## February 14<sup>th</sup>, 2023

# Small workflow improvements for the next software release

(b) CERN (Switzerland) (a) INFN Torino (Italy)





# Geometry + LCIO

## N. Bartosik (a, b) for the Muon Collider Physics and Detector Group



# **Cleaned-up geometry:** MuColl\_v1.0.1

## Cleaned-up and restructured geometry prepared: MuColl\_v1.0.1 PR #4

- removed unused subdetector definitions and constants
- resolved 68 overlaps between sensitive surfaces and support structures
- optimised file structure with all common definitions moved to a single file: <u>config.xml</u>



#### Nazar Bartosik

|    | <lccdd></lccdd>                                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------|
|    | <pre><info <="" name="MuColl_v1.0.1" pre="" title="Muon Collider geometry for sqrt(s) = 1.5 TeV"></info></pre>             |
| าไ | <pre>author="Nazar Bartosik" url="https://confluence.infn.it/display/muoncollider/Muon+Colli</pre>                         |
| าไ | <pre>status="development" version="\$Id\$"&gt;</pre>                                                                       |
| าไ | <pre><comment>Cleaned-up 'v1' version with a few bug fixes</comment> </pre>                                                |
|    | <define></define>                                                                                                          |
| d  | <pre></pre>                                                                                                                |
|    | <pre><constant name="world_y" value="world_side"></constant> <constant name="world_z" value="world_side"></constant></pre> |







# Light geometry versions

**Default geometry file is very concise now** [35 lines of code] just including other XML files

Several lighter versions of the geometry prepared for convenience only including everything up to a certain subdetector

- $MuColl_v1_VTX_xml \rightarrow Beampipe + Nozzles + Vertex detector$
- MuColl\_v1\_TRK.xml → ... + Inner Tracker + Outer Tracker
- MuColl\_v1\_CAL.xml  $\rightarrow$  ... + ECAL + HCAL
- MuColl\_v1.xml  $\rightarrow$  ... + Muon chambers [default]

|           | FULL   | CAL    | TRK    | VTX    |
|-----------|--------|--------|--------|--------|
| Load time | 30 s   | 30 s   | 28 s   | 1 s    |
| RAM       | 1.2 GB | 1.2 GB | 800 MB | 280 MB |

#### No need to comment lines in the default geometry. Just use a lighter version when appropriate

#### Nazar Bartosik

#### <lccdd>

```
<!-- Loading constants and geometry configuration -->
<includes>
   <file ref="include/elements.xml"/>
   <file ref="include/materials.xml"/>
   <file ref="config.xml"/>
</includes>
<!-- Including subdetector definitions -->
<include ref="include/Beampipe_o1_v01_02.xml"/>
<include ref="include/Nozzle_10deg_v0.xml"/>
<include ref="include/Vertex_o2_v06_01.xml"/>
<include ref="include/InnerTracker_o2_v06_01.xml"/>
<include ref="include/OuterTracker_o2_v06_01.xml"/>
<include ref="include/ECalBarrel_o2_v01_02.xml"/>
<include ref="include/ECalEndcap_o2_v01_02.xml"/>
<include ref="include/HCalBarrel_o1_v01_01.xml"/>
<include ref="include/HCalEndcap_o1_v01_01.xml"/>
<include ref="include/Solenoid_o1_v01_01.xml"/>
<include ref="include/YokeBarrel_o1_v01_01.xml"/>
<include ref="include/YokeEndcap_o1_v01_01.xml"/>
<!--- Including plugins --->
<plugins>
   <include ref="include/plugins.xml"/>
</plugins>
```

#### </lccdd>





## I've decided to use the following naming convention for the Muon Collider geometry versions

• MuColl\_v1

- newer versions can be gradually adopted by users v1.O.1 inside our group; v1 for the outside world
- MuColl\_v1.1.1

• MuColl\_v1.0.1

same as v1.0.1, but with some systematic change in the geometry e.g. increased thickness of passive material in VXD to evaluate potential impact of dedicated cooling on occupancy due to increased # of secondary BIB particles

