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Introduction and purposes



Purposes

The aim of this work is to propose an improved version of survival

bagging trees that could be applied in the context of small datasets to

obtain more reliable and stable results.

The difference with respect to classical survival bagging trees is the

introduction of an extension of Efron’s bootstrap procedure.
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Survival tree models

Let be U the true survival time and C the true censoring time. The observed

data is then composed of τ = min(U,C), the time until either the event occurs

or the subject is censored; δ = I (U ≤ C), an indicator that takes a value of 1 if

the true time–to–event is observed and 0 if the subject is censored; and

X = (X1, ...,Xp), a vector of p covariates. Data is available for N independent

subjects (τi , δi ,Xi ), i = 1, ...,N. The basic setup assumes that the covariate

values are available at time 0 for each subject.

Decision tree models are

non-parametric predictive tools used to

make inference about an unknown

function f that relates the

time-to-event t with a p dimension

vector of covariates x.

These models are easily interpretable

and competitive in terms of predictions,

although they are recognized to be an

unstable procedure.

* Ref: Gordon, L. and Olshen, R.A. (1985), Tree-structured survival analysis. Cancer treatment

reports, 69(10), pp. 1065–1069
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Bagging procedure

Bagging algorithm**

Bagging algorithms combine B different weak predictors to improve the

stability of the model and reduce the model error.

Bagging procedure are proved to work well with unstable models, for this

reason decision trees are good candidates to be employed in bootstrap

procedures.

Breiman’s Bagging procedure is based on Efron’s bootstrap.

** Ref: Breiman, L. (1996). Bagging Predictors, Machine Learning 24(2), pp. 123–140.

*** Ref: Hothorn, T., Lausen, B., Benner, A. and Radespiel-Tröger, M.(2004). Bagging survival

trees, Statist. Med., 23, pp. 77-91. 4



Efron’s Bootstrap

Define a random sample of size n drawing with replacement from the

original dataset. The new sample is called bootstrap sample. The

bootstrap samples is the one used to train ensemble models.

This is equivalent to associate to data points a vector of weights

(π1, ....πn) where πi =
ci
n and (c1, ..., cn) ∼ Multinom(n, ( 1n , ...,

1
n )).
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Rubin’s Bootstrap

The Rubin’s bootstrap, also called Bayesian bootstrap, modifies the

Efron’s bootstrap defining the vector of weights as

(π1, ....πn) ∼ Dirichlet(1, 1, ..., 1).

In Taddy et al (2015), the authors introduce the idea of replacing Efron’s

bootstrap with Rubin’s bootstrap in bagging algorithm, defining the

Empirical Bayesian Forests

Two main drawbacks of Efron’s and Rubin’s bootstrap:

• No prior opinions are taken into account

• Inference and prediction are based only on observed values
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Proper Bayesian Bootstrap

Proper Bayesian Bootstrap*

The prior of F is assumed to be Dir(kF0) where F0 is a proper distribution

function and k is the level of confidence in the initial choice F0. Thus the

posterior of F results to be Dir(kF0 + nFn).

The distribution F is then approximated using:

F ∗(x) =
r∑

i=1

wi I[xi ,inf](x)

where (w1, ...,wm) ∼ Dir((k + n)pi ).

From a computational point of view a Bootstrap resample X ∗
m is generated

from (n + k)−1(kF0 + nFn) and the distribution F is approximated using:

F ∗(x) =
m∑
i=1

wi I[X∗
i ≤x]

where (w1, ...,wm) ∼ Dir( n+k
m

).

* Ref: Muliere, P., and Secchi, P. (1996). Bayesian Nonparametric predictive inference and

bootstrap techniques, Ann. Inst. Statist. Math., 48(4), pp. 663–673. 7



Generalized Bayesian Ensemble

Trees for Survival Analysis



Generalized Bayesian Ensemble Trees algorithm

Generalized Bayesian Ensemble Trees algorithm

Input: Training set T

for b in 1:B do
Sample (x∗1 , y

∗
1 ), ..., (x

∗
m, y

∗
m) from (k + n)−1(kF0 + nFn);

Draw wb from Dir( n+k
m , ..., n+k

m );

Get τb = τ(wb) running weighted tree on the new sample

x∗1 , ..., x
∗
m

end

Where F0(y , x) =
∏P

k=1 F0(xk)F0(y |x1, x2, ..., xP) where the distribution

function models the relations between y and the covariates chosen using prior

knowledge on the data.

