R, the goal is to predict the
conditional quantile at level 7 € (0,1)

Q) = Fy (7 | X =x)

[5] V. Chernozhukov. “Extremal quantile regression”. In: The Annals of Statistics 33.2 (2005), pp. 806-839.
[6] V. Chavez-Demoulin and A. C. Davison. “Generalized additive modelling of sample extremes”. In: Journal of the Royal
Statistical Society: Series C (Applied Statistics) 54.1 (2005), pp. 207-222.
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— For independent copies (X1, Y1),...,(Xs, Ya) of X € R” and Y € R, the goal is to predict the
conditional quantile at level 7 € (0,1)

Q) = Fy (7 | X =x)

— There are different scenarios depending on the quantile level 7 = 7,:
- T =710 < 1 (classical case)
- 7 — 1, and n(1 — 7,) — oo (intermediate case)
- 7n— 1, and n(1 — ;) = c € [0, 00) (extreme case)
— Classical methods for quantile regression only work well in the case of fixed 7, = 70 < 1

— Existing methods from extreme value theory are not flexible enough or do not generalize well to
higher dimensions [5] [6]

— Goal: Develop a new method for extreme quantile regression that works well with
high-dimensional and complex data

[5] V. Chernozhukov. “Extremal quantile regression”. In: The Annals of Statistics 33.2 (2005), pp. 806-839.
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Generalized Pareto distribution

P(Y > y)
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Generalized Pareto distribution

P(Y>y)=P(Y>u)xP(Y>y|Y >u)
~P(Y > u) X (1= Hop(y — u))

Probability
L

where H; 4 is the cdf of the GPD with scale ¢ > 0
and shape v € R.
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Generalized Pareto distribution

P(Y>y)=P(Y>u)xP(Y>y|Y >u)
~P(Y > u) X (1= Hop(y — u))

Probability
L

—P(Y > u) x (1+7y*”)7w

g

where H; 4 is the cdf of the GPD with scale ¢ > 0
and shape v € R.

River discha?ge (m3/ )é)
The sign of « characterizes the domain of attraction (DOA) of Y
— 7> 0: Y has heavy tails (Fréchet DOA)
— v=0: Y has light tails (Gumbel DOA)
— 7 < 0: Y has finite upper endpoint (Weibull DOA)
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Estimation

— Consider i.i.d. data Yi,..., Y, and estimate empirically the quantile u = @(To) for an
level 79 < 1.
— Define the above the threshold as

z=(vi-Qm))

+

follow approximately a GPD H, -,
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— Consider i.i.d. data Yi,..., Y, and estimate empirically the quantile u = @(To) for an
level 79 < 1.
— Define the above the threshold as

z=(vi-Qm))

+

follow approximately a GPD H, -, with of the parameters 6 = (o,7)

02,(0) = — {(1 +1/7)log (1 + 7§> + Ioga} {Z > 0}.

Estimate the parameters by maximum likelihood
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Extreme quantile estimation
— Approximation of quantile Q(7) = F, '(7) for probability level 7 > 7o by inverting the cdf Hs 5 of
the GPD )
-4
(=)
Q(r)=Q(mn) +6—=F——.
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Extreme quantile estimation

— Approximation of quantile Q(7) = F, '(7) for probability level 7 > 7o by inverting the cdf Hs 5 of
the GPD

1—719

Q(r) = O(n) +a¢.

— Compute a T-year event as Q(1 — 1/(ny T)), where ny is the number of
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During the 2005 flood in Bern
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Extreme quantile regression
— Assume the GPD model

(Y=Q(m) | Y>Q (m), )~ Hoo

where 79 is an intermediate quantile level
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Extreme quantile regression

— Assume the
(Y = Qum0) | Y > Qu(m0), X = %) ~ Hoy(x)
where 79 is an quantile level, and @x(To) is an estimate of the conditional 7o quantile
of Y| X=x
— Q«(70) can be estimated with classical methods, e.g., a
— For an T > To we can estimate
—4(x)
00— Gy oy )
x\7 ) = Wx\To0 o\X)—~
A(x)
where (x) = (8(x), 4(x)) is an estimate of the conditional GPD parameters.
— The triple (Q«(70),6(x),4(x)) provides a model for of Y| X=x.
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Generalized random forest

- (GRF) [7] are ensemble methods based on trees that can be seen as
adaptive nearest neighbors that optimize

~

6(x) = arg min wa(x, X;)L(0, Y7),
(09 = argymin > (s X)L(0. )

where L is a loss function and w,(x, X;) are localizing weights from the GRF

[7] S. Athey, J. Tibshirani, and S. Wager. “Generalized random forests”. In: Ann. Statist. 47.2 (2019), pp. 1148-1178.
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Generalized random forest