### ... after many iterations it could be something like this:

• MuColl\_v1.11.5 the latest  $\sqrt{s} = 1.5$  geometry with added ECAL shielding, optimised magnetic field, changed double-layer spacing in VXD, etc. defined as the current baseline geometry for our studies presented as MuColl\_v1 for the outer world



global version of the geometry, relevant for the outside world e.g. geometry designed for  $\sqrt{s} = 1.5$  TeV, frozen for Snowmass studies

same global version, with very minor changes: code imrovements, small fixes



### **anajob** utility is routinely used for checking contents of LCIO files $\rightarrow$ written in C++

#### **anajob** mumi t25ns n150MeV j1.slcio >

anajob: will open and read from files:

mumi\_t25ns\_n150MeV\_j1.slcio [ number of runs: 1, number of events: 374 ]

Run : 0 - MuColl\_v1:

parameter CommandLine [string]: /muoncdata/users/bartosik/clic/rel/ILCSoftware/v02-01/v02-01-pre/DD4hep/v01-11/bin/ddsim --physics.list QGSP\_BERT --steeringFile clic\_steer\_v0.py --skipNEvents 0 --numberOfEvents 374 --inputFile bib\_mcp/mumi\_t25ns\_n150MeV.slcio --outputFile bib\_simhit/mumi\_t25ns\_n150MeV\_MuColl\_v1.slcio\_j1.slcio, parameter DD4HEPVersion [string]: v01-11, parameter DateUTC [string]: 2022-06-17 10:13:21.727360 UTC, parameter GEANT4Version [string]: \$Name: geant4-10-06-patch-01 \$, parameter ILCSoft\_location [string]: /muoncdata/users/bartosik/clic/rel/ILCSoftware/v02-01/v02-01-pre, parameter LCIOFileName [string]: mumi\_t25ns\_n150MeV\_j1.slcio,parameter CommandLine [string]: /muoncdata/users/bartosik/clic/rel/ ILCSoftware/v02-01/v02-01-pre/DD4hep/v01-11/bin/ddsim --physics.list QGSP\_BERT --steeringFile clic\_steer\_v0.py --skipNEvents 0 -numberOfEvents 374 --inputFile bib\_mcp/mumi\_t25ns\_n150MeV.slcio --outputFile bib\_simhit/mumi\_t25ns\_n150MeV\_j1.slcio, parameter DD4HEPVersion [string]: v01-11, parameter DateUTC [string]: 2022-06-17 10:13:21.727360 UTC, parameter GEANT4Version [string]: \$Name: geant4-10-06-patch-01 \$, parameter ILCSoft\_location [string]: /muoncdata/users/bartosik/clic/rel/ILCSoftware/v02-01/v02-01-pre, parameter LCIOFileName [string]: mumi\_t25ns\_n150MeV\_MuColl\_v1\_j1.slcio, parameter SteeringFileContent [string]: import os\n\nfrom DDSim.DD4hepSimulation import DD4hepSimulation\nfrom g4units import mm, GeV, MeV, m, deg\nSIM = DD4hepSimulation()\n\n## The compact XML file\n#SIM.compactFile = "/muoncdata/users"

#### few hundred lines of metadata

| COLLECTION NAMECOLLECTION TYPENU===================================                                                                                                                                                              |                              |                   |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|--------------|
| ECalBarrelCollectionSimCalorimeterHitECalEndcapCollectionSimCalorimeterHitHCalBarrelCollectionSimCalorimeterHitHCalEndcapCollectionSimCalorimeterHitHCalRingCollectionSimCalorimeterHitInnerTrackerBarrelCollectionSimTrackerHit | COLLECTION NAME              | COLLECTION TYPE   | NUMBER       |
| ECalEndcapCollectionSimCalorimeterHitHCalBarrelCollectionSimCalorimeterHitHCalEndcapCollectionSimCalorimeterHitHCalRingCollectionSimCalorimeterHitInnerTrackerBarrelCollectionSimTrackerHit                                      | ECalBarrelCollection         | SimCalorimeterHit | =======<br>3 |
| HCalBarrelCollectionSimCalorimeterHitHCalEndcapCollectionSimCalorimeterHitHCalRingCollectionSimCalorimeterHitInnerTrackerBarrelCollectionSimTrackerHit                                                                           | ECalEndcapCollection         | SimCalorimeterHit |              |
| HCalEndcapCollectionSimCalorimeterHitHCalRingCollectionSimCalorimeterHitInnerTrackerBarrelCollectionSimTrackerHit                                                                                                                | HCalBarrelCollection         | SimCalorimeterHit | 2            |
| HCalRingCollection SimCalorimeterHit<br>InnerTrackerBarrelCollection SimTrackerHit                                                                                                                                               | HCalEndcapCollection         | SimCalorimeterHit | 3            |
| InnerTrackerBarrelCollection SimTrackerHit                                                                                                                                                                                       | HCalRingCollection           | SimCalorimeterHit |              |
|                                                                                                                                                                                                                                  | InnerTrackerBarrelCollection | SimTrackerHit     |              |

