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Problem

Limitations

LetY ~ F and
Q(1-p):=F"(1-p)
be the (1 — p)-quantile, where FF~(x) = inf{y : F(y) > x}.

In applied fields (finance, risk management etc), the quantile is called
Value at Risk (VaR) and it is seen as a risk measure to quantify the
intensity of tail risk events, setting p as small value.

LetY;,...,Y, bei.i.d. rvs with unknown distribution F. The
estimation of Q is not obvious when p is very small, e.g. p <= 1/n.

This is especially true when working with X1, . .., X,, dependent rvs.

What to do?
We can assume to know F ... or in alternative rely on the EVT.
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Review

Basic results of the univariate Extreme Value Theory (EVT)
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EVT - GEV

First Domain of Attraction (DoA) formulation

® [et)Yy,...,Y, beii.d. rvs with distribution F.
* Assume [gESEOI(EM]. i.c. I belongs to the DoA of the

Generalised Extreme Value (GEV)[iHisliti(0 €

e If there are norming functions a(-) > 0 and b(-), such that

lim P

n—oo

(max(Yl, oY) —b(m)

a(m) : Z) =0y

then
exp|—(1+ Wy , +0,
G, (2) = { Xp( (1+yz), ) 4
exp (—exp (-2)), y =0,
® G, is: short- (y <0), light- (y =0) or (y > 0).
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GEV

Quantile approximation

(1) Sety =a(m)z+ b(m) in (1). From

y —b(m)

F(y) = Gl//m( a(m)

)7 nﬁm?

and 1 — p = F(y), then for small enough p,

(=mlog(1-p))™ -1
Y
(mp)™ -1

Q1 -p) =~ b(m)+a(m)

~ b(m)+a(m)
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Block Maxima (BM) method

Quantile estimation

(2) BM approach suggests:
® Divide the sample of Y, ..., Y, rvs into k blocks of m rvs.
Assume k = k(n), m = m(n), and k — coand m — oo asn — oo
and m = o(n) and k = o(n).
® Compute k maxima to estimate b(n/k), a(n/k) and . Suitable
estimators are: MLE, GPWM, etc. (

).
(3) Let p := p(n) such that p —» Oand np — ¢ > 0 as n — oo. Let
7, =1 — p be an [ZEFISE IS, Then, estimator for an

extreme quantilepy

()7 -

n

Gry, = bu(n/k) +@y(n/k)
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EVT - Peaks-over-Threshold

Equivalent condition

* JIRSPDOI(EM)] can be equivalently formulated as follows.

® Lety* =sup{y: F(y) < 1}. Foru < y*, there is a scaling
function s(-) > 0 such that

Y -
llmP(

(o < >o) =m0 @

then
H. () = 1-(1+y2);'7, ify#0,
1 —exp(-2), ify =0,

is the [ ENERSGREIISLN(€D] distribution (
)
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GP

Quantile approximation

(1) Sety =u+s(u)zin (2). From

F(y)zl—(l—F(u»(l—Hy(y;)), “ oy,

u
s(u)

and 1 — p = F(y), then for small enough p,

-
p
( 1-F (u)) -1

Y

O(l-=p)=u+s(u)
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Peaks-over-Threshold (PoT) method

Quantile estimation

(2) Peaks-over-Threshold (PoT) approach suggests:

® Set u so we can work with k excess variables from Yy,...,Y,.

® A possibility is u = Q(1y,), where 7, = 1 — k/n is an
SRR, with can be estimated by X,k .

® Approximate 1 — F(u) = 1 — F,(Xn-k.n) = k/n.

® Sets(u)=a(l/(1=F(u))),then s(Q(1,)) = a(n/k).

® Use the k excesses to estimate y and a(n/k). Suitable estimators
are: method of moments, MLE, etc. (

)
(3) Then, estimator for an S da= = CEERIGEL is
(%) -
~ -~ k
4z, = Xn-kn + an(n/k)————.

n
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A first step forward

An alternative risk measure

10/33 Simone A. Padoan Bocconi University



Risk Measure

Quantile

® The 7th quantile of Y is the minimizers of an asymmetric
piecewise linear loss function ( ), i.e.

gr € argmin TE{(X - 6).} + (1 - )E{(X - 0)-},
6cR

for T € (0, 1), with the median obtained with 7 = 1/2.
® In other words

Asymmetric piecewise linear function Studen-t(3) 0.95-Quantile (2.353)
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Risk Measure

Expectile

The 7th expectile of Y is the minimizer of an asymmetric
quadratic loss function ( ), i.e.

