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• Let 𝑌 ∼ 𝐹 and
𝑄(1 − 𝑝) := 𝐹←(1 − 𝑝)

be the (1 − 𝑝)-quantile, where 𝐹←(𝑥) = inf{𝑦 : 𝐹 (𝑦) ≥ 𝑥}.

Remark
• In applied fields (finance, risk management etc), the quantile is called

Value at Risk (VaR) and it is seen as a risk measure to quantify the
intensity of tail risk events, setting 𝑝 as small value.

• Let 𝑌1, . . . , 𝑌𝑛 be i.i.d. rvs with unknown distribution 𝐹. The
estimation of 𝑄 is not obvious when 𝒑 is very small, e.g. 𝑝 <= 1/𝑛.

• This is especially true when working with 𝑋1, . . . , 𝑋𝑛 dependent rvs.

• What to do?
We can assume to know 𝐹 . . . or in alternative rely on the EVT.

Problem
Limitations
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Review
Basic results of the univariate Extreme Value Theory (EVT)
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• Let 𝑌1, . . . , 𝑌𝑚 be i.i.d. rvs with distribution 𝐹.
• Assume 𝐹 ∈ D(𝐺𝛾), i.e. 𝐹 belongs to the DoA of the
Generalised Extreme Value (GEV) distribution 𝐺𝛾 .
• If there are norming functions 𝑎(·) > 0 and 𝑏(·), such that

lim
𝑛→∞
P

(
max(𝑌1, . . . , 𝑌𝑚) − 𝑏(𝑚)

𝑎(𝑚) ≤ 𝑧

)
= 𝐺𝛾 (𝑧), (1)

then

𝐺𝛾 (𝑧) =
{

exp
(
− (1 + 𝛾𝑧)−1/𝛾

+

)
, 𝛾 ≠ 0,

exp (− exp (−𝑧)) , 𝛾 = 0,

• 𝐺𝛾 is: short- (𝛾 < 0), light- (𝛾 = 0) or heavy-tailed (𝛾 > 0).

EVT - GEV
First Domain of Attraction (DoA) formulation
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(1) Set 𝑦 = 𝑎(𝑚)𝑧 + 𝑏(𝑚) in (1). From

𝐹 (𝑦) ≈ 𝐺
1/𝑚
𝛾

(
𝑦 − 𝑏(𝑚)
𝑎(𝑚)

)
, 𝑛→∞,

and 1 − 𝑝 = 𝐹 (𝑦), then for small enough 𝑝,

𝑄(1 − 𝑝) ≈ 𝑏(𝑚) + 𝑎(𝑚) (−𝑚 log(1 − 𝑝))−𝛾 − 1
𝛾

≈ 𝑏(𝑚) + 𝑎(𝑚) (𝑚𝑝)−𝛾 − 1
𝛾

GEV
Quantile approximation
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(2) BM approach suggests:
• Divide the sample of 𝑌1, . . . , 𝑌𝑛 rvs into 𝑘 blocks of 𝑚 rvs.

Assume 𝑘 = 𝑘 (𝑛), 𝑚 = 𝑚(𝑛), and 𝑘 →∞ and 𝑚 →∞ as 𝑛→∞
and 𝑚 = 𝑜(𝑛) and 𝑘 = 𝑜(𝑛).

• Compute 𝑘 maxima to estimate 𝑏(𝑛/𝑘), 𝑎(𝑛/𝑘) and 𝛾. Suitable
estimators are: MLE, GPWM, etc. (Jenkinson, 1969; Hosking
et al., 1985).

(3) Let 𝑝 := 𝑝(𝑛) such that 𝑝 → 0 and 𝑛𝑝 → 𝑐 ≥ 0 as 𝑛→∞. Let
𝜏′𝑛 = 1 − 𝑝 be an extreme level. Then, estimator for an
extreme quantile is

𝑞𝜏′𝑛 = �̂�𝑛 (𝑛/𝑘) + �̂�𝑛 (𝑛/𝑘)
( 𝑛𝑝
𝑘

)−𝛾𝑛 − 1
�̂�𝑛

.

