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Cosmological evolution

The Universe Large Scale Structure

• Cosmological surveys map the distribution of millions of
galaxies over very large volumes. These
galaxies form groups and cluster in a typical “web-like”
pattern.

• If we calculate the average number of galaxies in large boxes
of side ~ 10 𝑀𝑝𝑐, we see that the galaxy density field is nearly
homogeneous and isotropic.

• How do these cosmic structures form and evolve?



Cosmological evolution

INFLATION



Observational goals

• CMB anisotropies and galaxy clustering originate from a gravitational instability process, 
starting from primordial random seeds (quantum fluctuations) and including the interaction 
of various particle species (baryons, dark matter, photons, neutrinos)

• CMB (temperature, polarization) anisotropies and observed galaxy clustering are specific 
realizations of spatial random processes.

• Goal: using observations, study the statistical properties of the  galaxy density and CMB 
anisotropy field, in order to:

▪ Measure the abundance of different components (e.g. Ωb, Ωc, ΩΛ…)

▪ Study gravity on cosmological scales

▪ Test and constrain inflation



Observational goals

• Most inflationary models predict primordial cosmological fluctuations to be Gaussian distributed 
⇒ CMB and galaxy density fluctuations on large scales (> 10 Mpc) are Gaussian random fields 
(with zero average).

• To characterize a zero average Gaussian random field, all we need is its covariance.

• Homogeneity and isotropy ⇒ all the information is in the variance of Fourier modes of the field 
(power spectrum)

• A significant part of observational Cosmology therefore deals with the problem of predicting and 
measuring power spectra of CMB and LSS observables



The CMB power 
spectrum

Δ𝑇

𝑇
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• Isotropy: the power spectrum does 
not depend on m:

• Homogeneity: different ℓ (angular 
frequency) are uncorrelated 



The matter  power 
spectrum

𝛿g = 𝑏𝑔(𝑧) 𝛿m

𝑃 𝑘 = ⟨|𝛿 𝑘 |2⟩

• Isotropy: the power spectrum does 
not depend on orientation of k:

• Homogeneity: different 𝑘 are 
uncorrelated 

Wang et al. (ATLAS collaboration) arXiv:1802.01539

Planck collaboration 2018

http://arxiv.org/abs/arXiv:1802.01539


Beyond the power spectrum: non-Gaussianity

No, it does not

Inflation can produce small,
model dependent non-Gaussianity (NG)
In the primordial density field, in 
presence of deviations from standard 
single-field, slow-roll, e.g., multi-field, 
non-standard kinetic terms, features in 
the inflaton potential and more

Gravitational instability introduces non-
linearity in the perturbation evolution
process. When 𝛿 > 1 , the matter 
fluctuation field becomes non-Gaussian

Does the power spectrum contain all relevant information? 
(i.e., are the CMB and LSS fluctuation fields always Gaussian, at all scales?)



CMB anisotropies: at linear 
transfer level, mildly NG only if 
also initial conditions are.

𝛿 ≪ 1,
linear transfer

High redshift (early times)
matter field: “same as CMB”
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structure 
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collapse first)
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galaxies is already 
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Primordial NG and the Cosmic Microwave Background

A simple model (“local NG”, from multifield scenarios): Φ = Φ𝐺 + 𝑓𝑁𝐿 ( Φ𝐺
2 − 𝜙𝐺

2 ) +…

Primordial 
potential

G part
Φ𝐺~ 10−5

NG amplitude
𝑓𝑁𝐿 < 10

NG part

In this perturbative regime, most 
information is stored in the 3-point 
function of the primordial potential
(bispectrum, in Fourier space). This 
can be tested by measuring the 3-
point correlation function of the 
CMB 



The CMB angular bispectrum

We work in harmonic space and compute the multipole 3-point correlation function: 

𝑎ℓ1𝑚1
𝑎ℓ2𝑚2

𝑎ℓ3𝑚3
= bℓ1ℓ2ℓ3 × 𝐆𝐚𝐮𝐧𝐭 𝐟𝐚𝐜𝐭𝐨𝐫

Due to homogeneity and isotropy, it is always convenient to work in Fourier space. Primordial bispectrum:

