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Extreme value theory and statistics

– Analysis of rare phenomena with small
probabilities

– Impact on various risks (health,
environment, economy,...)
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My research interests

– Graphical models: sparsity and efficient computations [1] [2]

– Causal inference for extremes [3] [4]

– Machine learning: prediction beyond the data range
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Beyond data range: extreme quantile regression
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– Prediction of conditional quantile at level τ ∈ (0, 1):

Qx(τ) = F−1
Y (τ | X = x)

– If τ is close to 1, we speak of extreme quantile regression

– Again, classical machine learning methods perform poorly

3 / 25



Beyond data range: extreme quantile regression

Q̂x(0.9995)

E[Y|X = x]

Qx(0.8)

-5

0

5

-1.0 -0.5 0.0 0.5 1.0

Predictor vector X

R
es

po
ns

e 
Y

– Prediction of conditional quantile at level τ ∈ (0, 1):

Qx(τ) = F−1
Y (τ | X = x)

– If τ is close to 1, we speak of extreme quantile regression

– Again, classical machine learning methods perform poorly

3 / 25



Beyond data range: extreme quantile regression

Q̂x(0.9995)

E[Y|X = x]

Qx(0.8)

Qx(0.9995)

-5

0

5

-1.0 -0.5 0.0 0.5 1.0

Predictor vector X

R
es

po
ns

e 
Y

– Prediction of conditional quantile at level τ ∈ (0, 1):

Qx(τ) = F−1
Y (τ | X = x)

– If τ is close to 1, we speak of extreme quantile regression

– Again, classical machine learning methods perform poorly

3 / 25



Beyond data range: extreme quantile regression

Q̂x(0.9995)

E[Y|X = x]

Qx(0.8)

Qx(0.9995)

-5

0

5

-1.0 -0.5 0.0 0.5 1.0

Predictor vector X

R
es

po
ns

e 
Y

– Prediction of conditional quantile at level τ ∈ (0, 1):

Qx(τ) = F−1
Y (τ | X = x)

– If τ is close to 1, we speak of extreme quantile regression

– Again, classical machine learning methods perform poorly

3 / 25



Extreme quantile regression: Aare river in Bern
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– Y is daily discharge at Bern station

– X contains discharge and precipitation from
previous days, etc.
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Extreme quantile regression

– For independent copies (X1,Y1), . . . , (Xn,Yn) of X ∈ Rp and Y ∈ R, the goal is to predict the
conditional quantile at level τ ∈ (0, 1)

Qx(τ) = F−1
Y (τ | X = x)

– There are different scenarios depending on the quantile level τ = τn:
- τn ≡ τ0 < 1 (classical case)
- τn → 1, and n(1− τn) → ∞ (intermediate case)
- τn → 1, and n(1− τn) → c ∈ [0,∞) (extreme case)

– Classical methods for quantile regression only work well in the case of fixed τn ≡ τ0 < 1

– Existing methods from extreme value theory are not flexible enough or do not generalize well to
higher dimensions [5] [6]

– Goal: Develop a new method for extreme quantile regression that works well with
high-dimensional and complex data

[5] V. Chernozhukov. “Extremal quantile regression”. In: The Annals of Statistics 33.2 (2005), pp. 806–839.
[6] V. Chavez-Demoulin and A. C. Davison. “Generalized additive modelling of sample extremes”. In: Journal of the Royal

Statistical Society: Series C (Applied Statistics) 54.1 (2005), pp. 207–222.
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Generalized Pareto distribution

River discharge (m3/ s)
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P(Y > y)

= P(Y > u)× P(Y > y | Y > u)

≈ P(Y > u)× (1− Hσ,γ(y − u))

= P(Y > u)×
(
1 + γ

y − u

σ

)−1/γ

where Hσ,γ is the cdf of the GPD with scale σ > 0
and shape γ ∈ R.

The sign of γ characterizes the domain of attraction (DOA) of Y

– γ > 0: Y has heavy tails (Fréchet DOA)

– γ = 0: Y has light tails (Gumbel DOA)

– γ < 0: Y has finite upper endpoint (Weibull DOA)
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Estimation

– Consider i.i.d. data Y1, . . . ,Yn and estimate empirically the quantile u = Q̂(τ0) for an
intermediate quantile level τ0 < 1.

– Define the exceedances above the threshold as

Zi =
(
Yi − Q̂(τ0)

)
+

follow approximately a GPD Hσ,γ ,

with log-likelihood of the parameters θ = (σ, γ)

ℓZi (θ) = −
[
(1 + 1/γ) log

(
1 + γ

Zi

σ

)
+ log σ

]
I{Zi > 0}.

Estimate the parameters by maximum likelihood

θ̂ = argmax
θ=(σ,γ)

n∑
i=1

ℓZi (θ).

7 / 25



Estimation

– Consider i.i.d. data Y1, . . . ,Yn and estimate empirically the quantile u = Q̂(τ0) for an
intermediate quantile level τ0 < 1.

