
BOCCONI UNIVERSITY
DEPARTMENT OF DECISION SCIENCES
PhD in Statistics and Computer Science

UNIVERSITY OF PADUA
DEPARTMENT OF STATISTICAL SCIENCES

Empirical Bayes inference for the Peaks Over a Threshold method
Pietro Scanzi Simone Padoan Nicola Sartori

1 Introduction
Extreme Value Theory (EVT) is a branch of statistical theory aimed at quantifying the stochastic
behaviour of a process at unusually large (or small) levels. Since the main goal of EVT is the prediction
of events that are expected to fall far beyond the observable data x1, . . . , xn , the probabilistic models and
statistical tools that it provides are asymptotically motivated. From a statistical point of view, such events are
represented by the quantiles corresponding to an exceeding probability p ≤ 1/n, of the unknown unconditional
distribution F that has generated the data.

2 EVT tools
This section refers to [2] and [3].
Let X1, X2, . . . Xn

iid∼ F unknown over R and let its upper end-point x+ = sup
{
x ∈ R̄ : F (x) < 1

}
. For

m ≤ n, we consider the maximum of block size m:

Mm := max {X1, . . . , Xm} with distribution
Fm(x) := P (Mm ≤ x) = P (X1 ≤ x, . . . , Xm ≤ x)

iid
= (F (x))m .

It’s easy to derive that, as n → ∞ , which implies m → ∞ ,

Mm
p−→ x+ =⇒ Fm(x) ⇒ δx+(x) ∀ x ∈

(
−∞, x+

]
.

Now, we can fix a high threshold u ∈ R such that only k among the Xi’s overcome it, i.e. X(n−k) ≤ u <
X(n−k+1). We define, for every j = 1, . . . , k , the u-threshold exceedances:

Yj :=
(
Xj − u

) ∣∣ (Xj > u
)

with distribution

Fu(y) := P
(
Yj ≤ y

)
= P

(
Xj − u ≤ y |Xj > u

)
=

F (u + y)

1− F (u)
, y > 0 .

Theorem: If there exist sequences of scale (am) ∈ (0, +∞) and location (bm) ∈ R constants such that

lim
m→∞

P
(
Mm − bm

am
≤ x

)
= lim

m→∞
Fm (am x + bm) = Gγ (x) (1)

for a non-degenerate distribution function Gγ , then F ∈ D
(
Gγ
)

and Gγ is a member of the Generalized
Extreme Value (GEV) family where

Gγ(x) = exp
{
− (1 + γ x)

−1
γ

}
defined on {x ∈ R : 1 + γ x > 0} .

Moreover, for large u, the conditional distribution function Fu is approximated by

H(y) = 1−
(
1 + γ

y

σ̃u

)−1
γ

defined on
{
y > 0 : 1 + γ

y

σ̃u
> 0

}
,

with σ̃u = 1 + γ u . H belongs to the Generalized Pareto (GP) family.

As a consequence,
• Fm(x) ≈ Gγ

(
x−bm
am

)
and we say Mm

·∼ GEV (γ, bm, am) for large m ;

• Y1, . . . , Yk
·∼ GP (γ, 1 + γ u) for large u ;

• the parameters of the GEV and GP models can be estimated from the observed block maxima and threshold
exceedances by maximum likelihood;

• when γ0 > −0.5 we can rely on the usual likelihood asymptotics;

3 Censored Peaks Over a Threshold (CPOT) method
This section refers to [1].
We have X1, X2, . . . , Xn

iid∼ F ∈ D
(
Gγ
)

sample units where k of them exceed some high threshold u ∈ R .
Here, the peaks over the threshold are X(n−k+1), . . . , X(n) and we set s = n/k . Accordingly, we can
split units into k blocks of size s such that each block contains only one peak and s− 1 non-exceeding units.
Under this blocking scheme Ms = X(n−j+1) for some j ∈ {1, . . . , k} and the k block maxima coincide with
the k peaks over the threshold. Moreover,

s =
n

k
→ ∞ as n → ∞ just like m → ∞ as n → ∞

and the asymptotic approximation (1) still holds with s in place of m , leading to X(n−k+1), . . . , X(n)
·∼

GEV (γ, bs, as) for large s . It is also possible to derive a suitable approximation for the tail of F , i.e.