Φ 𝑘1 Φ 𝑘2 Φ 𝑘3 = 𝐵 𝑘1, 𝑘2, 𝑘3 𝛿
𝐷(𝐤𝟏 + 𝐤𝟐 + 𝐤𝟑)

𝒌𝟏

𝒌𝟐 𝒌𝟑

ℓ𝟏

ℓ𝟐 ℓ𝟑



The CMB angular bispectrum
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The CMB angular bispectrum

l1

l2

l3

l1 << l2,l3

squeezed



The CMB angular bispectrum

l1

l2

l3 equilateral

l1 ~ l2 ~ l3



The CMB angular bispectrum

l1
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flat

flat

l2 ~ l3



Local primordial NG

l1

l2

l3
Φ = Φ𝐺 + 𝑓𝑁𝐿 ( Φ𝐺

2 − 𝜙𝐺
2 ) +…



Testing local primordial NG

How do we measure local 
fNL using CMB data? 
Schematically: 1. Extract 
the data bispectrum, 2. 
Compute the relevant 
theoretical bispectrum
template and fit it.

𝜒2(𝑓𝑁𝐿) =
( - )2

𝜎2Σ
1. Complex 

observational issues 
(e.g. foregrounds, 
non-stationary 
noise, sky masking)

2. Lots of triangles! 



• For a COBE-like surveys (early 90s), ∼
5000 triangles. A brute force 
computation is possible (Komatsu et al. 
2000), but low S/N.

• For WMAP and Planck,  ∼ 108, ∼
109 triangles respectively. A brute 
force computation is unfeasible

• Local NG is just one example. We 
typically want to fit hundreds of 
inflationary motivated template

• Need some form of data compression 
and/or a methodology to speed up 
bispectrum template fitting 

Npix ~ 104  

FWHM ~ 7o

lmax ~ 30

Npix ~ 3×106 

 FWHM ~ 12 arcmin  

lmax ~ 1000

Planck

Npix ~ 5×107  

FWHM ~ 5 arcmin  

lmax ~ 3000

COBE, WMAP, Planck.
Computational requirements



Modal expansion

Basis templates (“bispectrum modes”)

= a0 + a1

+ a2 + ...

𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛

At Planck resolution, we can expand all models 
with ∼ 1000 modes, by picking an efficient basis



Modal expansion

= b0 + b1 + b2 + ...

• Fit all basis modes to the data to estimate 𝛽 amplitudes . The modes can be constructed with suitable 
mathematical properties to make the computation very fast.

J. Fergusson, ML, P. Shellard 2009, 2010, arXiv: 0912.5516, 1006.1642
J. Fergusson, P. Shellard, 2011, arXiv: 1105.2791, 
M. Shiraishi, ML, J. Fergusson 2014, arXiv: 1403.4222, 1409.0265 
J. Fergusson 2014, arXiv:1403.7949

fNL =
1

N
anbn

n

å

N =
1

6
an

2

n

å

• The NG amplitude is then obtained
as a scalar product between 
the theory coefficients 𝛼𝑖 and the 
estimates 𝛽𝑖



Inflationary bispectrum templates

Local Equilateral Ortho

L1
L2

L3

• Multi-field
• Curvaton
• Ekpyrotic/cyclic

l1 << l2,l3
l1 ~ l2 ~ l3

l2 ~ l3

• Non-canonical kinetic 
terms (K-inflation, DBI)

• Higher derivative terms 
(Ghost Inflation)

• EFT 

• Variants of non canonical
kinetic terms and higher 
derivatives

• EFT 



Planck constraints

Planck 2018 results. IX, arXiv:1905.05697



ISW-lensing bispectrum

CMB lensing: photons geodesics are deflected
due to LSS.