- (GRF) [7] are ensemble methods based on trees that can be seen as
adaptive nearest neighbors that optimize

O(x) = arg min win(x, X;)L(0, Y7),
(9 = armin’3 wi(x X)L(0, )
where L is a loss function and w,(x, X;) are localizing weights from the GRF
- 2 loss L(,Y) = (Y — 6)? and

~

0(x) = E[Y | X =x]

- at 7 € (0,1): L(8,Y) = p-(6,Y) is quantile loss and
0(x) ~ Q«(7)

— For levels 7 ~ 1, this does not work well

[7] S. Athey, J. Tibshirani, and S. Wager. “Generalized random forests”. In: Ann. Statist. 47.2 (2019), pp. 1148-1178.
11/25



Extremal Random Forest (ERF)

Q,(0.8)

Response Y

-10 05 0.0 05 10
Predictor vector X

[8] N. Gnecco, E. M. Terefe, and S. Engelke. “Extremal random forests”. In: J. Amer. Statist. Assoc. (2023). conditionally
accepted.
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Extremal Random Forest (ERF)

Estimate intermediate quantile @x(To)

Compute exceedances Z; = (Vi — Qu(70))y and | oo Q,(0.9995)
weights wy(x, Xj)

— Our extremal random forest uses negative GPD
log-likelihood as loss L(6, Z) = £9(Z) and solves

n Q,(0.8)
(6(x),4(x)) = arg min Z wa(x, Xi)lo(Z;)

0=(o,v) 11

Response Y

Under some assumptions, ERF estimates are
consistent

6(x) 5 0(x), for all x € [-1,1]° 5
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Simulation study

— Sample n = 2000 iid copies of (X, Y) from
X~ U(-11P), .
(Y [ X=x) ~s(x)Ta, ’
>
where s(x) = 1+ 1{x; > 0} and v(x) = 1/4. 2
c
— Compare ERF and GBEX with quantile regression and §
other extreme value methods g o
— On a test data set {x,-}}il, evaluate the integrated
squared error (ISE)
1< /A 2 5
ISE = — . — Gk, .
n' ; (Q (M) -Q '(T)) 10 05 00 05 10

Predictor vector X

[9] N. Gnecco, E. M. Terefe, and S. Engelke. “Extremal random forests”. In: J. Amer. Statist. Assoc. (2023). conditionally
accepted.

[10] J. Velthoen, C. Dombry, J.-J. Cai, and S. Engelke. “Gradient boosting for extreme quantile regression”. In: Extremes
(2023). to appear.
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Simulation study results
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Extreme quantile regression neural networks (EQRN)

— If there is sequential dependence as in time series, then this structure can be used in recurrent
neural networks

— Predict quantiles of Y; (discharge at time t) using past observations
X= (Y1, Yoo, .., Xi1, Xi0,...)

from response on other covariates X, X2, ... (e.g., precipitation at locations 1, 2, etc.)

Network LR Network —)@—} Network —)@—} Network [=>!

© 6 o o

[11] O. C. Pasche and S. Engelke. Neural networks for extreme quantile regression with an application to forecasting of flood
risk. Available on https://arxiv.org/abs/2208.07590. 2022.
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Results for the 2005 flood in Bern

Probability ratio
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— Top: One-day-ahead forecasted conditional 100-year return level Q% (blue line)
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Results for the 2005 flood in Bern
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evtGAN: combining EVT and GANs



Climate model data

— We use 2000 years of large ensemble simulations with the EC-Earth global climate model [12].

Present-day climate conditions, stationary in time; see [13] for details.

Data at d = 18 X 22 grid points over western Europe.

We consider annual maxima of precipitation and temperature, giving us n = 2000 observations of
a random vector Z = (Zy,. .., Z4).

[12] W. Hazeleger et al. “EC-Earth V2. 2: description and validation of a new seamless earth system prediction model”. In:
Climate dynamics 39.11 (2012), pp. 2611-2629.

[13] K. Van der Wiel, N. Wanders, F. Selten, and M. Bierkens. “Added value of large ensemble simulations for assessing
extreme river discharge in a 2 C warmer world”. In: Geophysical Research Letters 46.4 (2019), pp. 2093-2102.

[14] Y. Boulaguiem et al. “Modeling and simulating spatial extremes by combining extreme value theory with generative

adversarial networks”. In: Environmental Data Science 1 (2022), eb.
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— We use 2000 years of large ensemble simulations with the [12].

Present-day climate conditions, stationary in time; see [13] for details.

Data at d = 18 X 22 grid points over western Europe.

We consider annual maxima of and , giving us n = 2000 observations of
a random vector Z = (Z, ..., Zq).

