Artificial Intelligence in Medicine

An explainable unified approach for mass detection and classification in DBT

Andrea Berti

Overview

- Digital Breast Tomosynthesis
- The datasets: BCS-DBT & EMBED

- Proposed framework
 - Deep Learning
 - Radiomics
- Explainability in classification

Digital Breast Tomosynthesis

Digital Breast Tomosynthesis

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=64685580

https://registry.opendata.aws/emory-breast-imaging-dataset-embed/

The BCS-DBT Dataset

- Normal: 5129 (91.4%) studies 4609 patients
- Actionable:280 (5.0%) studies278 patients
- Biopsy-proven Benign:
 112 (2.0%) studies
 112 patients
- Biopsy-proven Malignant:
 89 (1.6%) studies
 89 patients

Normal vs non-Normal

RMLO

Number of rmlo = 4781

Number of lcc = 4791

Number of Normal = 4558

Number of non Normal = 233

Percentage of Normal = 0.951

```
Number of Normal = 4558
Number of non-Normal = 223
Percentage of Normal = 0.953

### LMLO ###
Number of lmlo = 4788
Number of Normal = 4558
Number of non Normal = 230
Percentage of Normal = 0.952

### RCC ###
Number of rcc = 4779
Number of Normal = 4558
Number of non Normal = 221
Percentage of Normal = 0.954

### LCC ###
```

Benign and Malignant

```
### RMLO ###
Number of rmlo = 4781
Number of Benign = 24
Number of Malignant = 20
Number of Benign + Malignant = 44
Percentage of Benign = 0.005
Percentage of Malignant = 0.004
### LMLO ###
Number of lmlo = 4788
Number of Benign = 36
Number of Malignant = 15
Number of Benign + Malignant = 51
Percentage of Benign = 0.008
Percentage of Malignant = 0.003
### RCC ###
Number of rcc = 4779
Number of Benign = 23
Number of Malignant = 19
Number of Benign + Malignant = 42
Percentage of Benign = 0.005
Percentage of Malignant = 0.004
### LCC ###
Number of lcc = 4791
Number of Benign = 36
Number of Malignant = 18
Number of Benign + Malignant = 54
Percentage of Benign = 0.008
```

Percentage of Malignant = 0.004

Our approach

Benign

Malignant

Extract Features

Segment

Classify

Benign

Malignant

Our approach

Benign

Malignant

MatRadiomics

with Alessandro Stefano & Giovanni Pasini

Benign

Malignant

Detection

- Large number of "normal" patients (no mass)
- GAN & UNet
- Anomaly detection approach

Explainable Classification

ProtoPNet

Ante-hoc explainability

Case-based reasoning

Prototypical Learning

looks like

looks like

Prototypical Part Learning

Chen et al. 2019

ProtoPNet on benign vs malignant breast masses

Previously...

On the Applicability of Prototypical Part Learning in Medical Images: Breast Masses Classification Using

$$Loss := CrossEntr + \alpha Clst + \beta Sep$$

AIHA Workshop
International Conference on
Pattern Recognition (Canada)

with Gianluca Carloni and Sara Colantonio (ISTI-CNR)

The output of ProtoPNet

Test image: malignant Predicted as: malignant

Artificial Intelligence in Medicine

An explainable unified approach for mass detection and classification in DBT

Andrea Berti

I paper su DBT

2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis Classification (Zhang et al.)

- Classification maligni vs negativi
- 2D-CNN preallenata su ImageNet per estrarre le feature sulle singole slice
- Pooling sulle feature-map delle slice per classificazione 3D
- Dataset privato:
 - 3018 negativi (non maligni)
 - 272 maligni
- AUC = 0.854 (meglio delle 3D-CNN)

I paper su DBT

A deep learning classifier for digital breast tomosynthesis

(Ricciardi, Mettivier et al.)

- Classification massa vs non-massa
- $Custom\ D ext{-}CNN\ vs\ AlexNet/VGG$
- Sembra che non sia patient-stratified
- Grad-CAM
- Dataset privato 109 pazienti:
 - 3166 (H1) + 152 (H2) massa
 - 1526 (H1) + 90 (H2) non-massa
- Acc = 0.94

I paper su BCS-DBT

Intelligent Computer-Aided Model for Efficient Diagnosis of Digital Breast Tomosynthesis 3D Imaging Using Deep Learning (Adel El-Shazli et al.)

- Classification normali vs maligni vs benigni
- Mod AlexNet vs modelli standard
- Transfer learning
- Dataset:
 - 499 Normal, 62 Benign, 39 Malignant
- Acc = 91.61% sul test

I paper su BCS-DBT

Applying Graph Convolution Neural Network in Digital Breast Tomosynthesis for Cancer Classification (Bai et al.)

- Classification normal vs cancer
- Graph CNN con self-attention pooling layer (risolvere 2D e 3D)
- $Dataset\ BCS + privato$:
 - 158 (BCS) + 75 (priv) normal
 - 75 (BCS) + 94 (priv) cancer (da dove i 75?)
- Acc = 0.84, AUC = 0.87

I paper su BCS-DBT

Trainable Summarization to Improve Breast Tomosynthesis Classification (Tardy et al.)

- Classification normal vs cancer
- $Multiple\ instance\ learning,\ slabbing + classification$ (ResNet)
- Dataset privato mammo -> pretraining, BCS -> finetuning:
 - Priv: 1250 benign, 1250 malignant
 - BCS: 100 normal, 75 cancer
- AUC = 0.73

Altri paper su BCS-DBT: object detection

- Detection of masses... (Buda et al.): Focal loss per sbilanciamento
- Developing breast leasion detection... (Hossain et al.): 3 slice consecutive per RGB, (falsi positivi)
- Lightweight transformer... (Zhang et al.): VIT per risolvere scarsità casi positivi. ResNet Lightweight VIT ResNet

Classificazione

- Possibili classificazioni:
 - Normal vs (Actionable + Benign + Malignant)
 - Normal vs (Benign + Malignant)
 - Benign vs Malignant -> ma sono pochi casi
- Come utilizzare le immagini:
 - 2D vs 3D