ISW effect: late-time acceleration  (cosmological 
costant/dark energy) slows-down structure growth,
time evolving potential generates differential 
redshift/blueshift

ISW and lensing are correlated (both produced by structures at low redshift) and 
generate a non-vanishing bispectrum in the CMB



ISW-lensing bispectrum



ISW-lensing bispectrum

ISW-lensing detected at ∼ 4𝜎 C.L. in Planck data. Signal amplitude fully consistent with LCDM.
Independent probe of cosmic-acceleration. 



Non-Gaussianity in Large Scale Structure

• The study of NG features in LSS allows us in principle too:

▪ Test models of gravitational collapse on non-linear cosmological scales

▪ Improve power spectrum contraints on cosmological parameters

▪ Constrain primordial NG, improving over CMB bounds. Favourable signal scaling due to more bispectrum
triangles in the 3D galaxy density field, including small scales, than in the 2D CMB anisotropy field.

• Many complications, compared to previous CMB analysis:

▪ In the strongly non-linear regime, there is potential information in all higher-order cumulants

▪ Coupling between non-linear scales makes creates a complex, hard to model, covariance structure between 
bispectrum triangles and/or other statistics. In principle, NG likelihoods

▪ If one is specifically interested in primordial NG, this is now a tiny bispectrum signal,  about 1000 time 
smaller than the NG signature from gravitational instability



“Simulation-based” inference

• One way to address the difficulty in analytically modeling the strongly non-linear regime is to rely on large 
sets mock realizations of the matter/halo/galaxy density field.

1. Generate tens of thousands of realizations of the density field, for a fiducial cosmological model, which should be 
close to the actual maximum likelihood.

2. Choose a set of summary statistics that retain as much information as possible about your parameters, while 
compressing the data. Extract these statistics for each realization in your simulated dataset.

3. Compute the covariance of your summaries and the response to changes in parameters, via Monte Carlo average 
over the mocks.

4. Look for a further data compression scheme for your summary statistics, as lossless as possible for the parameters 
of interest. Typically, you compress all your starting modes  into a set of N numbers, where N is the number of 
parameters

5. Build the covariance matrices and the find the response of your compressed statistics to changes of parameters. 
Use these quantities to estimate parameters.



Joint power spectrum – bispectrum estimation of 
cosmological parameters

Pipeline



Data: N-body simulations. Quijote suite 

• Quijote simulations, Gaussian initial conditions (fNL =0)

https://quijote-simulations.readthedocs.io/ (F.Villaescusa Navarro)

▪ Large suite of 44000 N-body realizations with 5123 particles in a 1 Gpc/h side box, 

Planck fiducial cosmology

▪ 8000 simulations were used to compute covariances 

▪ different sets of 500 simulations were used to compute numerical derivatives 

w.r.t. cosmological parameters (𝜎8, Ω𝑚, Ω𝑏, 𝑛𝑠, ℎ)

• Quijote simulations, non-Gaussian

▪ Sets of 500 simulations with primordial NG conditions: local, equilateral, orthogonal

▪ Numerical derivatives (𝑓𝑁𝐿
𝑙𝑜𝑐 , 𝑓𝑁𝐿

𝑒𝑞
, 𝑓𝑁𝐿

𝑜𝑟𝑡ℎ𝑜)

https://quijote-simulations.readthedocs.io/


Summary statistics

• For PNG parameters (fNL) we know that power spectrum and bispectrum retain most 
information

• The optimal choice of summaries for late-time NG is instead an open problem. In our first 
analysis we start from power spectrum + bispectrum.

• Need fast algorithm to compute bispectrum and an efficient pre-compression step. 
Extended modal algorithm from CMB

• We can compress the Quijote bispectrum information, up to kmax = 0.5 h/Mpc, using ∼
100 modes



Summary statistics: bispectrum modes

= b0 + b1 + b2 + ...



