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Summer 2018

� Motivation: heatwaves, wildfires, drought, heavy rainfall . . .
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Motivations for spatial modelling

� Assessment of significance of ‘hot spots’.

� Attribution of events to possible causes.

� Estimation of changes in extremes of time series, accounting for dependence between related
series.

� Risk assessment at a single important site, borrowing strength from sites nearby.

� Risk estimation for large spatial events.
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Why specialised models?

� Basic problem is generally extrapolation to rare(r) events.

� Spatial statistics is mostly based on multivariate normal distributions, inappropriate for modelling
tails of distributions, rare events, etc.

� Extrapolation from a fit to the entire distribution can be misleading:

– different mechanisms may apply in the extremes

– different fits to the bulk may give very different tail estimates—in particular, the light tails of
the Gaussian density can grossly underestimate probabilities of rare events

– Gaussian models for multivariate data predict independence of very rare events (‘the formula
that killed Wall Street’)

� Use of standard copulas can deal with transformations to marginal distributions, but not with
joint dependence.
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Setup

� Focus on extremes of Y (x) for x in some space or space/time domain X .

� Aim to estimate probabilities of the form

P {Y (x) ∈ R} ,

where R represents rare event of interest.

� Data are available at only a finite subset X ′:

– a few long series (long-term observations, space-poor/time rich)

– many short series (satellite data, space rich/time poor)

– many longer series (15-minute radar data, space rich/time rich)
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Extreme-Value Theory 6

Poisson process

� Random point pattern P in a state space E defined by properties of counts

N(A) = |{x : x ∈ P ∩ A}|, A ⊂ E :

– N(A1), . . . , N(Ak) independent for disjoint A1, . . . ,Ak,

– N(A) ∼ Poiss{µ(A)},

where the measure µ is non-atomic (diffuse), and often has an intensity µ̇.

� Mapping theorem: if g : E → E∗ does not create atoms, then P∗ = g(P) is also a Poisson
process.

� Restriction of P to E ′ ⊂ E is also Poisson.
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Classical extremal models

� Use random sample X1, . . . ,Xn
iid
∼ F and for bn ∈ R and an > 0 define point process

Pn = {(Xj − bn)/an : j = 1, . . . , n}, E = R.

� Then the rescaled maximum {max(X1, . . . ,Xn)− bn}/an has a non-degenerate limiting
distribution iff Pn converges to a Poisson process with mean measure

Λ{(y,∞)} =

(
1 + ξ

y − η

τ

)−1/ξ

+

, y ∈ R,

where u+ = max(u, 0), and η and τ are location and scale parameters.

� The shape parameter ξ determines the rate of tail decay, with

– ξ > 0 giving the heavy-tailed (Fréchet) case,

– ξ = 0 giving the light-tailed (Gumbel) case—corresponds to Gaussian data,

– ξ < 0 giving the short-tailed (reverse Weibull) case.

� Limiting distributions:

– for maxima, generalized extreme-value (GEV), G(y) = exp{−Λ(y)};

– for excesses over threshold u, generalized Pareto (GPD), H(y) = 1− Λ(y + u)/Λ(u).
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GEV and shape parameter ξ

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gumbel, Frechet, Weibull

x

P
D

F

� PDFs of Gumbel (ξ = 0), Fréchet (ξ = 0) and (reverse) Weibull (ξ < 0).

� The Fréchet is bounded below, and the reverse Weibull is bounded above.

� The standard Weibull is a distribution for minima.
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Extrapolation

� Extreme value theory gives limiting models:

– GEV applies for maxima of an infinite sample,

– GPD applies for exceedances of an ‘infinite’ threshold.

� Extrapolation to high levels is based on the fact that the GEV is max-stable:

G(y)t = G(bt + aty), t > 0,

or equivalently

max(X1, . . . ,Xt)
D
= bt + atX1

for known functions at > 0 and bt.

� For the standard Fréchet, GEV(1,1,1), distribution, e−1/z , (z > 0), we have bt ≡ 0, at = t.

� Likewise the GPD is threshold-stable.

� Could fit other models, but with weaker mathematical justification.