– Define the exceedances above the threshold as

Zi =
(
Yi − Q̂(τ0)

)
+

follow approximately a GPD Hσ,γ , with log-likelihood of the parameters θ = (σ, γ)

ℓZi (θ) = −
[
(1 + 1/γ) log

(
1 + γ

Zi

σ

)
+ log σ

]
I{Zi > 0}.

Estimate the parameters by maximum likelihood

θ̂ = argmax
θ=(σ,γ)

n∑
i=1

ℓZi (θ).

7 / 25



Estimation

– Consider i.i.d. data Y1, . . . ,Yn and estimate empirically the quantile u = Q̂(τ0) for an
intermediate quantile level τ0 < 1.

– Define the exceedances above the threshold as

Zi =
(
Yi − Q̂(τ0)

)
+

follow approximately a GPD Hσ,γ , with log-likelihood of the parameters θ = (σ, γ)

ℓZi (θ) = −
[
(1 + 1/γ) log

(
1 + γ

Zi

σ

)
+ log σ

]
I{Zi > 0}.

Estimate the parameters by maximum likelihood

θ̂ = argmax
θ=(σ,γ)

n∑
i=1

ℓZi (θ).

7 / 25



Extreme quantile estimation

– Approximation of quantile Q(τ) = F−1
Y (τ) for probability level τ > τ0 by inverting the cdf Hσ̂,γ̂ of

the GPD

Q̂(τ) = Q̂(τ0) + σ̂

(
1−τ
1−τ0

)−γ̂

− 1

γ̂
.

– Compute a T -year event as Q̂(1− 1/(nYT )), where nY is the number of observations per year.
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During the 2005 flood in Bern
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– Daily observations during the 2005 flood in Bern together with 100-year return level estimate.
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Extreme quantile regression

– Assume the

conditional

GPD model

(Y − Q̂

x

(τ0) | Y > Q̂

x

(τ0),

X = x

) ∼ Hσ

(x)

,γ

(x)

where τ0 is an intermediate quantile level

, and Q̂x(τ0) is an estimate of the conditional τ0 quantile
of Y | X = x

– Q̂x(τ0) can be estimated with classical methods, e.g., a quantile random forest.

– For an extreme level τ > τ0 we can estimate

Q̂x(τ) = Q̂x(τ0) + σ̂(x)

(
1−τ
1−τ0

)−γ̂(x)

− 1

γ̂(x)
,

where θ̂(x) = (σ̂(x), γ̂(x)) is an estimate of the conditional GPD parameters.

– The triple (Q̂x(τ0), σ̂(x), γ̂(x)) provides a model for the tail of Y | X = x.
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Generalized random forest

– Generalized random forests (GRF) [7] are ensemble methods based on trees that can be seen as
adaptive nearest neighbors that optimize

θ̂(x) = argmin
θ

n∑
i=1

wn(x,Xi )L(θ,Yi ),

where L is a loss function and wn(x,Xi ) are localizing weights from the GRF

[7] S. Athey, J. Tibshirani, and S. Wager. “Generalized random forests”. In: Ann. Statist. 47.2 (2019), pp. 1148–1178.
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Extremal Random Forest (ERF)

– Estimate intermediate quantile Q̂x(τ0)

– Compute exceedances Zi = (Yi − Q̂x(τ0))+ and
weights wn(x,Xi )

– Our extremal random forest uses negative GPD
log-likelihood as loss L(θ,Z) = ℓθ(Z) and solves

(σ̂(x), γ̂(x)) = argmin
θ=(σ,γ)

n∑
i=1

wn(x,Xi )ℓθ(Zi )

– Under some assumptions, ERF estimates are
consistent

θ̂(x)
P→ θ(x), for all x ∈ [−1, 1]p

Q̂x(0.9995)

Qx(0.8)

?
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[8]

[8] N. Gnecco, E. M. Terefe, and S. Engelke. “Extremal random forests”. In: J. Amer. Statist. Assoc. (2023). conditionally
accepted.
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Simulation study

– Sample n = 2000 iid copies of (X ,Y ) from{
X ∼ U ([−1, 1]p) ,

(Y | X = x) ∼ s(x)T4,

where s(x) = 1 + 1{x1 > 0} and γ(x) = 1/4.

– Compare ERF and GBEX with quantile regression and
other extreme value methods

– On a test data set {xi}n
′

i=1, evaluate the integrated
squared error (ISE)

ISE =
1

n′

n′∑
i=1

(
Q̂xi (τ)− Qxi (τ)

)2

.

Q̂x(0.9995)
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[9] [10]

[9] N. Gnecco, E. M. Terefe, and S. Engelke. “Extremal random forests”. In: J. Amer. Statist. Assoc. (2023). conditionally
accepted.
[10] J. Velthoen, C. Dombry, J.-J. Cai, and S. Engelke. “Gradient boosting for extreme quantile regression”. In: Extremes
(2023). to appear.