Block Maxima (BM) method
Quantile estimation
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• 𝐹 ∈ D(𝐺𝛾) can be equivalently formulated as follows.
• Let 𝑦∗ = sup{𝑦 : 𝐹 (𝑦) < 1}. For 𝑢 < 𝑦∗, there is a scaling

function 𝑠(·) > 0 such that

lim
𝑢↑𝑦∗
P

(
𝑌 − 𝑢
𝑠(𝑢) ≤ 𝑧

���𝑌 > 𝑢

)
= 𝐻𝛾 (𝑧) (2)

then

𝐻𝛾 (𝑧) =
{

1 − (1 + 𝛾𝑧)−1/𝛾
+ , if 𝛾 ≠ 0,

1 − exp(−𝑧), if 𝛾 = 0,

is the Generalised Pareto (GP) distribution (de Haan and
Ferreira, 2006, Ch.1)

EVT - Peaks-over-Threshold
Equivalent condition
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(1) Set 𝑦 = 𝑢 + 𝑠(𝑢)𝑧 in (2). From

𝐹 (𝑦) ≈ 1 − (1 − 𝐹 (𝑢))
(
1 − 𝐻𝛾

(
𝑦 − 𝑢
𝑠(𝑢)

))
, 𝑢 → 𝑦∗,

and 1 − 𝑝 = 𝐹 (𝑦), then for small enough 𝑝,

𝑄(1 − 𝑝) ≈ 𝑢 + 𝑠(𝑢)

(
𝑝

1−𝐹 (𝑢)

)−𝛾
− 1

𝛾
.

GP
Quantile approximation
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(2) Peaks-over-Threshold (PoT) approach suggests:
• Set 𝑢 so we can work with 𝑘 excess variables from 𝑌1, . . . , 𝑌𝑛.
• A possibility is 𝑢 = 𝑄(𝜏𝑛), where 𝜏𝑛 = 1 − 𝑘/𝑛 is an
intermediate level, with can be estimated by 𝑋𝑛−𝑘,𝑛.

• Approximate 1 − 𝐹 (𝑢) ≈ 1 − 𝐹𝑛 (𝑋𝑛−𝑘,𝑛) = 𝑘/𝑛.
• Set 𝑠(𝑢) = 𝑎(1/(1 − 𝐹 (𝑢))), then 𝑠(𝑄(𝜏𝑛)) = 𝑎(𝑛/𝑘).
• Use the 𝑘 excesses to estimate 𝛾 and 𝑎(𝑛/𝑘). Suitable estimators

are: method of moments, MLE, etc. (de Haan and Ferreira,
2006, Ch. 2,3)

(3) Then, estimator for an extreme quantile is

𝑞𝜏′𝑛 = 𝑋𝑛−𝑘,𝑛 + �̂�𝑛 (𝑛/𝑘)
( 𝑛𝑝
𝑘

)−𝛾𝑛 − 1
�̂�𝑛

.

Peaks-over-Threshold (PoT) method
Quantile estimation
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A first step forward

An alternative risk measure
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• The 𝜏th quantile of 𝑌 is the minimizers of an asymmetric
piecewise linear loss function (Koenker and Bassett, 1978), i.e.

𝑞𝜏 ∈ arg min
𝜃 ∈R

𝜏E{(𝑋 − 𝜃)+} + (1 − 𝜏)E{(𝑋 − 𝜃)−},

for 𝜏 ∈ (0, 1), with the median obtained with 𝜏 = 1/2.
• In other words
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• The 𝜏th expectile of 𝑌 is the minimizer of an asymmetric
quadratic loss function (Newey and Powell, 1987), i.e.

𝜉𝜏 = arg min
𝜃 ∈R

𝜏E{(𝑋 − 𝜃)2+} + (1 − 𝜏)E{(𝑋 − 𝜃)2−},

for 𝜏 ∈ (0, 1), with the mean obtained with 𝜏 = 1/2.
• In other words
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• From the first order condition

𝜏E{(𝑋 − 𝜃)+} = (1 − 𝜏)E{(𝑋 − 𝜃)−}

we obtain
𝜏 =
E( |𝑋 − 𝜉𝜏 |1(𝑋 ≤ 𝜉𝜏))

E( |𝑋 − 𝜉𝜏 |)
.

