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Tail inference: preliminaries

Drees (1998): «In many statistical applications it is neces-
sary to make inferences about the tail of a distribution, where
little or no data is available. For example, if dike is projected
in order to protect a costal line, then usually it will be higher
than any flood recorded yet. Hence the estimation of the min-
imal height that ensures that the probability of being flooded
in a particular year is less than a given small value requires
an extrapolation of the underlying distribution beyond the ob-
served data.»



Tail inference: preliminaries

We restrict ourselves to data which are realisations of independent
and identically distributed (i.i.d.) random variables.

In order to make inference on the tail beyond the data, we
need assumptions:

▶ on the distribution F of the observed random variable
near its end-point

▶ or, equivalently, on its inverse function

F−1 (1 − 1/t) := inf{x : 1 − F (x) ≥ 1/t},

corresponding to the 1 − 1/t-quantile of F , for large t.
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A gentle start: the Pareto distribution

A random variable X follows the (standard) Pareto distribu-
tion if

P(X > x) = x−1/γ , x > 1,

for some γ > 0.

The shape parameter γ, whose reciprocal is called tail index, fully
characterises the distribution and, in particular, its tail features.
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A gentle start: the Pareto distribution

Let X1, . . . ,Xn be i.i.d. copies of X . Then, for i = 1, . . . , n

logXi
d
= γ logYi ,

where Y1, . . . ,Yn are i.i.d. copies of Y , satisfying

P(Y > y) = y−1, y > 1.

As a result, the sample mean satisfies

E
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1
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n∑
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logXi

)
= γE

(
1
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n∑
i=1

logYi

)
= γ.
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A gentle start: the Pareto distribution

This is still true for log-spacings of the k-th largest order statistics
among X1,n < . . . < Xn−k,n < Xn−k+1,n < . . . < Xn,n, indeed

logXn−k+1 − logXn−k,n
d
= γ log(Yn−k+i ,n/Yn−k,n)

d
= γ logYi ,k

for i = 1, . . . , k . As a result,
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More generally: positive tail index

Assume that, for some γ > 0 and a positive function a, as t
→ ∞

F−1(1 − 1/tx)− F−1(1 − 1/t)
a(t)

→ xγ − 1
γ

.

Then, as t → ∞

log F−1(1 − 1/tx)− log F−1(1 − 1/t) ≈ γ log x .

This fact has important consequences for the estimation of γ, still
determining the degree of heavyness of the tail of F .
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More generally: positive tail index

Indeed, since for i = 1, . . . , n we have

Xi
d
= F−1(1 − 1/Yi ),

then for a sequence k ≡ k(n) → ∞, such that k/n → 0 as n → ∞,

1
k

k∑
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(logXn−k+i ,n − logXn−k,n)

d
=

1
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(log F−1(1 − 1/Yn−k+i ,n)− log F−1(1 − 1/Yn−k,n))
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1
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The basic estimator: Hill estimator

This justifies the construction of the Hill estimator (Hill, 1975)

γ̂H =
1
k

k∑
i=1

(logXn−k+i ,n − logXn−k,n).

The proportion of data k/n used for estimation is known as
effective sample fraction.

When F is not a member of the Pareto family, the estimator
is biased, i.e. E(γ̂H)− γ ̸= 0.

→ More refined estimators have been proposed for bias re-
duction, see, e.g., Gomes and Pestana (2007).
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More generally: nonnegative tail index

Assume that for some γ ∈ R and a positive function a

F−1(1 − 1/tx)− F−1(1 − 1/t)
a(t)

→ xγ − 1
γ

, t → ∞.

Then, as t → ∞

F−1(1 − 1/tx)− F−1(1 − 1/t)
F−1(1 − 1/ty)− F−1(1 − 1/t)

≈ xγ − 1
yγ − 1

.

As a result of this and convergence Yn−sk,n/Yn−k,n
P→ s−1...



