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Objective: evaluate the predictive power of  radiomics features 
from ROIs segmented by experts
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WP3 Task 3: Radiomics in prostate cancer 
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Tumor classification on MR images of prostate 
by ML algorithms 

ADC-MRIT2w-MRI

Prostate cancer diagnosis is performed by using T2w- and 
ADC MR images 

Classification with PIRADS (“Prostate Imaging Reporting and 
Data System”) scale

American College of Radiology website. Prostate imaging reporting & data system (PI-RADS).
https://www.acr.org/media/ACR/Files/RADS/Pi-RADS/PIRADS-V2-1.pdf?la=en.

Boesen L, Chabanova E, Logager V , Balslev I, Thomsen HS. Apparent diffusion coefficient ratio correlates
significantly with prostate cancer Gleason score at final pathology. J Magn Reson Imaging. 2015;42:446-453.
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Step 1: FIRST analysis
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➢ 46 Patients recruited at the Polyclinic 
University Hospital of Palermo
(26 benign lesion and 20 tumoral tissues)

➢ T2-weighted and ADC images 

➢ Histological results of biopsy

Objective: evaluate the predictive power of  
radiomics features from ROIs segmented by experts

T2w ADC

Identification of a ROI in the lesion region and 
another ROI in healthy tissue as control
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MaZda is a computer program for calculation of 
texture parameters (features) in digitized images.

Small ROIs with cross shape

About 300 features (shape, histogram, texture, 
wavelet-filters)

Feature extraction

Challenges: Not many images, 
unbalanced classes, possibly 
redundant features (about 300)

Szczypinski, P.M., Klepaczko, A., MaZda - A framework for biomedical image texture 
analysis and data exploration, Biomedical Texture Analysis: Fundamentals, Tools and 
Challenges, 2017, pp. 315-347
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Model  selection

Data scaling

Dimensionality reduction

Classification
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PREVIOUS RESULTS

PC7:S(0,5)SumAverg
, S(3,0)SumAverg, 
S(0,5)AngScMom, 
S(4,-4)AngScMom, 
Perc.10% 

PC1:S(4,4)DifEntrp, 
S(4,4)SumEntrp, 
S(3,-3)SumVarnc, 
S(4,0)AngScMom, 
S(0,5)SumVarnc

PC9:Perc.01%, 
S(5,-5)DifVarnc, 
S(3,-3)AngScMom, 
S(4,4)InvDfMom, 
S(5,-5)AngScMom

3D Embedding of  Dataset + Loadings

Best model:
• Scaler: Robust Scaler
• Embedding: 15 components

linear kernel PCA
• Classifier: Random Forest

Crossvalidated Performance: 
average accuracy ∼ 0.68
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Adding knowledge about features
Best Solution: LR with EN mixed penalty

• L1-L2 mixed Elastic Net penalization gives 
best balance between induced sparsity 
(feature selection) and retained information 
for predictive performances

• Best model for prediction and most 
representative features for each class are 
simultaneously found 

• Uninformative features are pruned

Cross Validated performance: ∼ 0.72 average accuracy

Controls Features: Mean, Skewness, 
Perc.01%,Perc.10%, S(1,0)AngScMom, 
S(1,0)SumAverg, S(0,1)SumAverg, 
S(1,1)SumAverg, S(1,-1)SumAverg, 
S(2,0)SumAverg, S(0,2)SumAverg, S(2,-
2)SumAverg, S(3,0)SumAverg, S(3,-
3)SumVarnc, S(5,0)InvDfMom, 
S(5,0)SumAverg, 135drLngREmph

Lesion Features: Skewness, S(4,-
4)SumVarnc, S(5,0)AngScMom, 
S(0,5)InvDfMom, S(5,-5)Contrast, Teta4, 
WavEnLLs-1, WavEnLLs-2

Lesion+Tumour Features: Perc.01%, 
Perc.10%, S(3,-3)SumVarnc, S(4,-
4)AngScMom, S(4,-4)Contrast, 
S(5,5)AngScMom, S(5,5)DifVarnc,S(5,-
5)Contrast, S(5,-5)SumVarnc, S(5,-
5)DifVarnc, GrSkewness, WavEnLLs-1, 
WavEnHHs-1, WavEnLLs-2

Zou, Hui; Hastie, Trevor (2005). "Regularization and Variable Selection via the Elastic 
Net". Journal of the Royal Statistical Society, Series B. 67 (2): 301–320
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Dataset

• 74 Tumors (PIRADS 4 and 5) & 74 Controls tissues
(balanced classes), T2w and ADC MR data

• Circular ROI in a singular slice

• Features’extraction through pyradiomics

• ca. 800 starting features

Step 2: Second analysis
ROI identification

Lesion Health tissue

van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., 
Narayan, V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. 
W. L. (2017). Computational Radiomics System to Decode the Radiographic
Phenotype. Cancer Research, 77(21), e104–e107.
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BORUTA Robust Features

MACHINE LEARNING METHODS

PCA+fine tune random forest (f1, accuracy 0.76 - 0.8)

BORUTA feature selection + fine tuned random forest (f1,accuracy 0.86 - 0.9)

Evolution of the first pipeline with a more robust feature
selection that does not depend on the various user-
defined thresholds
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Future analyses
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➢ Analyses using the 2nd protocol on T2w-MRI data from 
PIRADS3 data  (at least 40 patients)

➢ Classification by using all PIRADS (3, 4 and 5) data  

➢ Analyses on ADC data and combination with T2 data

➢ Analyses with further classification algorithms