F (x) ≈ exp
{
−
(
1 + γ

x− bs
as

)−1
γ

}1
s

=

[
Gγ

(
x− bs
as

)]1
s

, for large x, s . (2)

Exploting this approximation, we can obtain an expression for the extreme quantile of level 1 − p with
p ≤ 1/n , i.e.

xp = F−1(1− p) ≈ bs + as
(s p)−γ − 1

γ
. (3)

We have a sample x = (x1, . . . , xn)
t of data and we define a high threshold u = x(n−k) for k

n = 1
s ∈

{0.10, 0.05, 0.01} . Thanks to (2), we can assume for the peaks X(n−k+1), . . . , X(n)
·∼ GEV

1
s (γ, bs, as)

for large s and in order not to waste information, we consider x(1), . . . , x(n−k) = u as left-censored by
u . Finally, we can define the Censored POT log-likelihood for the parameter θ = (γ, bs, as) ∈ Θ =
(−1, +∞)× R× (0, +∞) as

l (γ, bs, as ; x) =
n∑
i=1

log L (γ, bs, as ; xi) , (4)

where, for i = 1, . . . , n ,

L (γ, bs, as ; xi) =


[
Gγ

(
u−bs
as

)]1
s if xi ≤ u ,

d
d x

{[
Gγ

(
x−bs
as

)]1
s

} ∣∣∣∣
x=xi

if xi > u .

The MLE θ̂n =
(
γ̂n, b̂s,n, âs,n

)
can be found maximizing numerically (4).

4 Empirical Bayes CPOT
This section refers to [6].
The location bs and scale as constants increase as s → ∞ and so do the true parameter values
θ0 =

(
γ0, b0s, a

0
s

)
and their MLEs θ̂n =

(
γ̂n, b̂s,n, âs,n

)
. In a Bayesian context, an empirical Bayes

approach is therefore necessary in order to avoid infinite and mathematically incorrect priors.
We assume for θ a data-dependent prior density with independent components, i.e.

π (γ, bs, as) = π (γ) · π (bs) · π (as) , where

π (γ) =
t1 (γ)

1− T1 (−1)
, γ ∈ (−1, +∞) ;

π (bs) ∝
1

â2s,n

1√
2π

exp

−1

2

(
bs − b̂s,n
âs,n

)2
 , bs ∈ R ;

π (as) ∝
1

â2s,n
exp
{
− 1

âs,n
as

}
, as ∈ (0, +∞) .

Under some mild conditions on the data generating process (satisfied by the CPOT model) and on the prior
distribution (satisfied by the aforementioned prior), the posterior distribution of θ given the data x provides
consistent estimation of the unknown true parameter θ0 and is asymptotically Gaussian as s → ∞ .

5 An adaptive Metropolis-Hastings (AMH) algorithm
This section refers to [4] and [5].
We sample from π (θ |x) through an adaptive Gaussian random walk Metropolis-Hastings
algorithm. This algorithm is refined in a way that it adapts the scaling parameter κ and the covariance
matrix Σ of the proposal distribution N3

(
θ(i), κ(i)Σ(i)

)
at each iteration i + 1 with the objective of

reaching a fixed optimal overall acceptance probability (OAP) η∗ = 0.234 .

Algorithm 1: Adaptive Gaussian Random-Walk Metropolis-Hastings
Initialize: Set R, θ(0), κ(0) and Σ(0) ;
for i = 1 to R do

draw proposal θ∗ ∼ N3

(
θ(i), κ(i)Σ(i)

)
;

compute acceptance probability η(i) = min
(

π(θ∗)L(θ∗;x)
π(θ(i))L(θ(i);x)

, 1
)

;
draw U ∼ U(0, 1) ;
if η(i) > U then

set θ(i+1) = θ∗ ;
else

set θ(i+1) = θ(i) ;

update Σ(i+1) = 1
i−1

∑i
s=1

(
θ(s) − θ̄(i)

)
·
(
θ(s) − θ̄(i)

)t
+ 1

i I3 ;

update κ(i+1) = exp
{

log
(
κ(i)
)
+ a (η∗) η(i)−η∗

max{200, i3}

}
.

6 Simulation study
We construct a simulation study to test the frequentist accuracy of credible intervals based on the empirical
Bayes CPOT method. We are interested in the marginal posterior distribution of γ, bs, as and the
extreme quantile xp (3) for p = 1/n . We compute the quantile, Gaussian approximation based and
HPD 95% credible intervals. To this aim, we draw N = 1000 independent random samples of increasing size
n from 9 distributions pertaining to the max-domain of attraction of the GEV and we calculate the coverage
probabilities over the N iterations. We set the posterior sample size R = 50000 , the burn-in to 10000 and
study 4 different simulation scenarios:

1. small extreme sample: n = 800, k = 20 ⇒ s = 40 ;

2. medium extreme sample: n = 1800, k = 30 ⇒ s = 60 ;

3. large extreme sample: n = 5450, k = 50 ⇒ s = 109 ;

4. ”big-data” extreme sample: n = 23400, k = 100 ⇒ s = 234 .

We obtain an overall accurate performance of the empirical Bayes CPOT method. Generally, the empirical
coverages reach 95% at least once for every considered quantity, credible interval type, data generating process
and sample size. Moreover, coverage probabilities tend to improve as s grows. Best results are provided by
the quantile intervals, followed by the Gaussian and then by the HPD.
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