Goal: Realistic simulations of Z for stress testing and extreme event simulation. [14]
Here we use nain = 50 years for training, and niwest = 1950 for evaluation.

[12] W. Hazeleger et al. “"EC-Earth V2. 2: description and validation of a new seamless earth system prediction model”. In:
Climate dynamics 39.11 (2012), pp. 2611-2629.
[13] K. Van der Wiel, N. Wanders, F. Selten, and M. Bierkens. “Added value of large ensemble simulations for assessing
extreme river discharge in a 2 C warmer world”. In: Geophysical Research Letters 46.4 (2019), pp. 2093-2102.
[14] Y. Boulaguiem et al. “Modeling and simulating spatial extremes by combining extreme value theory with generative
adversarial networks”. In: Environmental Data Science 1 (2022), e5.
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Marginal GEV parameters
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Figure: GEV parameters for temperature (a-c) and precipitation (d-f): mean parameter p (left), scale parameter

o (center) and shape parameter £ (right).
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Two approaches

Classical EVT approach

— Spatial extreme value theory provides statistical models for Z, e.g., a spatial max-stable
model [15].
— If the region is very large and heterogeneous, such models may not be flexible enough, because of:

- spatial non-stationarities;
- asymptotic independence between some stations;
- etc.

[15] A. C. Davison and M. M. Gholamrezaee. “Geostatistics of extremes”. In: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 468 (2012), pp. 581-608.
[16] I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing systems. 2014,
pp. 2672-2680.
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Classical EVT approach

— Spatial extreme value theory provides statistical models for Z, e.g., a
[15].

— If the region is very large and heterogeneous, such models may not be flexible enough, because of:

- spatial non-stationarities;
- asymptotic independence between some stations;
- etc.

Our ML approach

— Generative Adversarial Networks (GANSs) [16] are a flexible way of learning and sampling from a
multivariate distribution Z.

— They are usually used to sample from image data using

— We can treat our spatial climatological data Z as an image.

[15] A. C. Davison and M. M. Gholamrezaee. “Geostatistics of extremes”. In: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.

Sci. 468 (2012), pp. 581-608.
[16] I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing systems. 2014,
pp. 2672-2680.
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GAN architecture: generator and discriminator
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Noise z +BN +BN +BN
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GAN architecture: generator and discriminator
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GANs for extremes

— GANSs are trained on the bulk of the distribution.
— There are two main challenges concerning extremes:

- accurate extrapolation of the marginal distributions;
- accurate modeling of the extremal dependence structure.

[17] M. Wiese, R. Knobloch, and R. Korn. Copula & Marginal Flows: Disentangling the Marginal from its Joint. 2019.
[18] T. Huster et al. Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions. 2021.

[19] M. Allouche, S. Girard, and E. Gobet. “EV-GAN: Simulation of extreme events with ReLU neural networks”.
hal-03250663v2. 2021.

[20] S. Bhatia, A. Jain, and B. Hooi. “ExXGAN: Adversarial Generation of Extreme Samples”. In: arXiv preprint
arXiv:2009.08454 (2020).
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— If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed [17].

— [18] and [19] develop GANs that can generate
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- accurate modeling of the extremal

— If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed [17].

— [18] and [19] develop GANs that can generate

— [20] propose a conditional GAN for importance sampling of extreme events.

Our is copula approach where marginals use and dependence the

structure is generated by the
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The evtGAN algorithm

Input: Annual maxima Z; = (Zi1,...,Z4), i=1,...,n.
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The evtGAN algorithm

Input: Annual maxima Z; = (Zi1,...,Z4), i=1,...,n.

1. Fit a G; to the jth marginal with parameters (7, 5, &)).

2. Normalize empirically to a std uniform distribution to obtain

Ui = (F(Zn),...,Fa(Za)), i=1,...

where I?J is the empirical distribution function of the Zyj,..., Z,.

3. G on the normalized data Uy,...,U,.
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The evtGAN algorithm

Input: Annual maxima Z; = (Zi1,...,Z4), i=1,...,n.

1. Fit a G; to the jth marginal with parameters (7, 5, &)).

2. Normalize empirically to a std uniform distribution to obtain

U,' = (I?l(Z,-l),. “ey I?d(Z,-d)), i= 1, cee, Ny

where I?J is the empirical distribution function of the Zyj,..., Z,.
3. G on the normalized data Uy,...,U,.
4. Generate n* new data points U7, ..., U« from G with uniform margins.

5. Normalize back to the scale of the original observations

Zr = (G MU, ..., G Uy), i=1,...,n"

Output: Set of new Z; =(Zn,....Z5). i=1,...,n".
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Bivariate samples of temperature
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Bivariate samples of precipitation
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Extremal correlation plots
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Thank you!