Score function compression

maxfid

If the chosen fiducial point is close to the maximum likelihood,
expand:

Score function

ℒ = ℒ∗ + ∇Θℒ∗ − 𝛿Θ⟨∇∇L⟩∗𝛿Θ +⋯

average curvature

The only parameter dependent part is the score function =>
compression in N statistics (N = number of params) 



Parameter estimation

Θ𝑘 Θ𝑘+1 Θ𝑚𝑎𝑥

1. Compute summary statistic (e.g. bispectrum modes 
𝛽𝑛)

2. Compute covariance via MC average (>40000 sims)
3. Compute numerical derivatives of summaries w.r.t

parameters (500 simulations per parameter value)
4. Use the above to build the score function and 

compressed statistics 
5. Build estimator

Θ𝑘+1 = Θ𝑘 + 𝐹𝑘
−1∇ℒ𝑘

✓ Jung, Karagiannis, Liguori, Baldi, Coulton, Jamieson, Verde, 
Villaescusa-Navarro, Wandelt, (2022a, 2022b),
https://arxiv.org/abs/2211.07565, https://arxiv.org/abs/2206.01624

✓ Coulton, Villaescusa-Navarro, Jamieson, Baldi, Jung, Karagiannis, 
Liguori, Verde, Wandelt, (2022a, 2022b), 
https://arxiv.org/abs/2206.01619, https://arxiv.org/abs/2206.01619

https://arxiv.org/abs/2211.07565
https://arxiv.org/abs/2206.01619


Results: P + B
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F igur e 3. A comparison of the const raining power of the halo power spect rum and bispect rum at z = 1, for km ax 0.5 h Mpc− 1

on cosmological parameters and PNG amplitudes from the power spect rum and the modal bispect rum.

slight ly larger than the Fisher const raints reported in

the same table (less than 10% di↵erence).

In figure 5, we compare the est imated parameters to

their input values for di↵erent cases, focusing here on

changes of PNG amplitudes. We first study the mildly

nonlinear regime(kmax = 0.2 h Mpc− 1) and then include

also nonlinear scales (kmax = 0.5 h Mpc− 1). The mea-

sured parameters match their expected values for both

ranges of scales when studying datasets at fiducial cos-

mology or having PNG of the equilateral or orthogonal

types (f
equi l
NL = + 100 or f or t ho

NL = + 100).

There are however large stat ist ical deviat ions on sev-

eral parameters for the simulat ions with local NG (in

part icular f local
NL , several datasets giving a value more

than 5-σ away from the expected one). This di↵erence

of behaviour between this specific set and the others

can be explained, by the fact that f local
NL = 100 is more

than 2-σ away from the fiducial value of f NL = 0 (based

Δ(𝑏𝜙𝑓𝑁𝐿
𝑙𝑜𝑐)= 45

Δ 𝑓𝑁𝐿
𝑒𝑞𝑢𝑖𝑙

= 570

Δ 𝑓𝑁𝐿
𝑜𝑟𝑡ℎ𝑜 = 110



Field level 
analysis

• In the strongly non-linear regime there is 
NG information beyond the bispectrum. 
Higher order correlation functions might 
also not be the best suited statistics to 
extract all of it.

• One open line of research is therefore 
the search for additional summary 
statistics for optimal data compression

• Or, skip summary statistics and go for 
field level analysis

𝝆 𝒙 → parameters fNL

Neural 
network



Graph Neural Network

• Dark matter halos are nodes in a graph. Each 
halo is labeled by a vector defining its 
physical properties (mass, position, velocity, 
concentration…) [P. Villanueva-Domingo and 
F. Villaescusa Navarro 2022, P. Villanueva 
Domingo et al. 2021, H. Shao et al. 2023]

• Nearby halos are connected by edges

• Update properties of a node using those of 
nearby nodes via MLP

• Classify the graph: associate the properties 
of the various nodes to some overall label 
(parameters to measure)  

• Moment network: predicts posterior mean 
and variance

4

F igur e 2. The input to our model is a graph, that we build from a given galaxy catalogue. In the graph, the nodes represent

galaxies and two nodes are linked by an edge if their distance is smaller than the linking radius r . This figure show three graphs

from three di↵erent CAMELS-Illust risTNG simulat ions where r = 1.25 h− 1Mpc. Each box represents the galaxy catalogue of

a simulat ion at z = 0. Box units are in h− 1Mpc.

that galaxy propert ies, individually or collect ively, may

1) carry out cosmological informat ion and/ or 2) con-

tain ast rophysical informat ion that can be used to break

cosmological-ast rophysical degeneracies.