* Ref: Galvani, M., Bardelli, C., Figini, S., Muliere, P. (2021). A Bayesian Nonparamtric Learning

Approach to Ensamble Models Using the Proper Bayesian Bootstrap, Algorithms, 14(1), 11
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Generalized Bayesian Ensemble Trees for Survival Analysis

The main differences introduced for the application to the survival

analysis are the two:

• the response variable associated to the vector of covariates generated

from the prior is obtained with a suitable survival model;

• the aggregation method of the predictions should be performed taking

into account the nature of the time-to-event data.

The prior relation between y and x is evaluated with an exponential

regression model.

About the second point, the output of the model is a bootstrap

aggregated version of the estimated conditional survival function S for a

new observation xnew computed by averaging the cumulative hazard

functions (obtained by Nelson-Aalen estimator) of each leaf where the

new observation falls.

* Ref: Hothorn, T., Lausen, B., Benner, A. and Radespiel-Tröger, M. .(2004). Bagging survival

trees, Statist. Med., 23, pp. 77-91.

** Ref: Ishwaran, H., Kogalur, U.B., Blackstone,E.H., Laure, M. (2008). Random Survival Forest,

The Annals of Applied Statistics, 2(3), pp. 841–860 9



Empirical Results on simulated

data



Experimental setting

The simulated datasets are composed of 5 numerical covariates and a

time-to-event target variable with a 20% of censored observations. The

simulation of the data is performed by the flexible-hazard method as

described in Harden and Kropko (2018). The sample sizes are set as

N = 30, N = 50 and N = 100.

The priors are uniform distributions on the range of each covariate in the

original dataset and the parameter k is set such that the weight w = k
k+n

assigned to the prior F0 is equal to 0.25.

The proposed model is compared with the most common models in the

survival analysis: the Survival Random Forest and the Cox model.

Prediction performance was evaluated in terms of Integrated Brier Score

(IBS) in a 5-fold cross validation exercise. For each setting, 100 datasets

are generated. Mean values and nonparametric confidence intervals of

the resulting IBSs are presented.

* Ref: Harden, J. J. and Kropko, J. (2018). Simulating Duration Data for the Cox Model, Political

Science Research and Methods
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Empirical Results on simulated data

Figure 1: Comparison of mean and nonparametric confidence intervals for IBS

obtained in cross validation for the 100 simulated datasets.

(a) N=30 (b) N=50

(c) N=100 11



Application on Blue Sky

Radiomics study



The BlueSky study

The “Blue Sky Radiomics” study (NCT04364776) aims to investigate the

prognostic role of radiomic features in predicting progression-free survival

(PFS) in a series of stage III, unresectable, PD-L1 positive non-small-cell

lung cancer(NSCLC) patients undergoing chemoradiotherapy (CRT) and

maintenance durvalumab.

We consider CT images of n=57 patients have been acquired with

intravenous contrast medium, and different scanners at the diagnosis

time (T0). The ROI (primary lung tumor) was segmented using Oncentra

Masterplan software; radiomic features have been extracted with LIFEx

and harmonized with the ComBat tool*.

* Ref: Cabini,R.F. et al (2018). Preliminary report on harmonization of features extraction process

using the ComBat tool in the multi-ceneter ”Blue Sky Radiomics” study on stage III unresectable

NSCLC, Insights Imaging (2022)
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Empirical Results on real data

We considered for the analysis a dataset of 51 subjects and 47 covariates.

Variables involved are 42 radiomic variables and 5 variables related to

clinical and histological information.

Performance BBBtrees w = 0 BBBtrees w = 0.25 BBBtrees w = 0.5 RF Cox

IBS 0.1276194 0.2396914 0.2396914 0.2292683 -

CV IBS 0.09757971 0.2680563 0.2999776 0.2029304 -

Table 1: Results on BlueSky radiomic dataset in terms of integrated Brier score

In this specific application we can observe that the use of Rubin

bootstrap as a particular case of the proper Bayesian bootstrap lead to

an important improvement with respect to the other methods.
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Conclusions and further ideas of

research



Conclusions

• Generalized Bayesian Ensemble Tree model introduces a proper

Bayesian framework in the original bagging procedure.

• Generalized Bayesian Ensemble Trees model allows the introduction

of prior knowledge thus considering also observations not included in

the data at hand.

• Model performance improves with respect to the other classical

models especially for low sample sizes.

• On the basis of the analysed simulated data, obtained prediction

models using the proper Bayesian bootstrap are more stable.

• An important room of improvement could be the deployment of non

parametric methods for the generation of survival time in synthetic

generated data.
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Thank you for the attention!
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