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Cosmological evolution

The Universe Large Scale Structure

* Cosmological surveys map the distribution of millions of
galaxies over very large volumes. These
galaxies form groups and cluster in a typical “web-like”
pattern.

* |If we calculate the average number of galaxies in large boxes
of side ~ 10 Mpc, we see that the galaxy density field is nearly

homogeneous and isotropic.

e How do these cosmic structures form and evolve?
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Observational goals

 CMB anisotropies and galaxy clustering originate from a gravitational instability process,
starting from primordial random seeds (quantum fluctuations) and including the interaction
of various particle species (baryons, dark matter, photons, neutrinos)

 CMB (temperature, polarization) anisotropies and observed galaxy clustering are specific
realizations of spatial random processes.

* Goal: using observations, study the statistical properties of the galaxy density and CMB
anisotropy field, in order to:

= Measure the abundance of different components (e.g. Q,, Q_, Q,...)
= Study gravity on cosmological scales
" Test and constrain inflation



Observational goals

* Most inflationary models predict primordial cosmological fluctuations to be Gaussian distributed
= CMB and galaxy density fluctuations on large scales (> 10 Mpc) are Gaussian random fields
(with zero average).

* To characterize a zero average Gaussian random field, all we need is its covariance.

* Homogeneity and isotropy = all the information is in the variance of Fourier modes of the field
(power spectrum)

* Asignificant part of observational Cosmology therefore deals with the problem of predicting and
measuring power spectra of CMB and LSS observables
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Beyond the power spectrum: non-Gaussianity

Does the power spectrum contain all relevant information?
(i.e., are the CMB and LSS fluctuation fields always Gaussian, at all scales?)

No, it does not

RN

Inflation can produce small, Gravitational instability introduces non-
model dependent non-Gaussianity (NG) linearity in the perturbation evolution
In the primordial density field, in process. When & > 1, the matter
presence of deviations from standard fluctuation field becomes non-Gaussian

single-field, slow-roll, e.g., multi-field,
non-standard kinetic terms, features in
the inflaton potential and more
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Primordial NG and the Cosmic Microwave Background

A simple model (“local NG”, from multifield scenarios): @ = @ + [y, (D — (qbé)) +...

I ~

Primordial G part NG amplitude NG part
potential dp~107°  fy, <10

In this perturbative regime, most
information is stored in the 3-point
function of the primordial potential
(bispectrum, in Fourier space). This
can be tested by measuring the 3-
point correlation function of the
CMB




The CMB angular bispectrum

Due to homogeneity and isotropy, it is always convenient to work in Fourier space. Primordial bispectrum:

(P (k)P (k)P (k3)) = B(ky, kz, k3)6” (kg + ky + k3)

We work in harmonic space and compute the multipole 3-point correlation function:

(ap,m,ae,m,ar,m,) = bs,e,e, X (Gaunt factor)




The CMB angular bispectrum




The CMB angular bispectrum
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Local primordial NG
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Testing local primordial NG

How do we measure local
fy, using CMB data?
Schematically: 1. Extract
the data bispectrum, 2.
Compute the relevant
theoretical bispectrum
template and fit it.
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COBE, WMAP, Planck. L~ 101
C tational i t -
omputational requirements EWHM ~ 7o
: |2~ 30
* For a COBE-like surveys (early 90s), ~
5000 triangles. A brute force
computation is possible (Komatsu et al.
2000), but low S/N. Noix ™ 3x106
« For WMAP and Planck, ~ 108, ~ FWHM ~ 12 arcmin
10° triangles respectively. A brute | ~1000
force computation is unfeasible max
* Local NG is just one example. We
typically want to fit hundreds of
inflationary motivated template
y P N~ 5x107
* Need some form of data compression FWHM ~ 5 arcmin
and/or a methodology to speed up |~
bispectrum template fitting max ~ 3000
Planck




Modal expansion

\' Basis templates (“bispectrum modes”)

‘:/ # (Gfl,az,ag, ...,an)
L= . . Ny

At Planck resolution, we can expand all models - T . #‘g
with ~ 1000 modes, by picking an efficient basis g N R s




Modal expansion
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Fit all basis modes to the data to estimate f amplitudes . The modes can be constructed with suitable
mathematical properties to make the computation very fast.