� In practice we have finite samples, so the extremal models are approximate and extrapolation may
be vulnerable.

� Now generalize the above extremal paradigm to complex settings . . .
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Max-stable processes

� Can transform maxima to have limiting standard Fréchet distribution, so

max{Z1, . . . , Zn}
D
= nZ, n = 1, 2, . . .

� Want processes Z(x) with standard Fréchet margins such that if Z1(x), . . . , Zn(x)
iid
∼ Z(x), we

can base extrapolation on max-stability

max{Z1(x), . . . , Zn(x)}
D
= nZ(x), x ∈ X .

� Let W (x) ≥ 0 be a random process with E{W (x)} = 1 (x ∈ X ), and consider the Poisson
process on R+ × C+(X ):

{(Rj ,Wj(x)) : j = 1, 2, . . . , }, Rj = (E1 + · · ·+ Ej)
−1, Ei

iid
∼ exp(1) ⊥⊥ Wj

iid
∼ W.

� Setting Qj(x) = RjWj(x) gives a Poisson process on C+(X ), and any max-stable process has a
spectral representation (de Haan, 1984)

Z(x) =
∞
sup
j=1

Qj(x), x ∈ X , (1)

with Qj(x) interpreted as the jth event, with overall size Rj and profile Wj(x).
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Spectral representation
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Spectral representation

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x

P
oi

ss
on

 p
ro

ce
ss

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x

M
ax

−
st

ab
le

 p
ro

ce
ss

13

6



Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Spectral representation
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Exponent function

� For a function z(x), one can show that

P {Z(x) ≤ z(x), x ∈ D} = exp [−V {z(x) : x ∈ D}] , D ⊂ X ,

where the exponent function

V {z(x) : x ∈ D} = E

[
sup
x∈D

{
W (x)

z(x)

}]
= µ[{q : q(x) ≤ z(x), x ∈ D}c]

is derived from the mean measure µ of the Poisson process {Qj}, and expectation is over the
‘angular measure’ of W .

� The case D = {x1, . . . , xD} is key to inference, because data are observed on finite sets, and then
we write zd = z(xd),

V (z1, . . . , zD) = µ(Az), Az = ([0, z1]× · · · × [0, zD ])c ⊂ E ′ = [0,∞)D \ {0}.

� µ and V are homogeneous of order −1, i.e.,

µ(R) = t× µ(tR), R ⊂ E , t > 0,

which enables extrapolation by ‘pulling down’ extreme risk sets R to observable levels.

25
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Pulling R down to the origin

Left: point process on unit Fréchet scale, with set R and its scaled version R.
Right: same, but on Gumbel scale, with logarithmic axes, corresponding to translation of logR by
log t towards the origin.
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Extremal coefficient

� Homogeneity of V yields

P {Z(x) ≤ z, x ∈ D} = exp {−VD(z)} = exp {−VD(1)/z} =
(
e−1/z

)VD(1)
, z > 0,

and the extremal coefficient
θD = VD(1)

summarises the degree of dependence of extremes within D.

� The pairwise version,

θ(x, x′) = E
[
max

{
W (x),W (x′)

}]
, x, x′ ∈ X ,

can be regarded as an analogue of the correlation coefficient, with

(total dependence) 1 ≤ θ(x, x′) ≤ 2 (independence),

and the conditional probability interpretation

P
{
Z(x′) > z | Z(x) > z

}
∼ 2− θ(x, x′), z → ∞.

� θ(x, x′) is estimated nonparametrically by the F -madogram (Cooley et al., 2006).

27
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Maxima and exceedances

� Inference may be based on

– replicates of {Z(x) : x ∈ D}, e.g., annual maximum temperatures at sites in D,

– individual events {Qj(x) : x ∈ D}, e.g., hurricanes or droughts.

� Extremal approximations may be better for maxima, but more detailed modelling is possible based
on individual events.

� Choose ‘extreme’ events using risk functional ρ and retaining only events that fall into

E ′ = {q : ρ(q) > 1}.