13 / 25



Simulation study results
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Extreme quantile regression neural networks (EQRN)

– If there is sequential dependence as in time series, then this structure can be used in recurrent
neural networks

– Predict quantiles of Yt (discharge at time t) using past observations

X = (Yt−1,Yt−2, . . . ,X
1
t−1,X

1
t−2, . . . )

from response on other covariates X 1,X 2, . . . (e.g., precipitation at locations 1, 2, etc.)

xt−1xt−2xt−3xt−s

NetworkNetworkNetworkNetwork ht−1ht−2ht−3

σ̂(xt) γ̂(xt)

[11]

[11] O. C. Pasche and S. Engelke. Neural networks for extreme quantile regression with an application to forecasting of flood
risk. Available on https://arxiv.org/abs/2208.07590. 2022.
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Results for the 2005 flood in Bern
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evtGAN: combining EVT and GANs



Climate model data

– We use 2000 years of large ensemble simulations with the EC-Earth global climate model [12].

– Present-day climate conditions, stationary in time; see [13] for details.

– Data at d = 18× 22 grid points over western Europe.

– We consider annual maxima of precipitation and temperature, giving us n = 2000 observations of
a random vector Z = (Z1, . . . ,Zd).

Goal: Realistic simulations of Z for stress testing and extreme event simulation. [14]
Here we use ntrain = 50 years for training, and ntest = 1950 for evaluation.

[12] W. Hazeleger et al. “EC-Earth V2. 2: description and validation of a new seamless earth system prediction model”. In:
Climate dynamics 39.11 (2012), pp. 2611–2629.
[13] K. Van der Wiel, N. Wanders, F. Selten, and M. Bierkens. “Added value of large ensemble simulations for assessing
extreme river discharge in a 2 C warmer world”. In: Geophysical Research Letters 46.4 (2019), pp. 2093–2102.
[14] Y. Boulaguiem et al. “Modeling and simulating spatial extremes by combining extreme value theory with generative
adversarial networks”. In: Environmental Data Science 1 (2022), e5.
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Marginal GEV parameters
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Figure: GEV parameters for temperature (a-c) and precipitation (d-f): mean parameter µ (left), scale parameter
σ (center) and shape parameter ξ (right).
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Two approaches

Classical EVT approach

– Spatial extreme value theory provides statistical models for Z, e.g., a spatial max-stable
model [15].

– If the region is very large and heterogeneous, such models may not be flexible enough, because of:
- spatial non-stationarities;
- asymptotic independence between some stations;
- etc.

Our ML approach

– Generative Adversarial Networks (GANs) [16] are a flexible way of learning and sampling from a
multivariate distribution Z.

– They are usually used to sample from image data using convolutional neural networks.

– We can treat our spatial climatological data Z as an image.

[15] A. C. Davison and M. M. Gholamrezaee. “Geostatistics of extremes”. In: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 468 (2012), pp. 581–608.
[16] I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing systems. 2014,
pp. 2672–2680.
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GAN architecture: generator and discriminator
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GANs for extremes

– GANs are trained on the bulk of the distribution.

– There are two main challenges concerning extremes:
- accurate extrapolation of the marginal distributions;
- accurate modeling of the extremal dependence structure.

– If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed [17].

– [18] and [19] develop GANs that can generate heavy-tailed output.

– [20] propose a conditional GAN for importance sampling of extreme events.

Our evtGAN is copula approach where marginals use EVT approximations and dependence the
structure is generated by the GAN.

[17] M. Wiese, R. Knobloch, and R. Korn. Copula & Marginal Flows: Disentangling the Marginal from its Joint. 2019.
[18] T. Huster et al. Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions. 2021.
[19] M. Allouche, S. Girard, and E. Gobet. “EV-GAN: Simulation of extreme events with ReLU neural networks”.
hal-03250663v2. 2021.
[20] S. Bhatia, A. Jain, and B. Hooi. “ExGAN: Adversarial Generation of Extreme Samples”. In: arXiv preprint
arXiv:2009.08454 (2020).
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The evtGAN algorithm

Input: Annual maxima Zi = (Zi1, . . . ,Zid), i = 1, . . . , n.

1. Fit a GEV distribution Ĝj to the jth marginal with parameters (µ̂j , σ̂j , ξ̂j).

2. Normalize empirically to a std uniform distribution to obtain pseudo observations

Ui = (F̂1(Zi1), . . . , F̂d(Zid)), i = 1, . . . , n,

where F̂j is the empirical distribution function of the Z1j , . . . ,Znj .

3. Train a GAN G on the normalized data U1, . . . ,Un.

4. Generate n∗ new data points U∗
1 , . . . ,U

∗
n∗ from G with uniform margins.

5. Normalize back to the scale of the original observations

Z∗
i = (Ĝ−1

1 (U∗
i1), . . . , Ĝ

−1
d (U∗

id)), i = 1, . . . , n∗.

Output: Set of new generated observations Z∗
i = (Zi1, . . . ,Z

∗
id), i = 1, . . . , n∗.
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Bivariate samples of temperature
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Bivariate samples of precipitation
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Extremal correlation plots
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Thank you!