Pro and cons

risk measure property quantile expectile

law-invariant " "

elicitable " "

coherent % "

derivation tail probability tail expectation
constraints 𝛾 ∈ R 𝛾 < 1

Risk Measures
Quantile vs Expectile
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A second step forward

We now consider the case when data are temporarly dependent.
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• Assume that the sequence 𝑋1, . . . , 𝑋𝑛 is:
• stationary with marginal distribution 𝐹 ∈ D(𝐺𝛾).
• weakly time dependent, i.e. it satisfies a suitable mixing

condition (a form of memorylessness property), e.g. Leadbetter
et al., (1983)

• The classical result apply through the so-called big blocks
separated by small blocks framework.
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• In this case 𝐹 ∈ D(𝐺𝛾) means that

P

(
max(𝑋1, . . . , 𝑋𝑟𝑛) − 𝑏(𝑟𝑛)

𝑎(𝑟𝑛)
≤ 𝑥

)
→ 𝐺 𝜃

𝛾 (𝑥), 𝑛→∞,

where 𝜃 ∈ (0, 1] is the extremal index, i.e. the reciprocal of the
asymptotic mean cluster size of exceedances.
• An interpretation is, as 𝑛→∞, we have

P

(
max

1≤𝑡≤𝑚
𝑋𝑡 ≤ 𝑎(𝑚)𝑥 + 𝑏(𝑚)

)
≈ P

(
max

1≤𝑡≤b𝜃𝑚c
𝑌𝑡 ≤ 𝑎(𝑚)𝑥 + 𝑏(𝑚)

)
.

Background
Basic results
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Statistical problem

We aim to derive statistical procedure for the extrapolation of extreme
expectile in a time series framework.

Next part concerns some new results from the paper Davison, P.,
Stupfler, (2022) obtained for the case 𝛾 > 0. Thanks to

18/33 Simone A. Padoan Bocconi University



• The first step is to focus on the intermedite level 𝜏𝑛:
• The Least Asymmetrically Weighted Squares (LAWS)

estimator is

𝜉𝜏𝑛 = arg min
𝜃 ∈R

1
𝑛

𝑛∑︁
𝑡=1
(𝜂𝜏𝑛 (𝑋𝑡 − 𝜃) − 𝜂𝜏𝑛 (𝑋𝑡 )).

where 𝜂𝜏 (𝑥) = |𝜏 − 1(𝑥 ≤ 0) |𝑥2 is the expectile check function.
• The expectile-quantile tail equivalence result

𝜉𝜏/𝑞𝜏 ≈ (𝛾−1 − 1)−𝛾 , 𝜏 → 1, (3)

suggests to use the quantile-based (QB) estimator i.e.

𝜉𝜏𝑛 = (�̂�−1
𝑛 − 1)−𝛾𝑛𝑞𝜏𝑛 .

Expectile estimators
Intermediate level
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• From the quantiles proportionality result

𝑞𝜏
′

𝑞𝜏

≈
(
1 − 𝜏′

1 − 𝜏

)−𝛾
, 𝜏′ � 𝜏 → 1.

together with the expectile-quantile tail equivalence result we
obtain that an extrapolating estimator of an extreme expectile is

𝜉
★

𝜏
′
𝑛
=

(
1 − 𝜏′𝑛
1 − 𝜏𝑛

)−𝛾𝑛
𝜉𝜏𝑛 ,

where 𝜉𝜏𝑛 can be either the LAWS or the QB estimator of 𝜉𝜏𝑛 .

Expectile estimators
Extreme level
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Conditions

1 Let (𝑋𝑡 )𝑡≥1 be a 𝛽-mixing time series (e.g. Doukhan, P.,
1994) with a continuous one-dimensional marginal heavy-tailed
distribution.

