

PARTICIPANTS

Romeo Mattia
Marrale Maurizio
Tomarchio Elio
Collura Giorgio
Bartolotta Antonio
D'Oca Maria Cristina

Cesare Gagliardo Massimo Midiri Roberto Lagalla Lizzi Francesca
Postuma Ian
Retico Alessandra
Lascialfari Alessandro

TCMRGFUS TREATMENTS

Focused Ultrasound can cause thermal ablation!

THE ESSENTIAL TREMOR

- Essential tremor is a very common disease (about 5% of general population is affected by essential tremor)
- It consists of a continuous tremor of hands, voice, legs, head, ..
- It does not affect life expectancy, but causes disability
- It can be treated with deep brain stimulation, radiofrequency ablation, gamma knife, tcMRgFUS treatments

HOW TO FIND THE TARGET?

Making use of stereotactic atlases!

AN INNOVATIVE TECHNIQUE TO IDENTIFY THE TARGET

The target is identified through **probabilistic tractography**:

- A seed area and a target area are selected
- A kind of anisotropic random walk is performed based on the diffusion tensor information
- A **probability distribution** is obtained as output defined within the thalamus
- The neuroradiologist uses areas with the highest probability to search for the target
- Advantage: the estimate of the target is relative to the subject
- Disadvantage: the process takes up to 20 hours for each subject

THE REPOSITIONING PROBLEM

- The images on which the tractography is carried out are acquired several days before the treatment
- Repositioning during the treatment can significantly increase treatment time

SOLUTION: AI METHODS!

THE DATASET

The Human Connectome Project (HCP) is a five-year project sponsored by National Institutes of Health.

The goal of the Human Connectome Project is to build a "network map" (connectome) that will shed light on the anatomical and functional connectivity within the healthy human brain, as well as to produce a body of data that will facilitate research into brain disorders such as dyslexia, autism, Alzheimer's disease, and schizophrenia.

- The dataset contains structural and functional MRI images of 1200 subjects.
- The amount of data is approximately 30 GB per subject!

THE TARGET IMAGES

BOUNDING BOX

3D processed images have 256x256x256 voxels

Volume of the thalamus: $8500 \text{ voxels} \sim 0.05\%$

BOUNDING BOX!

38x60x48

THE CLASSIFICATION TASK: THE NETWORK

THE CLASSIFICATION TASK: THE TRAINING

Training data:

- Network: params 1.462.817 (trainable 1.461.409)
- 1081 data, 881 train and 200 test
- Optimizer: **Adam**
- Loss: <u>crossentropy + dice loss</u>
- 1 validation folder **176** data
- 5000 start epochs, <u>early stop</u> with patience of
 500 epochs on real dice index
- Batch size: 64
- Learning rate: 0.001
- Data augmentation: translation, rotation, scaling, flipping, gaussian noise.
- Training duration (performed on servers with NVIDIA RTX A5000 24GB): about 11 h

THE CLASSIFICATION TASK: RESULTS

17.77.15	<u> </u>					
						/
1		1/11	1//	11/11/	/ /	1

Mean Dice	STD
0,93	0,01

Green: predicted ROI; red: ground truth

THE REGRESSION TASK: THE NETWORK

THE REGRESSION TASK: THE TRAINING

Training data:

- Network: params 1.467.137 (trainable 1.465.729)
- 293 data, **200 train** and **93 test**
- Optimizer: **Adam**
- Loss: mean squared error
- 1 validation folder **40** data
- 5000 start epochs, <u>early stop</u> with patience of
 500 epochs on real dice coefficient
- Batch size: 8
- Learning rate: 0.001
- Data augmentation: translation, rotation, scaling, flipping, gaussian noise.
- Training duration (performed on servers with NVIDIA RTX A5000 24GB): about 11 h

THE REGRESSION TASK: EVALUATION

How much are they different?

Although, the MSE is useful for training it can't help properly for model evaluation!

FOR THIS RAGION WE USED TWO EVALUATION CRITERIONS:

One based on the distance between the centres of mass of the predicted and the true PDFs

One based on the <u>dice</u>

<u>index</u> calculated

between ROIs of the

predicted and the true

PDFs

THE REGRESSION TASK: EVALUATION

Δ x (mm)	σ _x (mm)	Δ y (mm)	σ _y (mm)	Δ z (mm)	σ _z (mm)	Δ r (mm)	σ _r (mm)
-0,3	0,5	0,06	0,6	0,2	0,6	0,4	0,5

THE REGRESSION TASK: EVALUATION

OTSU THRESHOLDING ALGORITHM

THE REGRESSION TASK: RESULTS

Mean Dice	STD
0,81	0,04

Green: predicted ROI; red: ground truth

NEXT TASKS

- Test of the Al models on clinical data of Policlinico P. Giaccone of Palermo, comparing the post surgery data too;
- Investigation of tractography maps using radiomic approaches;
- Investigation of possible application in the oncology field, where the brain fiber tractography can be helpful in surgery planning;
- Abstract submitted to the AIFM conference in June.
- Manuscript to be submitted soon

BIBLIOGRAPHY

- [1] Ronneberger O, Fischer P, Brox T (2015). "U-Net: Convolutional Networks for Biomedical Image Segmentation". arXiv:1505.04597
- [2] Shelhamer E, Long J, Darrell T (April 2017). "Fully Convolutional Networks for Semantic Segmentation". IEEE Transactions on Pattern Analysis and Machine Intelligence. 39 (4): 640–651. arXiv:1411.4038
- [3] Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2020). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 1-9.
- [4] Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. Sys. Man. Cyber. 9 (1): 62–66.
- [5] Ghanouni, P. et al. Transcranial MRI-guided focused ultrasound: A review of the technologic and neurologic applications. AJR Am. J. Roentgenol. 205, 150–159 (2015)
- [6] Gagliardo, C., Marrale M. et al. Transcranial magnetic resonance imaging-guided focused ultrasound treatment at 1.5 T: A retrospective study on treatment and patient-related parameters obtained from 52 procedures. Front. Phys. 7, 223. https://doi.org/10.3389/fphy.2019.00223 (2020).
- [7] Elias, W.J. et al. Apilotstudy of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 369, 640–648 (2013).
- [8] M. Marrale, G. Collura, R. Borgese, M. Midiri, C. Gagliardo, Thalamic parcellation for target identification in transcranial MR-guided focused ultrasound (tcMRgFUS) thalamotomies: a preliminary probabilistic tractography study. Physica Medica, 92 S108 (2021)