More generally: nonnegative tail index

Xn−k,n − Xn−2k,n

Xn−2k,n − Xn−4k,n
=
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Another simple estimator: Pickands estimator

This justifies the construction of Pickands estimator
(Pickands, 1975)

γ̂P =
1

log 2
log

(
Xn−k,n − Xn−2k,n

Xn−2k,n − Xn−4k,n

)

Again, the estimator is biased and more refined versions of it have
been proposed for bias reduction, see, e.g., Drees (1996).
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A general view: tail functionals

As discussed in Drees (1998), many estimators of γ are con-
structed via functionals, say T , of the tail empirical process

Qn(s) = Xn−⌊sk⌋,n, s ∈ (0, 1].

Intuitively: the tail empirical process describes the tail of empirical
distribution function

Fn(x) =
1
n

n∑
i=1

1(Xi ≤ x)

beyond its quantile of level 1 − k/n.
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A general view: tail functionals

If T is continuous, invariant to linear transformations and satisfies
T (Qγ) = γ, with Qγ(s) = (s−γ − 1)/γ, then

γ̂ = T (Qn) = T
(
F−1(1 − 1/Yn−⌊ · k,n⌋)

)
= T

(
F−1(1 − 1/Yn−⌊ · k,n⌋)− F−1(1 − 1/Yn−⌊k,n⌋)

a(Yn−k,n)

)

= T
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Yn−k,n

)
− F−1

(
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)
a(Yn−k,n)


≈ T (Qγ)

= γ.



A general view: tail functionals

Pickands estimator fulfills these properties with

TP(z) =
1

log 2
log

(
z(1/4)− z(1/2)
z(1/2)− z(1)

)
.

Another example: Probability Weighted Moment estimator
γ̂PWM (see Drees, 1998), obtained with

TPWM(z) =

∫
[0,1] z(s)w1(s)ds∫
[0,1] z(s)w2(s)ds

for weight functions satisfying
∫ 1
0 wj(s)ds = 0, j = 1, 2.
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From empirical to model-based inference

Recall that if, as t → ∞,

F−1(1 − 1/tx)− F−1(1 − 1/t)
a(t)

→ Qγ(x),

then

P
(

X−F−1(1−1/t)
a(t) > x

∣∣∣∣X > F−1(1 − 1/t)
)
→ (1 + γx)−1/γ

=: 1 − Hγ(x)

I.e., rescaled exceedances of a large threshold F−1(1 − 1/t)
approximately follow a generalized Pareto (GP) distribution.
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From empirical to model-based inference

In practice, F is unkown and so is F−1(1 − 1/t), thus a typical
inferential routine is:

1. Setting t = n/k , use the k-th largest order statistic Xn−k,n as
a threshold.

2. Compute exceedances

Zi := Xn−k+i ,n − Xn−k,n, i = 1, . . . , k .

3. Fit a GP distribution to exceedances

{Hγ( ·σ), γ ∈ R, σ > 0}

including a scale parameter to account for the unkown a(n/k).



Fitting a GP to data: maximum likelihood

Note that for any z such that 1 + γ
σx > 0

H(z/σ) =

∫ z

0

(
1 +

γ

σ
x
)−1/γ−1

σ−1dx =:

∫ z

0
hγ,σ(x)dx .

Treating the Zi ’s as approximately:

▶ independent
▶ distributed according to a GP

the associated likelihood function at parameters θ = (γ, σ) is

L(θ) ≡ L(Z1, . . . ,Zk ; θ) =
k∏

i=1

hγ,σ(Zi ).
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Fitting a GP to data: maximum likelihood

To estimate θ and infer tail probabilities, large quantiles, etc. one
can compute the maximum likelihood estimator (MLE)

θ̂ ∈ argmaxL(θ)

Caveat: a maximum over the full range of possible values for
(γ, σ) does not exist. We focus on the region

Θ := {(γ, σ) : γ > −1/2, σ > 0}

since the MLE behaves irregularly if γ ≤ −1/2. Moreover...

Dombry, Padoan and R. (2023): U.r.c., with probability
tending to 1, argmaxθ∈ΘL(θ) consists of a singe value.
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From parameter to quantile estimation

Recall that if, as t → ∞,

F−1(1 − 1/tx)− F−1(1 − 1/t)
a(t)

→ Qγ(x),

then, for a small p ≡ p(n) such that np → c ∈ (0, 1)

F−1(1 − p) = F−1

(
1 − 1

n
k

k
np

)

≈ F−1
(

1 − 1
n
k

)
+ a

(n
k

)
Qγ

(np
k

)

An estimator of the extreme quantile F−1(1 − p) is thus

Xn−k,n + σ̂Qγ̂

(np
k

)
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From frequentist to Bayesian inference

The Bayesian approach tackles the problem from a different angle:

▶ The data are seen as having a joint probability density
conditionally on a give value θ

→ at realisations z1:k := (z1, . . . , zk), it is analytically equal to
L(z1:k ; θ).