To illust rate the potent ial informat ion that galaxy

propert ies may encode, we show in Fig. 1 correlat ions

among di↵erent galaxy features, color coded by ⌦m , for

galaxies in the z = 0 catalogues. As can be seen, and al-

ready noted in Villaescusa-Navarro et al. (2022b), there

are some not iceable correlat ions between galaxy prop-

ert ies and ⌦m . Thus, our model may learn to extract

cosmological informat ion based on galaxy propert ies, on

top of galaxy clustering. It is important to note that

the trends between the di↵erent galaxy features and ⌦m

can significant ly vary from the Illust risTNG suite (left )

to the SIMBA suite (right ). This fact illust rates the

di↵erences in the subgrid models employed in the Illus-

t risTNG and SIMBA simulat ions. We will invest igate

in Sec. 5.3 the robustness of our results to changes in

the subgrid model.

When t raining GNNs with galaxy catalogues, we will

consider all models equally probable. For instance

galaxy catalogues from simulat ions with very efficient

supernova feedback are considering equally probable

than catalogues from simulat ions with more realist ic

feedback efficiencies. This is equivalent to consider a

flat prior on the value of both the cosmological and as-

t rophysical parameters. Given the broad range in the

value of the ast rophysical parameters, and the fact that

we are interested in inferring the value of the cosmologi-

cal parameters, it isappropriate to say that our networks

are t rained to learn to marginalize over baryonic e↵ects,

as implemented in CAMELS.

3. MODEL

In this sect ion we first describe how we transform the

galaxy catalogues into graphs, the input to our model.

We then describe the architecture of our GNNs and ex-

plain how the loss funct ion is set depending on the task

to be carried out : regression or likelihood-free inference.

3.1. From galaxy catalogues to cosmic graphs

Werepresent each galaxy catalogueas a mathemat ical

graph G that is built as follows. Galaxies represent the

graph nodes, and two galaxies are connected by an edge

if their separat ion is smaller than the linking radius r ,

an hyperparameter. We show some examples of graphs

constructed from galaxy catalogues of Illust risTNG sim-

ulat ions in Fig. 2.

Wenote that themethod to const ruct the graphs from

the galaxy catalogues is not unique. For instance, the

k nearest neighbors of a given node can be used to de-

fine the graph’s edges. However, we have checked that

this method led to worse results than the linking radius

approach.

We now describe in detail the di↵erent elements of the

graphsand what featuresareused in order to respect the

underlying symmetries. As we shall see below, the archi-

tecture of our model uses several graph blocks, that will

take a given graph and output another one with some of

its at t ributed updated. Therefore, we will describe the

graph propert ies at a given graph block l .

3.1.1. Node features

The features of the node i at block l are represented

by h
( l )
i . The init ial node features, h

(0)
i , are set by the

int rinsic propert ies of the node’s host galaxy int roduced

in Sec. 2: 1) the stellar mass M⇤, 2) the stellar half-

Figure from arxXiv: 2111.08683 

Figure from arXiv: 2204.13713



Preliminary field level analysis, HMF and NG

• A GNN was trained on a set of 1000 simulations with 
− 300 < 𝑓𝑁𝐿 < 300 . All other parameters fixed. Final 
error 𝜎𝑓𝑁𝐿 ∼ 35

• A nearly identical performance was obtained by removing 
all information on the position (hence, clustering) of the 
halos from the NN. All the important information, in this 
exercise, comes from HMF

• The sensitivity of the HMF on primordial NG was known 
in previous literature. Non-Gaussian initial conditions 
skew the distribution of the initial perturbation field and 
increase the probability of forming high mass halos. 