£r = argmin TE{(X - 6)2} + (1 - D)E{(X - )},
0eR

for T € (0, 1), with the mean obtained with 7 = 1/2.
In other words

Asymmetric quadratic function Studen-t(3) 0.95-Expectile (1.868)
o
3 =095 S— 6=0 '
— 1=08 — 0=1
— 1=05 6=2
=R — 1=0.2 ®_|— 6=3 °
1=0.05 W ° 0=4
T x=1515
I
Wo | o | [ ]
—e o
2 2
+ g
R PSS
X |
=
o N
— o
o g7
T T T T T T T T T T
-10 -5 0 5 10 -10 -5 0 5 10

12/33

Simone A. Padoan Bocconi University



Risk Measures

Quantile vs Expectile
® From the first order condition

TE{(X - 6):} = (1 -DE{(X - 6)-}

we obtain
— E(lX _f‘rl]l(X < ‘f‘r))
E(1X - ¢&-0)
” risk measure property | quantile expectile ”

law-invariant 4 v
elicitable 4 4
coherent X v
derivation tail probability tail expectation
constraints yeR vy <1
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A second step forward

We now consider the case when data are temporarly dependent.
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Background

Weak dependence

® Assume that the sequence X, ..., X}, is:
. with marginal distribution F € D(G,).

® Rl AR e eaae[Sikd, i.e. it satisfies a suitable mixing

condition (a form of memorylessness property), e.g.

® The classical result apply through the so-called |skke/isiEelel<s

Separated by smallPblocksFivin o

X

X
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Background

Basic results

® In this case F' € D(G,) means that

max(Xy,...,Xp,) = b(ry)
( 1 a(ry) Bk X) - Gg(X)’ T

where 6 € (0, 1] is the , 1.e. the reciprocal of the
asymptotic mean cluster size of exceedances.

® An interpretation is, as n — oo, we have

P( max X; < a(m)x +b(m)) e P( max Y; < a(m)x + b(m)

1<t<m 1<t<|0m]
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Extremes

and Related Properties

of Random Sequences
and Processes
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Statistical problem

We aim to derive statistical procedure for the extrapolation of extreme
expectile in a time series framework.

Next part concerns some new results from the paper
obtained for the case y > 0. Thanks to
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Expectile estimators

Intermediate level

® The first step is to focus on the intermedite level ,,:

® The Least Asymmetrically Weighted Squares (LAWS)
estimator is

— 1
£, =argmin L 370, (% - 0) = e, ().
R N9

where 7, (x) = |t — 1(x < 0)|x? is the expectile check function.
® The expectile-quantile tail equivalence result

Efgr= (Y =D, 11, 3)

suggests to use the quantile-based (QB) estimator i.e.

g‘rn = 6’:1 - 1)_?"677,,-
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Expectile estimators

Extreme level

® From the quantiles proportionality result

’ 1-7\"7
LN , T>1t->1.
qr 1-71
together with the expectile-quantile tail equivalence result we
obtain that an estimator of an is
’ _5771
—x 1-71 —
&, = = &
" -1,

where ETn can be either the LAWS or the QB estimator of ¢, .
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Expectile estimation
Conditions

@ Let (X;),>1 bea (e.g.
) with a continuous one-dimensional marginal heavy-tailed
distribution.
@ Assume 0 <y < 1 and E|(min(0, X))| < oo.
© There are sequences I, := [(n), ry, := r(n) such that as n — oo

I 'n 0, nB(l,) N

rp — 00, _—>0’
rn n rn

ll’l - OO’ 07

@ There exists the limit (tail copula function)

Ri(x,y) = lim s™'P(F (X)) > 1 = sx, F(Xp01) > 1= 5);

forall £ > 1 and (x,y) € [0,00]?\ {0, c0}.
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Expectile estimation
Conditions

Conditions (continued...)

© There are p(r) > 0, satisfying Y, p(t) < co, D > 0 such that
sTIP(F (X)) > 1 = su, F(Xy1) > 1 —sv) < p(£)Vuv + sDuv,

ass — 0,forallr > 1and u,v € [0, 1].

