Artificial Intelligence in Medicine



# Radiomics and DL-segmentation on lung tumor, the Blue Sky project (WP3.T8)

Francesca Brero Raffaella Cabini Ian Postuma

General Meeting next\_AIM 13-15/02/2023



# (Small) dataset



**57 patients** with inoperable stage III lung adenocarcinoma undergoing radio-chemo-immuno therapy.

2 CT images acquired at 2 time points:

- Baseline: at the diagnosis
- After the chemo-radio-immuno therapy

Homogeneus dataset of clinical features

### **Aim**

#### **Predict:**

- Progression Free Survival (PFS), combined event of:
- Metastasis
- Relapses
- Death



STEPS

01

nnUnet for automatic segmentation of lung cancer

Radiomics extraction harmonization for Progression Free Survival prediction

# nnUnet for automatic segmentation of lung cancer



# **Pipeline**



#### Traning and Testing of two Convolutional Neural network:





# **Bounding Box**





17 tested configurations (set of NN parameters) to find the best network architecture. The test was performed on 10 CT images evaluating both MSE and Dice (vDSC) metrics.

## vDSC and MSE distributions for the Bounding Box model



0



# **Bounding Box results**





# **Lung cancer segmentation**





Segmentation masks of lung volume and lung cancer

# **NnUnet training**



Training and test: different configurations using both **private images (171 CT)** (IRCCS, Bluesky project of Policlinico S. Matteo, Pavia) and images **(511 CT)** of a **public dataset** (Lung1).

|         | Training set                                           | Validation set                                          | Test set                               |
|---------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------|
| Train 1 | Public and private images 415                          | Public and private images<br><b>103</b>                 | Public and private images<br><b>59</b> |
| Train 2 | Public images<br><b>325</b>                            | Public images<br><b>81</b>                              | Private images<br><b>171</b>           |
| Train 3 | Public and private images 409 (without corrupted data) | Public and private images  102 (without corrupted data) | Public and private images<br><b>59</b> |

# **Segmentation results**



### **Lung Segmentation**



## **Tumor Segmentation**



# Lung results





# Lung cancer results





# Radiomics extraction harmonization for Progression Free Survival prediction



# (Small) dataset



#### 57 Images from 10 different centers:

#### **Image Parameters:**

#### **Pixel**

From  $(0.62 \times 0.62) \,\text{mm}^2$  to  $(0.98 \times 0.98) \,\text{mm}^2$ 

#### **Slice thickness**

From 0.3 mm to 3.0 mm

#### **Reconstruction Parameter:**

#### **Convolutional Kernel**

11 types

#### **Acquisition Parameters:**

Scanner

4 different vendors

#### **Current**

From 56 mA to 581 mA

#### **Contrast Agent**

2 types

kV-peak

100 kVp, 120 kVp, 130

kVp, 140 kVp

**Exposure Time** 

From 350 s to 1000 s

### **Features Extraction**



**42 features** computed by Lifex (IBSI standard compliant), including six categories of features:



4 Size- and Shape-based features

6 First-order Statistics features



7 grey-level co-occurency matrix features, 11 grey-level run length matrix features, 3 neighboring grey-level difference matrix features, 11 grey-evel zone length matrix features



# **Images Parameters Harmonization**

To harmonize images (before the extraction):

- 1. **Spatial Resampling:** 1mm x 1mm x 1mm
- 2. Intensity Rescaling: -1000 HU, 3000HU
- 3. Intensity Discretization: 400 bins of size 10 HU









# **Acquisition parameters Harmonization**



Scanner vendor, kVp and Convolutional Kernel have a statistically significant impact on features distributions

**ComBat:** realigns features as a function of median and variance.

**Batch:** numeric value associated with each combination of parameters.

kV peak - convolution kernel combinations define the harmonization batches





Percentage of features dependent on the parameter

Percentage of features not dependent on the parameter

### **Predictive Models**



#### Classification task: predict Progression Free Survival.

**Objective:** find a mathematical model that, based on the data provided in the training phase, learns to automatically classify the patient's prognosis:

- **INPUT:** radiomic features and covariates (5 clinical features, e.g. date of administration of immunotherapy, Sequential or concurrent RT ...)
- **OUTPUT:** Progression Free or not (event of Metastasis, Relapses, Death).

#### Leave-One-Out cross validation

Three classification models are compared:

- Elastic Net;
- Random forest;
- Support Vector Machine.

# **Predictive Models**



# Radiomic Features

|                                | Accuracy | AUC  |
|--------------------------------|----------|------|
| ElasticNet                     | 0.59     | 0.61 |
| RandomForest                   | 0.65     | 0.68 |
| ${\bf Support Vector Machine}$ | 0.63     | 0.50 |



#### Clinical Features

|                      | Accuracy | AUC  |
|----------------------|----------|------|
| ElasticNet           | 0.69     | 0.70 |
| RandomForest         | 0.63     | 0.70 |
| SupportVectorMachine | 0.76     | 0.72 |



| Radiomic        |
|-----------------|
| <b>Features</b> |
| Clinical        |
| <b>Features</b> |

|                              | Accuracy | AUC  |
|------------------------------|----------|------|
| ElasticNet                   | 0.78     | 0.74 |
| RandomForest                 | 0.61     | 0.72 |
| ${\bf SupportVectorMachine}$ | 0.76     | 0.74 |



# **Conclusions**



- 1. Importance of the development of robust analysis pipeline for small-datasets
- 2. Images and features harmonization steps are necessary with small-datasets
- 3. Possibility of applying ML for prognosis prediction
- 4. Automatic segmentation to prevent human segmentation variability

# Thank you!



Leonardo Barzaghi, Elena Ballante, Giulia Colelli, Ian Postuma, Sara Panebianco, Agnese Robustelli Test, Ilaria Villa