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1. Introduction 2. Notation
In Bayesian statistics, common deterministic approximations of posterior distributions are typically { X}, sequence of random variables
Gaussian. This choice facilitates optimization and inference, but it may compromise the quality of with probability measure P}
the overall approximation. Indeed, even in simple parametric models the posterior distribution can (P}, 0 € © € RP}

be asymmetric. L(0) likelihood and ¢(#) log-likelihood
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3. Skew-symmetric random variables

Definition: A random variable 6 1is
Recent research has moved toward more flexible classes of approximating densities incorporating skew-symmetric if its probability density
skewness. However, current solutions are model specific and/or lack of general supporting theory. function takes the form

p(0) = 2pe(0)G(w(0 - £))

4. Skew modal approximation

Where

We propose to approximate the posterior density 7, (f) with the asymmetric density + pe(-): probability density function

- d
Fac(6) = 264(0: 0, T ) (w (6 — ) O e o fom B > R
where o (5(-): continuous univariate cumulative
distribution function satisfying
o Jy=—L7 G(—6) =1 — G(6)
o Oql:; é, Jy 1) . is a d-variate Gaussian density with mean 9 and covariance matrix J é_ L Special case: p¢(-) = ¢q(;&,2) is a
multivariate normal with mean & and
o w(f)= (\/%/12)6(?) (0 — é)s(e — 6’A)t(9 — é)l covariance matrix X, G(-) = ®(-) is the

0 st . A .
i standard normal cumulative distribution

function and w(-) is an odd polynomial function
Theorem 1. Under appropriate reqularity conditions Simulation from skew-symmetric random
variables:

5 [ |7al®) = 2(6)|a8 = Oy({1og ) /m)

1. Simulate from the symmetric distribution
0* ~ Py where £ =0

2. Simulate a Bernoulli random variable Z
with probability G(w(6*))

3. 0 =0%(27Z —1) 4 £ is skew-symmetric

asymptotic error of order O,({logn}“*/y/n), for some cy > 0. with density 2pe (6)G(w(6 — €))

for some c1 > 0

A

Remark: Under similar assumptions the classical Gaussian approximation ¢4(6;6, J- 1) has

5. Skew modal marginal approximation 6. Binary regression model (Logistic)

In general, the marginal densities of approximation (1) are not available
in closed form. If the interest is on a subset 6. of 0, it is possible to
approximate m¢(6¢) = [ 7, (0)dfce with the alternative skew-modal
marginal approximation

We compare the performance of the proposed skew-symmetric
approximation on a logistic regression with n = 27 and d = 3. For each
coefficient, we assume weakly informative N(0,25) prior.
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we (Oc) = T {a1.5(0c — 0c)s + az.su(Bc — 0c)s(Bc — 0c)i(Be — 0c)}
where a; € R? and as € R**?*? depend both on 622) and ﬁg))) 0 (s LS, o
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