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Signal-bkg Classification with HEPMASS
Problem: search for an hypothetical particle 𝑋 with unknown mass. 
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HEPMASS (UCI)

Parameterized Neural Networks for High-Energy Physics

Signal: particle 𝑋 decaying to 𝑡 ҧ𝑡. 

The decay mode considered is 𝑡 ҧ𝑡 →
𝑊+𝑏𝑊−ത𝑏 → 𝑞𝑞′𝑏𝑙𝑣ത𝑏. 

Background: Standard Model 𝑡 ҧ𝑡 production, 
identical in decay mode but without the 𝑋

resonance. 

There are five mass hypotheses for the signal: 𝑚𝑋 = {500, 750, 1000, 1250, 1500} GeV.

Luca Anzalone

http://archive.ics.uci.edu/ml/datasets/hepmass


HEPMASS-IMB
Double-imbalanced version of HEPMASS:
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HEPMASS

HEPMASS-IMB
(bkg weighted by 1/5, 

for visualization)

Both class and 
mass are 

imbalanced!

HEPMASS-IMB (Zenodo)
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https://zenodo.org/record/6453048


Motivation
Say your signal follows 𝑀 mass hypotheses, the classical approach would require to:

◦ Develop, train, tune, and maintain 𝑀 models, independently:

◦ Each model can be a NN, SVM, RF, etc.

◦ Requires 𝑂(𝑀) storage, memory, and CPU/GPU time compared to the joint training of a single model 
(i.e. pNN).

◦ Each individual classifier is not said to share the same architecture, and hyper-parameters.

◦ The number of data samples can more problematic: the pNN is expected to have better data-
efficiency, improved generalization, and classification performance.

◦ Not capable of interpolation and extrapolation:

◦ Nothing prevents to use the same NN trained at mass 𝑚𝑖 on events at mass 𝑚𝑗, but performance are 
expected to degrade as 𝑑(𝑚𝑖 , 𝑚𝑗) increases. 
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Search for exotic particles in HEP with deep learning
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https://www.nature.com/articles/ncomms5308


Parametric Neural 
Networks

BALDI ’S PNN

CONDITIONING

AFFINE PNN
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Parametrized NNs
Neural network classifier with two inputs:

◦ The features, 𝑥

◦ The physics parameter: in this case the signal mass hypotheses, 𝑚.

which are combined (e.g. by concatenation) to yield:
◦ ො𝑦 = 𝑓𝜃(𝑥,𝒎).

The mass feature, 𝑚, is responsible for «parametrizing» the NN:
◦ Can replace 𝑀 = |𝑚| individual classifiers.

◦ Enables interpolation among known mass hypotheses.

◦ Potentially improves classification performance.

Q1: How to combine 𝑥 with 𝑚?
Q2: How to assign 𝑚 for the background?
Q3: How to evaluate interpolation?
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Parameterized Neural Networks for High-Energy Physics

mx
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ReLU

ො𝑦

Sigmoid

features mass

Luca Anzalone

https://link.springer.com/article/10.1140/epjc/s10052-016-4099-4


Concatenation-based Conditioning
A simple conditioning mechanism:
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Feature-wise transformations

Parametric = conditioning on a physics parameter.

𝑧 = 𝑊 𝑥 𝑚 + b
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Conditional Biasing
Equivalent to concatenation-based conditioning (prev. slide):
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Feature-wise transformations

𝑧 = (𝑊𝑚 + 𝑏) + x
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Conditional Scaling
Alternative to concatenation and biasing:
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Feature-wise transformations

𝑧 = 𝑥 ⊙ (𝑊𝑚 + b)
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Affine Conditioning
A combination of conditional scaling and conditional biasing:
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Feature-wise transformations

Linear

Linear

𝑚

𝑥

𝑠

𝑏

𝑧

𝑧 = 𝑥 ⊙ 𝑠𝜙 𝑚 + b𝜓 𝑚

𝑠𝜙(𝑚) = 𝑊𝜙𝑚 + 𝑏′

𝑏𝜓 𝑚 = 𝑊𝜓𝑚 + 𝑏′′

Q1: 

Improving Parametric NNs for High-Energy Physics (and Beyond)
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Affine Parametric Neural Networks
Interleave multiple affine-conditioning layers in between dense layers, to better condition the 
neural network on the mass feature, 𝑚:

Full architecture:

◦ Four dense layers with 300, 150, 100 and 50 units: for a total of ~70k parameters.

◦ ReLU activation.

◦ Dropout (𝑝 = 25%) after each affine-conditioning layer.
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Improving Parametric NNs for High-Energy Physics (and Beyond)
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Improving pNNs
BACKGROUND MASS 

DISTRIBUTION

BALANCED 
TRAINING
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Background’s Mass Distribution
Given 𝑀 = {𝑚0, 𝑚1, … ,𝑚𝐾} signal mass hypotheses, how to assign 𝑚 for the background?

1. Identical distribution: 𝑀 represents a discrete delta distribution, so assign 𝑚(𝑖) from it.
For example: 𝑚(𝑖) = 𝑚1, 𝑚(𝑗) = 𝑚3, and 𝑚(𝑘) = 𝑚3.

Values outside the set 𝑀 are not possible.

𝑚(𝑖) is a discrete value.