▶ In turn, θ is assigned a prior distribution Π, representing the
researcher’s belief on more plausible values of θ.

▶ Finally, inference is based on the posterior distribution,
obtained via Bayes rule:

Π(B|Z1:k = z1:k) =

∫
B L(z1:k ; θ)dΠ(θ)∫
ΘL(z1:k ; θ)dΠ(θ)

.



From frequentist to Bayesian inference

▶ Point estimation: e.g., via posterior means

• γ̂ =
∫
Θ
γdΠ(θ|Z1:k = z1:k)

• σ̂ =
∫
Θ
σdΠ(θ|Z1:k = z1:k)

▶ In practice: computations via MCMC

γ̂ =
R∑
i=1

γiw(θi ), σ̂ =
R∑
i=1

σiw(θi )

where θi = (γi , σi ), i = 1, . . . ,R , are approximately drawn
from the posterior distribution and w is a weight function, e.g.

w(θ) ≡ 1/R.
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From frequentist to Bayesian inference

▶ Beyond point estimation: it is possible to derive regions Cn

containing θ with posterior probability 1 − α, i.e.

Π(Cn|Z1:k = z1:k) = 1 − α

where 1 − α is the desired credibility level.

▶ It is possible to derive also credible intervals for single
parameters.

In practice: computations based on MCMC, e.g.

Cn = (γ⌊R α/2⌋,R , γ⌊R(1−α/2⌋,R)

where γ1,R < γ2,R < . . . < γR,R are ordered values of a sample
(approximately) from the posterior distribution.
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From frequentist to Bayesian inference

Since for a given p and realisation Xn−k,n = xn−k,n the map

T : θ = (γ, σ) 7→ xn−k,n + σQγ

(np
k

)
is continuous, the posterior distribution of θ induces

Ψ( · |Z1:k = z1:k) := Π(T−1(·)|Z1:k = z1:k),

a posterior distribution for the extreme quantile.

Summaries for point or interval estimation can be extracted from
the posterior along the previous lines.

From an approximate sample (θi )
R
i=1 from Π(·|Z1:k = z1:k)

one can get a sample (qi = T(θi ))
R
i=1 from Ψ(·|Z1:k = z1:k).
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Bayesian inference: prediction

In this framework, a natural estimator for the c.d.f. of a future
exceedance X − F−1

(
1 − 1

n/k

) ∣∣X > F−1
(
1 − 1

n/k

)
is

Ĥ(z) :=

∫
Θ
Hθ(z)dΠ(θ|Z1:k)

which defines the posterior predictive distribution function, with

Hθ( · ) = Hγ( · /σ).

As a result, a natural estimator of the c.d.f. of a future peak
X
∣∣X > F−1

(
1 − 1

n/k

)
over F−1

(
1 − 1

n/k

)
is given by

Ĥ∗( · ) = Ĥ( · − Xn−k,n)
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Bayesian inference: prediction

▶ More than point prediction: e.g., it is possible to construct
a predictive interval (x∗l , x

∗
u ) for a future peak such that

Ĥ∗(x∗u )− Ĥ∗(x∗l ) = 1 − α

for any desired probability level 1 − α.

▶ In practice: with realisations Z1:k = z1:k and Xn−k,n = xn−k,n

1. for each approximate draw from the posterior distribution θi ,
sample independently a value z∗i from Hθi ;

2. compute x∗i = zi + xn−k,n, i = 1, . . . ,R;

3. set x∗l = x∗⌊Rα/2⌋,R and x∗u = x∗⌊R(1−α/2)⌋,R .
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From peaks to block maxima

Let Mm :=
∨m

i=1 Xi (max over a block of size m).