#### Nazar Bartosik

S

OF ELEMENTS

209 507

770



# Utility improvement: anajob

### Replaced C++ implementation by one in Python $\rightarrow$ flexible treatment of command-line parameters

#### anajob -h >

```
usage: anajob [-h] [-e NUMBER] [-r NUMBER] [-m N] [-v] FILE [FILE ...]
Prints summary of the LCIO file contents
positional arguments:
                       Input file(s)
  FILE
optional arguments:
              show this help message and exit
  -h, --help
  -e NUMBER, --event NUMBER
                       Event number to print
  -r NUMBER, ---run NUMBER
                       Run number to print
  -m N, --max_events N Maximum number of events to print
                       Print run headers
  -v, --verbose
```

No run headers printed by default  $\rightarrow$  much less cluttering of the terminal window

You can print just the 1<sup>st</sup> event  $\rightarrow$  no need to Ctrl + C for stopping the event loop anajob -m 1 FILE.slcio

#### Nazar Bartosik





# **Tracker digitization:** to do

## Currently we have 3 versions of tracker digitization code

#### **DDPlanarDigiProcessor**

- simple SimHit smearing 1 particle  $\rightarrow$  1 hit
- integrated in ILCSoft

### **MuonCVXDDigitiser** master

- pixelated clustering  $1 particle \rightarrow 1 cluster$
- not integrated in ILCSoft  $\rightarrow$  seems to be functional

#### Nazar Bartosik

### MuonCVXDDigitiser exp.

- pixelated clustering  $\geq$ 1 particles  $\rightarrow$  1 cluster
- not integrated in ILCSoft  $\rightarrow$  needs additional work





## Currently we have 3 versions of tracker digitization code

- **DDPlanarDigiProcessor**
- simple SimHit smearing  $1 particle \rightarrow 1 hit$
- integrated in ILCSoft

- **MuonCVXDDigitiser** master
- pixelated clustering  $1 particle \rightarrow 1 cluster$
- not integrated in ILCSoft  $\rightarrow$  seems to be functional
- Cluster shapes are a powerful handle on BIB  $\rightarrow$  should integrate <u>MuonCVXDDigitiser</u> to ILCSoft
- <u>master</u> branch is technically usable in our chain: converting cluster → LCIO::TrackerHitPlane
- The only missing feature  $\rightarrow$  proper treatment of timing (we don't know exact ROC functionality)  $\rightarrow$  we have to be generic and take into account what we know for sure
- - fired pixel becomes blind for a few ns >>  $\sigma_t$  (~10 ps) configurable dead time
  - TDC available at much smaller granularity

#### Nazar Bartosik

# Tracker digitization: realistic timing

## MuonCVXDDigitiser exp.

- pixelated clustering  $\geq 1 \text{ particles} \rightarrow 1 \text{ cluster}$
- not integrated in ILCSoft → needs additional work

configurable TDC matrix size: dX, dY  $\rightarrow$  loop over all the pixel blocks  $\rightarrow$  assign t of the earliest pixel to all the dX  $\times$  dY pixels of the block





# Tracker digitization: realistic clustering

## Currently we have 3 versions of tracker digitization code

- **DDPlanarDigiProcessor**
- simple SimHit smearing  $1 particle \rightarrow 1 hit$
- integrated in ILCSoft

- pixelated clustering  $1 \text{ particle} \rightarrow 1 \text{ cluster}$
- not integrated in ILCSoft  $\rightarrow$  seems to be functional

## <u>experimental</u> branch is more tricky to integrate in our simulation chain $\rightarrow$ worth leaving for later

- more complex cluster shapes in case of overlapping clusters  $\rightarrow$  cluster-shape analysis has to be more sophisticated
- more complex retrieval of the truth information Track  $\rightarrow$  RecHit  $\rightarrow$  Cluster  $\rightarrow$  SimHit  $\rightarrow$  MCParticle
- might require an adjusted data model 1-to-many relation for RecHit  $\rightarrow$  SimHit

## **MuonCVXDDigitiser** master

## MuonCVXDDigitiser exp.

- pixelated clustering  $\geq$ 1 particles  $\rightarrow$  1 cluster
- not integrated in ILCSoft  $\rightarrow$  needs additional work



