Artificial Intelligence in Medicine

High pathological grade prediction in prostate cancer patients undergoing 18F-PSMA PET/CT using matRadiomics

Giovanni Pasini giovanni.pasini@uniroma1.it

Who Am I

Graduated in **Biomedical Engineering**, I'm currently a **PhD student** in Industrial and Management Engineering at the Department of Mechanical and Aerospace Engineering (DIMA), located at «La Sapienza» University of Rome, and a **research collaborator** at the Institute of Molecular Bioimaging and Physiology (IBFM-CNR) in Cefalù, Sicily.

Research activity: **Personalized medicine for the diagnosis and prognosis of oncological and neurodegenerative diseases: Radiomics and Artificial Intelligence to support clinical decision-making**

Team

Richiusa Selene IBFM-CNR, Cefalù,Sicily

Giorgio Russo Chief IBFM-CNR, Cefalù

Alessandro Stefano Researcher IBFM-CNR, Cefalù

Giovanni Pasini PhD student, DIMA,IBFM

Albert Comelli Senior Scientist, Ri.Med Foundation

Fabiano Bini Associate professor in Bioengineering, DIMA, «Sapienza»

Franco Marinozzi Full professor Biomedical Instrumentation, DIMA, «Sapienza»

Massimo Ippolito Director U.O.C Nuclear Medicine and PET

Cosentino Sebastiano Doctor of Medicine

Maria Gabriella Sabini ine Head of medical Physics Unit Study Illustration

Dataset

GS Score	Siemens	GE
6	22	13
7	14	14
8-10	17	6
tot	53	33

86 patients or more, Only cancer staging

matRadiomics is a freeware that allows the user to carry out the whole radiomics framework:

- 1 import medical images
- 2 segmentation
 - ³ feature extraction
 - 4 feature selection
- 5 model building
- 6 prediction.

A complete radiomics freeware

Journal of Imaging https://doi.org/10.3390/jimaging8080221

Our approach through matRadiomics: Import Medical Images

Supported Image format: DICOM, CT, PET, MRI, DBT Visualize: Slices, Scroll mouse wheel

2

Contrast Adjustment

Our approach through matRadiomics: DICOM metadata

Visualize DICOM attributes: Patient Position, Pixel Spacing, etc...

Our approach through matRadiomics: Segmentation

1

Segmentation algorithms:

manual, thresholding, active contours, Automatic (?) **Import segmentations**: Dicom and DicomRT 3

Change mask opacity and colour And switch between segmentations

Identify the best segmentation method

Our approach through matRadiomics: Feature Extraction

Image and mask

Feature Extractor:

Pyradiomics integrated in matRadiomics

patient	original_shape_Elongation	original_shape_Flatness	original_shape_LeastAxisLength	original_shape_MajorAxisLength	original
ANON37910	0.3402	0.1719	17.7436	103.1960	
ANON37910	0.3402	0.1719	17.7436	103.1960	
ANON37910	0.3402	0.1719	17.7436	103.1960	
ANON37910	0.3402	0.1719	17.7436	103.1960	

Feature Selection: Hybrid descriptive-inferential method, LASSO, Relieff

Our approach through matRadiomics: Machine Learning

Feature Extraction

"matRadiomicsName": "matRadiomicsLight", "matRadiomicsVersion": "1.0", 'studyName": "journal_of_imaging2", "fileType": "Dicom", 'modality": "CT", "segmentationMethod": "imported", 'extractionInfo": { "extractor": "Pyradiomics_v3.0.1", "imageType": "Original", "enabledFeatures": "All Features Enabled", "enableNormalize": "False", "normalizeScale": 1, "removeOutliers": 1, "interpolator": "None", "xSpacing": 1, "ySpacing": 1, "zSpacing": 1, "padDistance": 5, "enablePreCrop": "False", "resegmentMode": "None", "lowResegmentRange": 0, "upResegmentRange": 0, "enableResegmentShape": "False", "minROIdim": 2, "enableMinROIsize": "None", "minROIsize": 1, "enableGeometryTolerance": "None", "geometryTolerance": 0, "enableCorrectMask": "False", "discretizationMode": "Bin Count", "discretizationValue": 64, "enableForce2D": "False", "dimensionForce2D": 0, "dAlgo": "None", "gldm a": 0, "voxelArrayShift": 0,

Feature Selection and ML

"selectionInfo": {

"selectedFeatureName": [
 "original_shape_Flatness",
 "original_gldm_DependenceNonUniformityNormalized"
],
 "method": "relieff"
},
"harmonizationInfo": {
 "harmonization": "false",
 "adjustment": "parametric",
 "batchName": []

```
},
"modelInfo": {
    "classifier": "LDA",
    "validationType": "K-fold Stratified Cross Validation",
    "validationkFold": 10,
    "saved": "False"
```

Import a Study

Artificial Intelligence in Medicine

High pathological grade prediction in prostate cancer patients undergoing 18F-PSMA PET/CT using matRadiomics

Giovanni Pasini giovanni.pasini@uniroma1.it