The NG amplitude is then obtained 1 o

as a scalar product between fNL - aanbn

the theory coefficients a; and the N n

estimates [5;

N —_— 1 o az J. Fergusson, ML, P. Shellard 2009, 2010, arXiv: 0912.5516, 1006.1642
- a n J. Fergusson, P. Shellard, 2011, arXiv: 1105.2791,
6 M. Shiraishi, ML, J. Fergusson 2014, arXiv: 1403.4222, 1409.0265
n J. Fergusson 2014, arXiv:1403.7949




Inflationary bispectrum templates

Local Equilateral l, ~ I Ortho
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Planck constraints

INL(KSW)

Shape and method  Independent ISW-lensing subtracted

SMICA (7)
Local ......... 6.7 £ 5.6 -0.5 = 5.6
Equilateral . . . . .. 4.0 + 67 4.7 + 67
Orthogonal . . ... -38 + 37 -15 + 37
SMICA (T+E)
Local ......... 4.1 + 5.1 -09 + 5.1
Equilateral . . . . .. -25 = 47 -26 + 47
Orthogonal .. ... -47 + 24 -38 + 24

Planck 2018 results. IX, arXiv:1905.05697



ISW-lensing bispectrum

CMB lensing: photons geodesics are deflected ISW effect: late-time acceleration (cosmological

due to LSS. costant/dark energy) slows-down structure growth,
time evolving potential generates differential
redshift/blueshift

ISW and lensing are correlated (both produced by structures at low redshift) and
generate a non-vanishing bispectrum in the CMB



ISW-lensing bispectrum
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ISW-lensing bispectrum
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ISW-lensing detected at ~ 40 C.L. in Planck data. Signal amplitude fully consistent with ACDM.
Independent probe of cosmic-acceleration.



Non-Gaussianity in Large Scale Structure

* The study of NG features in LSS allows us in principle too:

= Test models of gravitational collapse on non-linear cosmological scales
" |mprove power spectrum contraints on cosmological parameters

= Constrain primordial NG, improving over CMB bounds. Favourable signal scaling due to more bispectrum
triangles in the 3D galaxy density field, including small scales, than in the 2D CMB anisotropy field.

 Many complications, compared to previous CMB analysis:
= |n the strongly non-linear regime, there is potential information in all higher-order cumulants

=  Coupling between non-linear scales makes creates a complex, hard to model, covariance structure between
bispectrum triangles and/or other statistics. In principle, NG likelihoods

= |f one is specifically interested in primordial NG, this is now a tiny bispectrum signal, about 1000 time
smaller than the NG signature from gravitational instability



“Simulation-based” inference

* One way to address the difficulty in analytically modeling the strongly non-linear regime is to rely on large
sets mock realizations of the matter/halo/galaxy density field.

1. Generate tens of thousands of realizations of the density field, for a fiducial cosmological model, which should be
close to the actual maximum likelihood.

2. Choose a set of summary statistics that retain as much information as possible about your parameters, while
compressing the data. Extract these statistics for each realization in your simulated dataset.

3. Compute the covariance of your summaries and the response to changes in parameters, via Monte Carlo average
over the mocks.

4. Look for a further data compression scheme for your summary statistics, as lossless as possible for the parameters
of interest. Typically, you compress all your starting modes into a set of N numbers, where N is the number of
parameters

5. Build the covariance matrices and the find the response of your compressed statistics to changes of parameters.
Use these quantities to estimate parameters.



Joint power spectrum — bispectrum estimation of

cosmological parameters
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Data: N-body simulations. Quijote suite

* Quijote simulations, Gaussian initial conditions (fy, =0)

https://quijote-simulations.readthedocs.io/ (F.Villaescusa Navarro)

= Large suite of 44000 N-body realizations with 5123 particles in a 1 Gpc/h side box,

Planck fiducial cosmology
= 8000 simulations were used to compute covariances
= different sets of 500 simulations were used to compute numerical derivatives

w.r.t. cosmological parameters (ag, Q,, Qp, g, h)

* Quijote simulations, non-Gaussian

= Sets of 500 simulations with primordial NG conditions: local, equilateral, orthogonal

. . . e
= Numerical derivatives (fl\l,?f, Nf,fﬁftho)


https://quijote-simulations.readthedocs.io/

Summary statistics

* For PNG parameters (f,,) we know that power spectrum and bispectrum retain most
information

* The optimal choice of summaries for late-time NG is instead an open problem. In our first
analysis we start from power spectrum + bispectrum.

* Need fast algorithm to compute bispectrum and an efficient pre-compression step.
Extended modal algorithm from CMB

* We can compress the Quijote bispectrum information, up to k= 0.5 h/Mpc, using ~
100 modes



Summary statistics: bispectrum modes
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Score function compression

If the chosen fiducial point is close to the maximum likelihood,
expand:

L= L, + VoL, —50(VVL).50 + -

Log-Likelihood

Score function average curvature

The only parameter dependent part is the score function =>
compression in N statistics (N = number of params)