2. Different distribution: define a probability distribution from 𝑀.
E.g. can be uniform 𝑈(𝑚0, 𝑚𝐾), and so 𝑚(𝑖) ∼ 𝑈.

For example: 𝑚(𝑖) = 505.5, 𝑚(𝑗) = 766.3

𝑚(𝑖) is now a continuous value.
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Improving Parametric NNs for High-Energy Physics (and Beyond)

Two implementations:

• Fixed: sampling of 𝑚(𝑖) occurs once (e.g. beginning of training).

• Sampled: assignment of 𝑚(𝑖) is done at each mini-batch.

Q2: 
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Balanced Training
Suppose 𝑫 = 𝒙, 𝒚,𝒎, 𝒑 𝒊 𝒊=𝟏

𝑵 , where:

◦ The mass label 𝒎 is defined only for the signal: 𝑚 𝑖 ∈ 𝑀, ∀𝑖 ∈ 𝑆 = {𝑖 ∣ 𝑦 𝑖 = 1}.

◦ The process label 𝒑 is defined only for the background: 𝑝(𝑖) ∈ 𝑃, ∀𝑖 ∈ 𝐵 = {𝑖 ∣ 𝑦 𝑖 = 0}.

◦ Let’s 𝑀 = {𝑚0, 𝑚1, 𝑚2, 𝑚3} and 𝑃 = {p1, p2}.

⇒ Both 𝑚 and 𝑝 divide 𝑺 and 𝑩, respectively, into sub-classes!

Balancing each mini-batch can remove imbalance among sub-classes.

No balance (default):
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Exploit the structure of the 
dataset for training

Improving Parametric NNs for High-Energy Physics (and Beyond)

𝑚0 𝑚1 𝑚1

mini-batch

𝑠

𝑏

𝑝1

𝑝2

Notation

Each square is a sample; some 
sub-classes may be 

underrepresented, e.g. 𝑀.
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Balanced
Mini-batches

Class balance: same 
#samples per class, 𝑦
(regardless 𝑚 and 𝑝).

Background balance: same 
#samples per bkg process, 𝑝.

Signal balance: same 
#samples per mass, 𝑚.

Full balance: same #samples 
per tuple (𝑦, 𝑚, 𝑝).

Improving Parametric NNs for High-Energy Physics (and Beyond)

signal background

𝑚2

signal background

Mini-batches:

𝑚0 𝑚1 𝑚2

signal background

𝑚3

Class balance:

Background balance:

Full balance:

Signal balance: 𝑚0 𝑚1 𝑚2

signal background

𝑚2 𝑚3

|𝑠| = |𝑏|

|𝑝1| = |𝑝2|

|𝑚0| = |𝑚1| = ⋯ = |𝑚3|

|𝑠| = |𝑏| ∧ |𝑝| = |𝑚|



Results
METRICS

BASELINES

INTERPOLATION
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The Significance Ratio Metric
Along with ROC and PR curves, we introduce a new metric (evaluated ∀𝑡 ∈ [0,1]):

where:

◦ AMS 𝑡 =
𝑠𝑡

𝑠𝑡+𝑏𝑡
is the significance computed at classification threshold 𝑡.

◦
𝑠𝑚𝑎𝑥

𝑠𝑚𝑎𝑥
is the ideal significance, when 𝑠𝑡 = 𝑠 (take all signal) and 𝑏𝑡 = 0 (reject all bkg).

The metric is normalized in [𝟎, 𝟏], regardless the #signal and #background ⇒ Is comparable 
between different mass hypotheses. 
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Baseline Models
There are three baselines:

◦ Single-NN: one neural network trained on all 𝑀 mass points, but 
without the mass feature, 𝑚, as input – so not parametrized.

◦ Individual-NNs: a set of |𝑀| neural networks, each trained 
on the corresponding mass 
point, 𝑚𝑖 ∈ 𝑀.

◦ pNN: Baldi’s like parametric 
neural network, without 
our improvements.
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Improving Parametric NNs for High-Energy Physics (and Beyond)

The pNN outperforms even the set of 
individual neural networks.
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Interpolation
Interpolation capability implies twofold generalization:

1. On new samples belonging to training mass points 𝑀, and

2. On novel samples related to the missing masses, ഥ𝑀.

Factors affecting interpolation:
◦ Distribution of mass-correlated features.

◦ Background’s mass distribution, and regularization.

How to evaluate it?
◦ Train only on one mass point to asses similarity among masses: force pNN to extrapolate.

◦ Drop about half of the mass points for training.

◦ Train on one mass less: usually not enough the establish interpolation ability.
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Improving Parametric NNs for High-Energy Physics (and Beyond)

U-NR: Uniform; 
no regularization.

IS-C: Identical-
sampled; class-

balance.

Q3: 
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Summary
Parametric NNs can effectively replace a set of |𝑴| classifiers, when:

◦ The physics parameter (e.g. mass) is correctly assigned to the background: for the mass the 
identical (sampled) assignment strategy works the best.

◦ The conditioning on the parameter is meaningful: simple concatenation may be not enough.

◦ Enough regularization is employed to enable the model to interpolate.

Remember to exploit the structure and information in your own dataset to improve the 
model at the level of architecture, conditioning mechanism, and even training.

If you need interpolation at inference time, be sure to check for it by training a pNN on 
about 50% less mass points (as a rule of thumb).
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Thanks for the 
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