• Parameter degeneracies are crucial. We investigated the 
impact of the HMF by including it as an additional 
summary statistic in the previous analysis

(a) (b)

(c) (d)

Figure 2: Comparison of the Edgeworth (Eq. (33)) and log-Edgeworth (Eq. (35)) mass funct ions for

non-Gaussian init ial condit ions with nonzero f N L and τN L . For τN L = ( 6
5
f N L )2 (i.e. perturbat ions

generated ent irely by the curvaton) they both provide reasonably good fits. For τN L = 2( 6
5
f N L )2

(i.e. equal power from the curvaton and inflaton) the log-Edgeworth mass funct ion is in bet ter

agreement .

11

Loverde and Smith 2011



• Preliminary result from NN: when we fix all 
parameters except local 𝑓𝑁𝐿 , an improvement by a 
factor ∼ 2 is achieved by using only the masses of 
different halos (no clustering information!)

• That would mean that the most relevant summary 
statistic is the histogram Nhalos vs.  Mass, i.e. the Halo 
Mass Function (HMF)

• The sensitivity of the HMF on primordial NG was 
known in previous literature. Non-Gaussian initial 
conditions skew the distribution of the initial 
perturbation field and increase the probability of 
forming high mass halos. However, parameter 
degeneracies are crucial.

(a) (b)

(c) (d)

Figure 2: Comparison of the Edgeworth (Eq. (33)) and log-Edgeworth (Eq. (35)) mass funct ions for

non-Gaussian init ial condit ions with nonzero f N L and τN L . For τN L = ( 6
5
f N L )2 (i.e. perturbat ions

generated ent irely by the curvaton) they both provide reasonably good fits. For τN L = 2( 6
5
f N L )2

(i.e. equal power from the curvaton and inflaton) the log-Edgeworth mass funct ion is in bet ter

agreement .

11

Halo mass function 
and NG



HMF as summary statistic

• We measured the HMF in 15 logarithmic bins with hallo masses in the range 2.0 ×

1013
𝑀⊙

ℎ
< 𝑀 < 4.6 × 1015

𝑀⊙

ℎ

• A preliminary analysis confirms the GNN findings but also shows as expected that 
degeneracies with 𝜎8, Ω𝑚 are large

6

F igur e 1. The halo mass funct ion derivat ives with respect

to the parameters
n
σ8 ,⌦m , f l ocal

N L , f
equ i l
N L , f or t h o

N L

o
at z = 0 and

z = 1. For internal comparison, the derivat ive with respect

a given parameter ✓ is mult iplied by the finite di↵erence

∆ ✓, used for it s numerical est imat ion (see table 1 for de-

tails). The vert ical scale is logarithmic, except in the range

[− 10− 8 , 10− 8 ], where it is linear. Note that , in some cases,

we have a change of sign in the f N L derivat ives, implying an

opposite e↵ect of PNG on the abundance of high mass and

low mass halos respect ively. This is consistent with previous

findings in the literature, as pointed out in the main text .

The decreasing behaviour of all derivat ives at high M is re-

lated to theexponent ial decay of the HMF in thismass range;

note that a plot of the logarithmic derivat ives would display

clear di↵erences between them, also at high M . The numeri-

cal result s displayed here have all been cross-validated in the

simulat ion-independent , halo-model based analysis that we

describe in sect ion 4.4.

ters, likeσ8 or ⌦m (Maturi et al. 2011), as can beverified

in figure 1.

When we joint ly analyze all parameters, these degen-

eracies increase the errors significant ly (by roughly one

order of magnitude at z = 1, and slight ly less at z = 0,

where the change of sign of f NL derivat ive—seen in fig-

ure 1—helps dist inguish it from the response to varia-

t ions in other cosmological parameters), making them

larger than those achievable from the power spectrum

and bispectrum combinat ion.