2 Assume 0 < 𝛾 < 1 and E| (min(0, 𝑋)) | < ∞.
3 There are sequences 𝑙𝑛 := 𝑙 (𝑛), 𝑟𝑛 := 𝑟 (𝑛) such that as 𝑛→∞

𝑙𝑛 →∞, 𝑟𝑛 →∞,
𝑙𝑛

𝑟𝑛
→ 0,

𝑟𝑛

𝑛
→ 0,

𝑛𝛽(𝑙𝑛)
𝑟𝑛

→ 0;

4 There exists the limit (tail copula function)

𝑅𝑡 (𝑥, 𝑦) = lim
𝑠→0

𝑠−1P(𝐹 (𝑋1) > 1 − 𝑠𝑥, 𝐹 (𝑋𝑡+1) > 1 − 𝑠𝑦);

for all 𝑡 ≥ 1 and (𝑥, 𝑦) ∈ [0,∞]2 \ {∞,∞}.

Expectile estimation
Conditions
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Conditions (continued...)

5 There are 𝜌(𝑟) ≥ 0, satisfying
∑

𝑡 𝜌(𝑡) < ∞, 𝐷 ≥ 0 such that

𝑠−1P(𝐹 (𝑋1) > 1 − 𝑠𝑢, 𝐹 (𝑋𝑡+1) > 1 − 𝑠𝑣) ≤ 𝜌(𝑡)
√
𝑢𝑣 + 𝑠𝐷𝑢𝑣,

as 𝑠→ 0, for all 𝑡 ≥ 1 and 𝑢, 𝑣 ∈ [0, 1].
6 There is a measurable function 𝐴 such that 𝐴(𝑠) → 0 as 𝑠→∞

and for 𝜌 ≤ 0 and all 𝑦 > 0,

lim
𝑠→∞

1
𝐴(1/𝐹 (𝑠))

[
𝐹 (𝑠𝑦)
𝐹 (𝑠)

− 𝑦−1/𝛾

]
= 𝑦−1/𝛾 𝑦

𝜌/𝛾 − 1
𝛾𝜌

.

When 𝜌 = 0, the right-hand reads as 𝑦−1/𝛾 log(𝑦)/𝛾2 .
7

√︁
𝑛(1 − 𝜏𝑛)𝐴((1 − 𝜏𝑛)−1) → 𝜆 ∈ R as 𝑛→∞.

Expectile estimation
Conditions

22/33 Simone A. Padoan Bocconi University



Theorem 1 (Davison, P., Stupfler, 2022)
Assume that 𝑛(1 − 𝜏𝑛) → ∞, 𝑛(1 − 𝜏′𝑛) → 𝑐 ∈ [0,∞),√︁
𝑛(1 − 𝜏𝑛)/log((1 − 𝜏𝑛)/(1 − 𝜏′𝑛)) → ∞ and 𝑟𝑛 (1 − 𝜏𝑛) → 0 as

𝑛→∞. Then, under Conditions (1)–(7) one has√︁
𝑛(1 − 𝜏𝑛)

log((1 − 𝜏𝑛)/(1 − 𝜏′𝑛))
log

𝜉
★

𝜏′𝑛

𝜉𝜏′𝑛

𝑑→ N (𝑏, 𝑊 (𝛾, 𝑅)) ,

where
𝑏 =

𝜆

1 − 𝜌
,

𝑊 (𝛾, 𝑅) = 𝛾2

(
1 + 2

∑︁
𝑡≥1

𝑅𝑡 (1, 1)
)
.

Expectile estimation - Extreme level
Asymptotic Normality
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Lemma 1 (Davison, P., Stupfler, 2022)
Under the conditions of Theorem 2 we have

1
𝑟𝑛 (1 − 𝜏𝑛)

Var

(
𝑟𝑛∑︁
𝑡=1

1{𝐹 (𝑋𝑡 ) > 𝜏𝑛}
)

𝑛→∞−→ 1 + 2
∞∑︁
𝑡=1

𝑅𝑡 (1, 1).