Recall that if, as t → ∞,

F−1(1 − 1/tx)− F−1(1 − 1/t)
a(t)

→ xγ − 1
γ

,

then ∃am > 0, ∃bm ∈ R such that normalised maximum’s law
converges to a generalised extreme value (GEV) distribution:

P
(
Mm − bm

am
≤ x

)
→ exp

{
−(1 + γx)−1/γ

}
=: Gγ(x)

as m → ∞, for all x such that 1 + γx > 0.
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Block maxima approach

Common practice:
1. divide obs. X1,X2, . . . into blocks of size m;
2. compute maxima on each block, obtaining a sample of size k

Mm,1, . . . ,Mm,k ;
3. assume FMm(x) ≈ Gγ(a

−1
m (x − bm));

4. fit a GEV model Gθ(x) = Gγ(σx + µ), where

θ = (γ, µ, σ)

includes (σ, µ), to account for the unknown (am, bm).

Inference can be based, e.g. on maximisation of the likelihood

L(θ) ≡ L(Mm,1, . . . ,Mm,k ; θ) =
k∏

i=1

gθ(Mm,i )

with gθ the density of Gθ, or on Bayesian procedures.
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Return levels

The T -return level is intuitively defined as the value that
occurs or is exceeded (on average) every T -periods.

Formally, it is the 1− 1/T -quantile of the periodic maximum

F←Mm
(1 − 1/T ) ≈ bm + amGγ

−1(1 − 1/T ) =: R(am, bm, γ).

Estimation:

▶ MLE: plug maximum likelihood estimates in the formula, i.e.
compute R(θ̂) with θ̂ = (µ̂, σ̂, γ̂) ∈ argmaxL(θ).

▶ Bayes: obtain a posterior distribution of R(θ) from that of θ.



Bayesian analysis of extremes: a subtle issue

Coles and Powell (1996): «Extreme value problems are
characterized by a scarcity of data and the requirement of
modelling where the data are most sparse. This presents a
dilemma when considering a Bayesian approach to inference:
the value of additional prior information is likely to be substan-
tial, but the plausibility of formulating such prior knowledge
for extremal behaviour is questionable.»

In particular: difficult to specifiy genuine prior distributions which

▶ approprietely account for the block-size (threshold) dependent
nature of location and scale parameters (scale parameter);

▶ put the basis for efficient posterior computations.
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Empirical Bayes analysis of maxima

▶ Prior on γ: use standard densities πsh on R.

▶ Difficulties in specifying priors on (σ, µ).

Padoan and R. (2023) propose data-dependent priors

π̂sc(σ) = πsc

(
σ

âm

)
1
âm

, π̂loc(µ) = πloc

(
µ− b̂m
âm

)
1
âm

.

This yields the empirical Bayes posterior distribution

Π(B|Mm,1:k) =

∫
B L(θ)π(θ)dθ∫
ΘL(θ)π(θ)dθ

with π(θ) = πsh(γ)π̂loc(µ)π̂sc(σ) on Θ = (−1,∞)× R× (0,∞).
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Prediction of future maximum levels

I.i.d. context: distribution of a future maximum over m∗ > m obs.

FMm∗ (x) = {FMm(x)}
m∗/m ≈

{
Gγ(a

−1
m (x − bm))

}m∗/m
.

E.g., m = 122 and m∗/m = 3, i.e. Mm∗ is annual maximum.

By max-stability
{
Gγ(a

−1
m (x − bm))

}m∗/m
= Gθ∗(x), where

θ∗ =

(
γ, bm + am

(m∗/m)γ − 1
γ

, am(m/m∗)γ
)
.
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Prediction

A natural way to define a predictive distribution function for such
maximum is then

Ĝm∗(x) =

∫
Θ
Gθ∗(x)Π(dθ|Mm,1:k).

From it we can derive:

▶ Predictive intervals: (Ĝ−1
m∗ (α/2), Ĝ−1

m∗ (1 − α/2)).

▶ Predictive return level: Ĝ−1
m∗ (1 − 1/T ), for T > 1.
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Predicting hurricanes in Southeastern US

We analyse a sequence of daily wind speed maxima from 1976 to
2021, selecting training block size m = 122 =⇒ k = 120 maxima.
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Thank you!
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