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1. Introduction
In Bayesian statistics, common deterministic approximations of posterior distributions are typically
Gaussian. This choice facilitates optimization and inference, but it may compromise the quality of
the overall approximation. Indeed, even in simple parametric models the posterior distribution can
be asymmetric.
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Recent research has moved toward more flexible classes of approximating densities incorporating
skewness. However, current solutions are model specific and/or lack of general supporting theory.

2. Notation
• {Xi}n

i=1 sequence of random variables
with probability measure P n

0
• {P n

θ , θ ∈ Θ ∈ Rp}
• L(θ) likelihood and ℓ(θ) log-likelihood
• π(θ) prior and πn(θ) = π(θ)L(θ)/m(Xn)

posterior
• θ̂: posterior mode
• First three log-likelihood derivatives at θ̂
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for r, s, t = 1, . . . , p

• Einstein’s summation convention adopted

3. Skew-symmetric random variables
Definition: A random variable θ is
skew-symmetric if its probability density
function takes the form

p(θ) = 2pξ(θ)G(w(θ − ξ))

Where

• pξ(·): probability density function
symmetric about ξ ∈ Rd

• w(·): odd function from R
d → R

• G(·): continuous univariate cumulative
distribution function satisfying
G(−θ) = 1 − G(θ)

Special case: pξ(·) = ϕd(·; ξ, Σ) is a
multivariate normal with mean ξ and
covariance matrix Σ, G(·) = Φ(·) is the
standard normal cumulative distribution
function and w(·) is an odd polynomial function

Simulation from skew-symmetric random
variables:

1. Simulate from the symmetric distribution
θ∗ ∼ P0 where ξ = 0

2. Simulate a Bernoulli random variable Z
with probability G(w(θ∗))

3. θ = θ∗(2Z − 1) + ξ is skew-symmetric
with density 2pξ(θ)G(w(θ − ξ))

4. Skew modal approximation

We propose to approximate the posterior density πn(θ) with the asymmetric density

p̂n
sks(θ) = 2ϕd(θ; θ̂, J−1

θ̂
)Φ(w(θ − θ̂)) (1)

where

• Jθ̂ = −ℓ
(2)
θ̂

• ϕd(·; θ̂, J−1
θ ) : is a d-variate Gaussian density with mean θ̂ and covariance matrix J−1

θ̂

• w(θ) = (
√

2π/12)ℓ(3)
θ̂,stl

(θ − θ̂)s(θ − θ̂)t(θ − θ̂)l

Theorem 1. Under appropriate regularity conditions

1
2

∫ ∣∣πn(θ) − p̂n
sks(θ)

∣∣dθ = Op({log n}c1/n)

for some c1 > 0

Remark: Under similar assumptions the classical Gaussian approximation ϕd(θ; θ̂, J−1
θ̂

) has
asymptotic error of order Op({log n}c2/

√
n), for some c2 > 0.

5. Skew modal marginal approximation
In general, the marginal densities of approximation (1) are not available
in closed form. If the interest is on a subset θC of θ, it is possible to
approximate πC(θC) =

∫
πn(θ)dθCc with the alternative skew-modal

marginal approximation

p̂n
sks,C(θC) = 2ϕd(θC ; θ̂C , J−1

θ̂,CC
)Φ

(
wC(θC)

)
(2)

where J−1
θ̂,CC

is the sub-matrix of J−1
θ̂

in which only the entries associated
to the elements of θC are maintained, while

wC(θC) =
√

2π

12 {a1,s(θC − θ̂C)s + a2,stl(θC − θ̂C)s(θC − θ̂C)t(θC − θ̂C)l}

where a1 ∈ Rd and a2 ∈ Rd×d×d depend both on ℓ
(2)
θ̂

and ℓ
(3)
θ̂

Theorem 2. Under appropriate regularity conditions

1
2

∫ ∣∣πC(θC) − p̂n
sks,C(θC)

∣∣dθ = Op({log n}c3/n)

for some c3 > 0

6. Binary regression model (Logistic)
We compare the performance of the proposed skew-symmetric
approximation on a logistic regression with n = 27 and d = 3. For each
coefficient, we assume weakly informative N(0,25) prior.
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