� Examples involving threshold function u(x):

ρ1(Q) = sup
x∈D

Q(x)/u(x), ρ2(Q) = inf
x∈D

Q(x)/u(x), ρ3(Q) =

∫

D
Q(x)/u(x) dx.

� Inference based on Poisson process likelihood for {qj : qj ∈ E ′} involves µ(E ′), which must be
finite and computable.

� If ρ(aQ) = aρ(Q) for a > 0, then ρ(Q) > 1 gives Rρ(W ) > 1; then µ(E ′) = E{ρ(W )} depends
only on the distribution of W .

28

Models 29

Models

� Choice of W determines event size, orientation, smoothness, etc., with weak constraints W ≥ 0
and E{W (x)} = 1 for all x ∈ X .

� Several choices are based on zero-mean Gaussian process ε(x) for x ∈ X with variogram

γ(x, x′) = var{ε(x)− ε(x′)}, x, x′ ∈ X ,

with ε(x) either intrinsically stationary or stationary; if stationary

0 ≤ γ(x, x′) ≤ 2var{ε(x)} = 2σ2,

and if intrinsically stationary, then γ is unbounded but

cov{ε′(x1), ε
′(x2)} = 1

2

{
γ(x1, x

′) + γ(x2, x
′)− γ(x1, x2)

}
,

where ε′(x) = ε(x) − ε(x′) for some x′ ∈ X .

� Popular examples are the Brown–Resnick and extremal t processes (Brown and Resnick, 1977;
Kabluchko et al., 2009; Thibaud and Opitz, 2015),

W (x) = exp
[
ε′(x)− var{ε′(x)}/2

]
, W (x) ∝ ε(x)α+, α > 0,

but skew-Gaussian, skew-t, and hierarchical processes can be constructed (Tawn, 1990;
Reich and Shaby, 2012; Reich et al., 2014).
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Realisations from spatial models
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Top: latent variable, Student t copula, Hüsler–Reiss copula and extremal-t copula models. Bottom:
Smith, Schlather, geometric Gaussian and Brown–Resnick models. The histograms are of 1000
realisations of a summary of rainfall centred on Zürich, and the vertical lines correspond to the
realizations shown.
(Davison et al., 2012)
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Asymptotic dependence and independence

� The models above are asymptotically dependent (AD):

P
{
Z(x′) > z | Z(x) > z

}
∼ p(x, x′) +O(1/z), z → ∞,

so dependence between extremes persists at all levels: extreme events retain the same properties
at all levels.

� Many applications show asymptotic independence (AI), whereby extreme events become more
concentrated as they become rarer.

� Can model this through an inverted max-stable process (Wadsworth and Tawn, 2012)

Z ′(x) = −1/ log [1− exp {−1/Z(x)}] ,

for which
P
{
Z ′(x′) > z | Z ′(x) > z

}
= L(z)z1−θ(x,x′), z → ∞,

for some slowly-varying function L: the rate of approach to the limiting zero probability can vary.

� Recent work (Huser and Wadsworth, 2019) combines AD and AI, looks very useful.

32
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Inference 33

Generalities

� Extremal models are always mis-specified—inferences likely biased.

� Must check stability of inferences and possible presence of AI, so vary rarity of chosen events
(threshold, . . . ).

� Extremal index useful for

– exploratory and confirmatory analyses based on sub-groups (especially pairs) of observation
sites D,

– simple estimates for model parameters, e.g., by least squares (Buhl and Klüppelberg, 2017).

� Mainly focus on likelihood-based inferences for parametric models, but also use gradient score.

� Semiparametric inference preferable, but

– models are already quite flexible;

– low power for falsifying models, because data necessarily limited;

– simulation often needed for risk assessment.

34

Exploratory procedures

� Exploratory procedures are mostly based on estimates of θ(x1, x2), with the

– extremogram 2− θ̂(x1, x2) in time series (Davis and Mikosch, 2009),

– F -madogram in spatial cases.
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Margins

� Extremes Y (x) of original data at D = {x1, . . . , xD} will have GEV/GPD distributions.