-70




Parameter estimation

1. Compute summary statistic (e.g. bispectrum modes
Bn)

2. Compute covariance via MC average (>40000 sims)

3. Compute numerical derivatives of summaries w.r.t
parameters (500 simulations per parameter value)

4. Use the above to build the score function and
compressed statistics

5. Build estimator

Or+1 = O + F 'VL,

v Jung, Karagiannis, Liguori, Baldi, Coulton, Jamieson, Verde,
Villaescusa-Navarro, Wandelt, (2022a, 2022b), @
https://arxiv.org/abs/2211.07565, https://arxiv.org/abs/2206.01624 k

®k+1 Gmax

v' Coulton, Villaescusa-Navarro, Jamieson, Baldi, Jung, Karagiannis,
Liguori, Verde, Wandelt, (2022a, 2022b),
https://arxiv.org/abs/2206.01619, https://arxiv.org/abs/2206.01619
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* Inthe strongly non-linear regime there is < 200

500

Field level

400 4

analysis

NG information beyond the bispectrum.
Higher order correlation functions might
also not be the best suited statistics to 100

extract all of it. |
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One open line of research is therefore
h~=Mpc
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Graph Neural Network

* Dark matter halos are nodes in a graph. Each ¢ )
halo is labeled by a vector defining its c 2
physical properties (mass, position, velocity, %*‘9’*”\ ,. o
concentration...) [P. Villanueva-Domingo and L1 é%:ih ‘3 2 X

F. Villaescusa Navarro 2022, P. Villanueva
Domingo et al. 2021, H. Shao et al. 2023]

* Nearby halos are connected by edges

* Update properties of a node using those of
nearby nodes via MLP

amnm
----------------------
.......
......
we®
.
.
o*

 Classify the graph: associate the properties < " .

of the various nodes to some overall label
(parameters to measure) / \\ /

* Moment network: predicts posterior mean
and variance Figure from arxXiv: 2111.08683




Preliminary field level analysis, HMF and NG

* A GNN was trained on a set of 1000 simulations with
— 300 < fy < 300. All other parameters fixed. Final

T T T TTT || T T T TTT || T T T
« sims, f, =+500, ’TNL=(%fNL)2

in previous literature. Non-Gaussian initial conditions !
skew the distribution of the initial perturbation field and

increase the probability of forming high mass halos. 0 B R SRR B
1013 1014 1015

M (h=' M)

5 [ ]

error gsyy, ~ 35 [ -- Edgeworth, f,,=£500, Ty =(8 ,,)? i
— | — log Edge., fy;=+500, T, =(6 fy)? i
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* A nearly identical performance was obtained by removing s L ]
all information on the position (hence, clustering) of the g 5 B o -
halos from the NN. All the important information, in this S 1
exercise, comes from HMF S T i

E 2 — = ]

* The sensitivity of the HMF on primordial NG was known S .

* Parameter degeneracies are crucial. We investigated the
impact of the HMF by including it as an additional Loverde and Smith 2011
summary statistic in the previous analysis



Halo mass function

and NG

* Preliminary result from NN: when we fix all
parameters except local fy; , an improvement by a
factor ~ 2 is achieved by using only the masses of
different halos (no clustering information!)

That would mean that the most relevant summary
statistic is the histogram N, .. vs. Mass, i.e. the Halo
Mass Function (HMF)

The sensitivity of the HMF on primordial NG was
known in previous literature. Non-Gaussian initial
conditions skew the distribution of the initial
perturbation field and increase the probability of
forming high mass halos. However, parameter
degeneracies are crucial.
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HMF as summary statistic

* We measured the HMF in 15 logarithmic bins with hallo masses in the range 2.0 X
108322 < M < 4.6 x 10%5 =2

* A preliminary analysis confirms the GNN findings but also shows as expected that
degeneracies with ag, (1,,, are large
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Preliminary: marked correlators

m P+B
B P+B+MP
B P+B+MP+MB

146,
1 + 8, + 5p(X)

m(x; R, p, o) =

1)

uil rtho
! h



Preliminary: Molino galaxies

Molino galaxy catalogues

Hahn & Villaescusa-Navarro (2012.02200)

Constructed from the Quijote N-body
simulations using the HOD model

Zheng, Coil & Zehavi (astro-ph/0703457)

5 parameters to describe galaxy bias




Conclusions

Cosmological non-Gaussianity opens an important observational window, allowing us to tighten our
measurements of cosmological parameters, test gravity on non-linear scales and strongly constrain
Inflationary models

The study of non-Gaussianity with the current and forthcoming big cosmological datasets is a tough
statistical challenge

In the CMB, we have constrained PNG at 0.1% level, using hundreds of millions of bispectrum configurations,
via optimized compression procedures. This allowed us to constrain in turn many inflationary scenarios,
but no PNG detection

LSS observations open new big opportunities (3D vs 2D fields, many more modes) and challenges (strong NG
regime). New tools and developments in Likelihood Free Inference and machine learning are currently

being investigated with promising results: large gains in constraining power using small scales, hard to model
analitically
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