Artificial Intelligence in Medicine

Working with clinicians: the DORIAN Tech. experience

Ruben Gianeri next_AIM annual meeting 15.02.2023, Milano

DORIAN TECHNOLOGIES srl (Diagnosis ORlented ANalysis**)**

DORIAN delivers a fast and reliable tool for the **quantification** of medical imaging to support the early and differential diagnosis of neurodegenerative disorders. It provides clinicians and researchers with state-of-the-art robust, rater-independent and reproducible quantitative biomarkers to **better evaluate** dementias stage and progression, **complementing** their ability to write informed medical reports and improve on the early detection and diagnosis of neurodegenerative diseases.

Dorian recent activity

> Spin-off foundation

- > Start of beta-tests @ 6 italian centers
- > Lab sessions @ Nucl. Med. school in Neurology
- > EBAN finalist
- > Unicredit StartLab 3rd classified
- >> Amazon AWS academy invitation
- > Lab sessions @ Nucl. Med. school in Neurology
- > First fulfilled contract

[May 2020] [Apr 2021] [Sep. 2021] [Mar.2022] [May 2022] [Sep. 2022] [Oct. 2022] [Dec. 2022] A. Chincarini (INFN-GE)

P. Bosco (IRCCS Stella Maris, Pisa)

E. Peira (INFN-GE)

R. Gianeri (INFN-GE)

F. Sensı (IRCCS San Martino, Genova)

Benefits of quantification

Inter-rater agreement of 6 expert clinicians in the differential assessment of 100 FDG-PET cases, which have been confirmed with a diagnosis of MCI-LB or MCI-AD.

The accuracy and agreement (w Cohen's k) of each clinician is plotted with respect to 3 different diagnostic settings:

- 1. "visual": PET data is presented as acquired,
- 2. "vis+spm" where the PET data is presented together with a consolidated semi-quantification algorithm
- 3. "vis+spm+quant" where the PET data and semi-quantification are complemented with a third machine learning-based method, and a comprehensive analysis is presented to the clinician.

The added information and its synthesis not only **improves the accuracy** of the single clinician with respect to the true diagnosis, but it also delivers a much **higher intra-rater agreement**.

There are several solutions for image analysis, but they are usually provided as workstations:

> Difficult access to the workstation: the console is not necessarily in a space accessible to all clinicians, and it can only be used by one person at a time.

> Rely on local computational resources.

> Require constant maintenance and upgrading is usually done with the purchase of a new workstation.

> Analysis are often restricted to certain Scanners only.

> Semi-automated analyses: direct intervention of the clinician is required.

DOlab is

- Accessible from any device
- Computes on cloud
- Supports multiple users
- Easy to extend
- Secure, GDPR compliant
- Fully automated

- 1. **include clinicians/NM experts** in the process from the beginning
- 2. use of **multi-algorithm** approach, integrating standard methodologies with Al
- 3. aim at **quantification** (i.e. a direct product of the exam, open to interpretation) rather than at the diagnostic label (the outcome of a more complex process often involving several experts, difficult to challenge)
- 4. use **explainable** algorithms
- 5. **train users** & get feedback
- 6. keep implementation simple

Working with clinicians

Past activities

- > Collaboration with clinicians for early research development
 > Clinical testing @ 5 Italian centers: Genoa, Milan, Prato, Bergamo, Padua [2021 2022]
 > Training session at the AIMN National School of Nuclear Medicine (Advanced course) [Sep 2021]
 > Training session at the AIMN National School of Nuclear Medicine (Base course) [Oct 2022]
 Planned activities
- > First release installation in AIMN-Neurology centers (15 Hospitals Nationwide)[May 2023]> First certified training course for D0lab usage in clinical practice[Dec 2023]

ROI	SUVr		ELBA		TDr		CmpLS	
	Score	Cut-off	Score	Cut-off	Score	Cut-off	Order	Visua
L Frontal	1.85	1.15	1.09	0.8	0.68	0.54	1 st	٠
L Occipital	1.23	1.2	0.68	0.71	0.49	0.47	9 th	
L Posterior Parietal	1.47	1.24	0.9	0.81	0.64	0.55	3rd	٠
L Lateral Temporal	1.25	1.18	0.73	0.73	0.58	0.53	7 th	٠
L Precuneus + Post Cingulate	1.56	1.32	0.86	0.9	0.58	0.58	8 th	٠
R Frontal	1.8	1.23	1.08	0.81	0.65	0.57	2 nd	٠
R Occipital	1.16	1.12	0.65	0.68	0.48	0.46	10 th	•
R Posterior Parietal	1.43	1.29	0.9	0.78	0.66	0.52	5 th	٠
R Lateral Temporal	1.27	1.14	0.76	0.76	0.6	0.49	6 th	٠
R Precuneus + Post Cingulate	1.55	1.25	0.88	0.83	0.6	0.53	4 th	٠

AIMN training [2021 & 2022]

Survey results

about 50% of participants regularly use quantification tools.92% would use D0lab in clinical practice.

Preferred features

- > multi-algorithm quantification
- > explainability of analysis algorithms
- > regional analysis
- > comparison of patient results with normative population

From research to clinical practice

- Model validation on large multi-center dataset (~1000 clinically validated cases).
- Introduction of automatic checks on input data, providing warnings to the user.

- > Wrong image uploaded:
 - NM image (i.e. Early AmyPET/FDG-PET instead of Late AmyPET)
 - Wrong patient
 - Flipped/preprocessed image
- > Incomplete data

- Provide a comprehensive manual and adequate user training.
- Continuous checks and requests for confirmation of data submitted by the user.
- Automatic inspection on input data (FOV, resolution, ...).
- Image recognition with Al algorithms

Clinical Advisors

Diego Cecchin

Director of Nuclear medicine unit (a) University Hospital of Padua

> "Many reliable analyses. A sound tool to increase diagnostic confidence!"

Silvia Morbelli

Nuclear Medicine Physician (a) IRCCS S.Martino, Genoa

"DOlab is a real gem! I use it everyday and I gladly suggest it to my colleagues!"

Stelvio Sestini

Director of Nuclear medicine unit @ Prato Hospital

"Quantification made with the DOlab platform is really helpful to detect damaged brain regions and precisely monitor the therapy efficacy."

Artificial Intelligence in Medicine

Thank you

Ruben Gianeri next_AIM annual meeting 15.02.2023, Milano