• Using “big blocks separated by small blocks” arguments we
compute

𝑌 𝑗 =

𝑟𝑛+ 𝑗ℓ𝑛∑︁
𝑡=1+ 𝑗ℓ𝑛

1(𝐹𝑛 (𝑋𝑡 ) > 𝜏𝑛)

for 𝑗 = 0, 1, . . . , 𝑚𝑛 − 1, 𝑚𝑛 = b𝑛/ℓ𝑛c and ℓ𝑛 = 𝑟𝑛 + 𝑙𝑛.
• Let 𝑆2

𝑛 be the empirical variance of 𝑌0, . . . , 𝑌𝑚𝑛−1. Then,

𝑊𝑛 (𝛾, 𝑅) = (𝑟𝑛 (1 − 𝜏𝑛))−1�̂�2
𝑛 · 𝑆2

𝑛.

Expectile Estimation - Extreme level
Asymptotic Variance
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• For the bias term, we assume 𝐴(𝑠) = 𝛾𝛽 𝑠𝜌. Given the estimates
𝛽𝑛 and �̂�𝑛 and noting that 𝜆 ≈

√︁
𝑛(1 − 𝜏𝑛)𝐴((1 − 𝜏𝑛)−1), then

�̂�𝑛 =

√︁
𝑛(1 − 𝜏𝑛)�̂�𝑛𝛽𝑛 (1 − 𝜏𝑛)−𝜌𝑛

1 − �̂�𝑛

• Concluding, for large 𝑛,𝜉
★

𝜏′𝑛

(
1 − 𝜏𝑛
1 − 𝜏′𝑛

)−𝑏𝑛−𝑧𝛼/2√︂ 𝑊𝑛 (𝛾,𝑅)
[𝑛(1−𝜏𝑛 ) ]

, 𝜉
★

𝜏′𝑛

(
1 − 𝜏𝑛
1 − 𝜏′𝑛

)−𝑏𝑛+𝑧1−𝛼/2

√︂
𝑊𝑛 (𝛾,𝑅)
[𝑛(1−𝜏𝑛 ) ]

 ,
is an asymptotic (1 − 𝛼)100% confidence interval
estimator for the expectile at the extreme level.

Expectile Estimation - Extreme level
Confidence Intervals (CI)
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(a) The AR(1) model 𝑌𝑡+1 = 0.8𝑌𝑡 + 𝜀𝑡+1, where the innovations 𝜀𝑡
are i.i.d. with Student-𝑡 distribution and 𝜈 = 3 df.

(b) The ARMA(1,1) model 𝑌𝑡+1 = 0.95𝑌𝑡 + 𝜀𝑡+1 + 0.9 𝜀𝑡 , where the
innovations 𝜀𝑡 are i.i.d. with symmetric Pareto distribution and
shape parameter 𝜁 = 3.

(c) The ARCH(1) model 𝑌𝑡+1 = 𝜎𝑡+1𝜀𝑡+1, where 𝜎2
𝑡+1 = 0.4 + 0.6𝑌2

𝑡 ,

and 𝜀𝑡 are i.i.d. standard Gaussian innovations.
(d) The GARCH(1,1) model 𝑌𝑡+1 = 𝜎𝑡+1𝜀𝑡+1, where

𝜎2
𝑡+1 = 0.1 + 0.4𝑌2

𝑡 + 0.4𝜎2
𝑡 , and 𝜀𝑡 are i.i.d. standard Gaussian

innovations.

Simulation study
Extreme expectile estimation
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Simulation results
Non-coverage probability of CI
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Example
Peaks prediction
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1 In Davison, P., Stupfler, (2022) that are also estimation results
for:
• dynamic (conditional on the past) extreme expectiles based risk

measures;
• expectile-based Marginal Expected Shortfall, i.e.

E(𝑋 |𝑌 > 𝜉𝜏), 𝜏 ∈ (0, 1),

where 𝑋 is a loss return and 𝑌 is an aggregated loss return.
2 In Daouia, P., Stupfler, (2023) that are similar results for the

case 𝛾 < 0;
3 Along with these papers there is an R package called
ExtremeRisks that does the computation. Please, see

https://cran.r-project.org/web/packages/ExtremeRisks/index.html

...Thank you for your attention!

Conclusions
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