
Contacts: nico.curti2@unibo.it
Github: https://github.com/Nico-Curti

DNetPRO: A network approach for low-dimensional
signatures from high-throughput data

Nico Curti1, 2, Giuseppe Levi1, 2, Enrico Giampieri2, 3,
Gastone Castellani4, Daniel Remondini1, 2

1 Department of Physics and Astronomy, University of Bologna
2 INFN, Bologna
3 Department of Medical and Surgical Sciences, University of Bologna

next AIM General Meeting
13/02/2023

mailto:nico.curti2@unibo.it
https://github.com/Nico-Curti

Problem Statement

Methods that select variables for multi-dimensional signatures
based on single-variable performance can have limits in
predicting higher-dimensional signature performance. As
shown in the Fig. a, in which both variables taken singularly
perform poorly, but their performance becomes optimal in a 2-
dimensional combination, in terms of linear separation of the
two classes.

Curti et al., Scientific Report, 2022

• High-throughput data (103 – 105 variables)

• Looking for low-dimensional set of observables

• Gene or Protein expression by an up/down
regulation

• Features selection is a critical step

• Exploration of all feature space is an NP-hard
problem

• Few samples available

• Ill-posed problem

Algorithm design

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

• Evaluation of all possible couples of features

• Discriminant classifier for the couple scoring

• Creation of the fully connected network

• Thresholding on network weights

• Extraction of connected components as putative
signature

• Evaluation of the signatures

https://github.com/Nico-Curti/DNetPRO

Algorithm representation

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 1

Evaluation of all the
possible couples of features

(genes in this case)

https://github.com/Nico-Curti/DNetPRO

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 2

Discriminant classifier for
the couple scoring

Algorithm representation

https://github.com/Nico-Curti/DNetPRO

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 3

Creation of the
fully connected network

weighted on couple
performances

Algorithm representation

https://github.com/Nico-Curti/DNetPRO

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 4

Thresholding on network
weights according to the
performances, i.e., keep

only the best couples

Algorithm representation

https://github.com/Nico-Curti/DNetPRO

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 5

Extraction of all the
connected components as
putative signature for the

final classification task

Signature 1 Signature 2

Signature 3

Signature 4

Algorithm representation

https://github.com/Nico-Curti/DNetPRO

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 6

Evaluation of the signatures
in terms of classification

efficiency and
dimensionality

Best
Signature

Algorithm representation

https://github.com/Nico-Curti/DNetPRO

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Algorithm representation

https://github.com/Nico-Curti/DNetPRO

Application on real data

Synapse Dataset

• Application of TCGA dataset

• 4 cancer dataset (GBM, KIRC, OV, LUSC)

• 3 omics for each dataset (mRNA, miRNA, RPPA)

Curti et al., Scientific Report, 2022

Cytokine Dataset

• 289 patients

• CTL vs MCI vs AD

Bovine Dataset

• 12k genes

• 15 samples (PP vs NP vs NN)

Boccardi et al., JAD, 2019

Malvisi et al., Animals, 2020

Application on real data

Curti et al., Scientific Report, 2022

Results obtained by the DNetPRO on the mRNA,
miRNA, and RPPA samples related to the four
cancer types in the Synapse dataset.
Comparison of the DNetPRO results with the
methods used in the work of Yuan et al., Nature
Biotechnology (2014), in terms of the maximum
AUC value obtained on a 10-fold cross-validation
procedure.
Distributions of the AUC values related to each
analyzed dataset.

Benchmark with a set of state-of-
the-art classifiers.

Yuan et al., Nature Biotechnology,
2014

Synapse Dataset

Application on real data

Boccardi et al., JAD, 2019

Cytokine Dataset

Signature CTL vs MCI Signature CTL vs AD

Network rendering using:
https://github.com/Nico-Curti/BlendNet

https://github.com/Nico-Curti/BlendNet

Application on real data

Malvisi et al., Animals, 2020

Bovine Dataset

Network rendering using:
https://github.com/Nico-Curti/BlendNet

Best signature of 123 probes with 100% accuracy

https://github.com/Nico-Curti/BlendNet

Application on no-Bio data

Mizzi et al., EPJ Data Science, 2018

Network pedestrian mobility

Unraveling pedestrian mobility on a road network using ICTs
data during great tourist events.

• Reconstruction of the pedestrian mobility network

• Same network analysis of DNetPRO algorithm

• Roads play the role of genes

• Couples weighted according to the mobility score

Conclusion

• Combinatorial approach to explore the entire feature space

• Easy interpretation of the results

• Fast computation in parallel architectures

• Large scalability on high-throughput data

• Algorithm tailored to omics data but applied also to no-biological data

Thank you for
the attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