4.2. Joint constraints with the power spectrum and

bispectrum

While, as expected, the HMF alone does not pro-

duce compet it ive f NL const raints in comparison with

the power spect rum and bispect rum, it does remain in-

terest ing to invest igate whether a combined analysis of

all threestat ist icscan producesignificant improvements;

this is the main point of the present work. Complement-

ing our previous power spectrum + bispectrum analysis

with the HMF can in principle benefit us in two ways.

First of all, it direct ly adds extra informat ion about the

f NL parameter; also, it could be useful to help break the

F igur e 2. The 1-σ Fisher error bars on f N L (local, equi-

lateral and orthogonal) from the halo mass funct ion, as a

funct ion of the maximum mass M m ax of halos considered

(M m i n ⇠ 4.1 ⇥ 1013M / h). These const raints are derived

from the Quij ot e suite of halo catalogues at z = 0 and

z = 1, each having a 1 (Gpc/ h)3 volume. The solid lines

(with t riangle markers) are computed for each primordial

shape independent ly, assuming a fixed cosmology (at fidu-

cial values), while for the dash-dot ted lines we marginalize

over the cosmological parametersσ8 and ⌦m . T his highlights

the large degeneracies between the parameters at the level

of the halo mass funct ion. For comparison, we also show

the corresponding const raints from the power spect rum and

bispect rum (horizontal solid lines and dash-dot ted lines for

the independent and joint cases respect ively), as computed

previously in Jung et al. (2022b) (M m i n = 3.2⇥1013M / h).

I f we consider the unmarginalized HMF results, we see that

the f N L const raining power is higher at z = 1 for the local

and equilateral case, despite the smaller number of halos at

this redshift ; this is clearly due to a st ronger response of the

HMF to variat ions in f N L at higher redshift , consistent with

previous findings (see, e.g., figure 4 in LoVerde et al. 2008).

The shape is due to the change of sign in the f N L deriva-

t ive at di↵erent masses, discussed in the main text and in

figure 1.

important degeneracy between f NL and the so-called bφ
bias parameter.

Before present ing our results, let us review and dis-

cuss the lat ter point in more detail. In the presence of

local PNG, the halo density fluctuat ion field δh (z) can

be writ ten to leading order as follows (Dalal et al. 2008;

Matarrese & Verde 2008; Slosar et al. 2008; McDonald

2008; Giannantonio & Porciani 2010; Desjacques & Sel-

jak 2010a):

δh (z) = b1(z) +
3⌦m H 2

0

2D (z)k2
bφf NL δm (z), (8)

where δm is the mat ter density fluctuat ion, D (z) is the

growth factor and b1, bφ are bias parameters, defined re-

spect ively as the response of δh to mass density δm and

primordial potent ial φ. I t is evident , in this relat ion,

that the scale-dependent signature depends on both bφ
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Preliminary: Molino galaxies
PNG in the galaxy density field

Molino galaxy catalogues 
Hahn & Villaescusa-Navarro (2012.02200) 

  Constructed from the Quijote N-body 

simulations using the HOD model 

Zheng, Coil & Zehavi (astro-ph/0703457)  

  5 parameters to describe galaxy bias  

Δ𝑓𝑁𝐿
𝑒𝑞𝑢𝑖𝑙

∼ 500

Δ𝑓𝑁𝐿
𝑒𝑞𝑢𝑖𝑙

∼ 200



Conclusions

• Cosmological non-Gaussianity opens an important observational window, allowing us to tighten our 
measurements of cosmological parameters, test gravity on non-linear scales and strongly constrain 
Inflationary models

• The study of non-Gaussianity with the current and forthcoming big cosmological datasets is a tough 
statistical challenge

• In the CMB, we have constrained PNG at 0.1% level, using hundreds of millions of bispectrum configurations,
via optimized compression procedures. This allowed us to constrain in turn many inflationary scenarios,
but no PNG detection

• LSS observations open new big opportunities (3D vs 2D fields, many more modes) and challenges (strong NG 
regime). New tools and developments in Likelihood Free Inference and machine learning are currently 
being investigated with promising results: large gains in constraining power using small scales, hard to model 
analitically
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