� For maxima, use marginal transformation

Z(x) =

{
1 + ξ(x;ϑ)

Y (x)− η(x;ϑ)

τ(x;ϑ)

}1/ξ(x;ϑ)

+

to the unit Fréchet scale for inclusion in joint model, with

– splines for space-varying location, scale and shape parameters,

– and often constant shape, ξ(x;ϑ) ≡ ξ.

� Similar transformation for threshold exceedances, with EDF/GPD below/above threshold.

� Either

– estimate ϑ first, using independence likelihood, and then treat marginal transformation as
fixed, or

– perform joint estimation of margins and dependence structure.

� Balancing good marginal and joint fits can be tricky (easier in some Bayesian formulations).
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Likelihood for maxima

� Given independent annual maxima observed at D = {x1, . . . , xD} for n years, the maxima for
each year have joint distribution

P{Z(x1) ≤ z1, . . . , Z(xD) ≤ zD} = exp {−V (z1, . . . , zD)} , z1, . . . , zD > 0.

� The form of the CDF means that to compute the likelihood we must differentiate e−V with
respect to z1, . . . , zD, leading to combinatorial explosion:

−V1e
−V , (V1V2 − V12)e

−V , (−V1V2V3 + V12V3[3]− V123)e
−V , . . . ,

with about 105 terms for D = 10. Clearly this is infeasible for realistic applications, so we try to
avoid this, by

– using a composite (usually a pairwise) likelihood;

– using event timings to determine the required term, e.g., with D = 3,

(−V1V2V3 + V12V3 + V13V2 + V23V1 − V123)e
−V ;

– or using threshold exceedances.

� We need V and its derivatives, or Poisson process intensity µ̇ and its integrals . . .

37
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Likelihood for events

� Base extremal modelling on those individual events q(x) falling into E ′ = {q : ρ(q) > 1}, where ρ
only uses q(x) for x ∈ D:

– allows more detailed modelling and may include more data,

– if µ(E ′) is readily computed, in principle has simpler likelihood,

exp
{
−µ(E ′)

}
×

∏

q∈E ′

µ̇(q), µ̇(q) = −
∂DV (z1, . . . , zD)

∂z1 · · · ∂zD
,

– but components of some q may be non-extreme, so use a censored likelihood.
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Brown–Resnick likelihood

� If zd > u for d = 1, . . . , C and zd < u for d ∈ C′ = {C + 1, . . . ,D}, and C = {2, . . . , C}, the
censored likelihood contribution has form

1

z21z2 · · · zC
× φC−1(log z̃C ; Ω̃C,C)×ΦD−C

(
µ̃C′|C; Ω̃C′|C

)
,

where φk and Φk denote the k-dimensional normal density and distribution functions, Ω is defined
in terms of the variogram γ, and

log z̃d = log zd − log z1 +Ωd,1/2, d = 2, . . . , C,

Ω̃c,d = 1
2{Ωc,1 +Ω1,d − Ωc,d}, c, d ∈ {2, . . . ,D},

µC′|C = (log u− log z1 +
1
2Ω1,C′)− Ω̃C′,CΩ̃

−1
C,C log z̃C ,

Ω̃C′|C = Ω̃C′,C′ − Ω̃C′,CΩ̃
−1
C,CΩ̃C,C′ .

� Feasible for D ≤ 100, with modified R function for Φ (de Fondeville and Davison, 2018).

� Gradient score needed for higher D:

– differentiate with respect to data, so normalising constants not needed;

– use weight function to downweight effects of observations near thresholds.

� Similar computations are possible for extremal-t processes.

39
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Closing 40

Closing

� Basic ideas on maxima and point processes extend to spatial and space-time settings.

� Max-stable processes give asymptotic dependence models—asymptotic independence also seen.

� Can fit such models using

– composite (especially pairwise) likelihood,

– full likelihood (needs additional information, difficult with large D),

– Bayesian methods, or

– gradient score methods.

� Model-checking possible, using simulation from fitted models and other techniques—but difficult
to validate far into tails, because of lack of data.

� Currently much research in area (e.g., threshold models, non-stationarity, downscaling,
semiparametric inference, networks, , . . . ).
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