@ There is a measurable function A such that A(s) — 0as s — oo
and for p < Oand all y > 0,

lim 1_
57 A(L/F(s))

F(sy) ~1/y| _ -1/y)’p/y -1
= -y =y T—.
F(s) YpP

When p = 0, the right-hand reads as y~'/” log(y)/y? .
@ Vn(l-1t)A((1-1)"") 5 1€Rasn — oo.
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Expectile estimation - Extreme level
Asymptotic Normality

Theorem 1 (Davison, P., Stupfler, 2022)

Assume that n(1 - 7,) — oo, n(1 - 1,) — ¢ € [0, ),

Vn(l —1,)/log((1 = 1,)/(1 = 7,)) = ccand r,(1 —1,) — 0as

n — oo, Then, under Conditions (1)—(7) one has

n(1-1n) £ 4
~ > N (b, W(y,R)),
log((1 -t /(1—1) ° &xy (b, W(y,R))
where
2
=1

W(y, R) = > (1 +22Rt(1, 1)) .

t>1
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Expectile Estimation - Extreme level
Asymptotic Variance

Lemma 1 (Davison, P., Stupfler, 2022)

Under the conditions of Theorem 2 we have

Var

p (11_T) ZH{F(Xt) >rn}) — 1+2ZR,(1 1).

e Using “big blocks separated by small blocks” arguments we

compute
rn+jln

Yj = Z ]l(ﬁn(xt) > Tn)

t=1+jl,
forj=0,1,...,m, —1,m, = |n/t,| and €, = r, + .

® Let S% be the empirical variance of Yy, ..., Y,,, 1. Then,

Wa(y,R) = (ra(1 - 17,))"'52 - S2.
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Expectile Estimation - Extreme level

Confidence Intervals (Cl)

¢ For the bias term, we assume A(s) = yB s°. Given the estimates
B, and p,, and noting that A ~ \/n(1 — 7,,) A((1 — 7,)~"), then

> _ (= )b (1 = 1)

" l_ﬁn

¢ Concluding, for large n,

B Wn(r.R). 5 W (r.R).
. (1 _Tn) bn=zap\| (=1 _, (1 _Tn) bntzi—apy| Ta(om]

’ _— ’
m\l1-1) TP\l -1)

is an asymptotic (1 — ) 100%
iivdthe expectile at the extreme levell
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Simulation study

Extreme expectile estimation

(a) The AR(1) model Y;,; = 0.8Y; + &,41, where the innovations &;
are i.i.d. with Student-z distribution and v = 3 df.

(b) The ARMA(1,1) model Y;,; = 0.95Y; + £;41 + 0.9 &;, where the
innovations &, are i.i.d. with symmetric Pareto distribution and
shape parameter ¢ = 3.

(c) The ARCH(1) model Y;;1 = 07418741, Where 0-1‘2+1 =0.4+0.6 Ytz,
and &, are i.i.d. standard Gaussian innovations.

(d) The GARCH(1,1) model Y;,1 = 044141, Where

O'tZH =0.1+0.4Y?>+0.407, and &, are i.i.d. standard Gaussian
innovations.
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Simulation results

Non-coverage probability of Cl

Time-series model (b) - 1, ' =0.9995

Time-series model (a) - 1,"

100 — QB-D-ADJ oz | 1009 — QB-D-ADJ T
--- QB-D f --- QB-D /
QB-IID B QB-IID J /
804 --- LAWS-D-ADJ /i  / .| 8o t-- LAWS-D-ADJ S
-— LAWS-D . N < - LAWS-D P
LAWS-IID [ “.- LAWS-IID
60 60-
404 40-
20+ 20+
o 0
0 100 200 3do k41‘)0 500 600 700 0 100 200 300 k4(‘)0 500 600 700
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Simulation results

Non-coverage probability of Cl

Time-series model (d) - 1, ' =0.9995

100 100
80-| 80
60-| 60-|
401 407 ; —— QB-D-ADJ
QB-D
k QB-1ID
20 - LAWS-D-ADJ 20 -~ LAWS-D-ADJ
-~ LAWS-D i LAWS-D
LAWS-IID LAWS-IID
o o
0 100 200 3do k460 500 600 700 0 100 200 300 k460 500 600 700
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Exa

mple

Peaks prediction

DOW JONES

—— Negative Log-Returns

1990

2000 2010
Time

2020

Let (S;,7 > 1) be a price series. The Negative Log-Returns is

X; = —1og(Ss41/S:),

t>1
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Down Jones

Tail index estimation

DOW JONES DOW JONES
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Down Jones

Tail index estimation

DOW JONES DOW JONES
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Conclusions

@ In that are also estimation results
for:

¢ dynamic (conditional on the past) extreme expectiles based risk
measures;
® expectile-based Marginal Expected Shortfall, i.e.

E(X|Y > &;), T1€(0,1),

where X is a loss return and Y is an aggregated loss return.

@ In that are similar results for the
case y < 0;

© Along with these papers there is an R package called
that does the computation. Please, see

https://cran.r-project.org/web/packages/ExtremeRisks/index.html

...Thank you for your attention!
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