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Problem Statement

Methods that select variables for multi-dimensional signatures
based on single-variable performance can have limits in
predicting higher-dimensional signature performance. As
shown in the Fig. a, in which both variables taken singularly
perform poorly, but their performance becomes optimal in a 2-
dimensional combination, in terms of linear separation of the
two classes.

Curti et al., Scientific Report, 2022

• High-throughput data (103 – 105 variables)

• Looking for low-dimensional set of observables

• Gene or Protein expression by an up/down
regulation

• Features selection is a critical step

• Exploration of all feature space is an NP-hard
problem

• Few samples available

• Ill-posed problem



Algorithm design

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

• Evaluation of all possible couples of features

• Discriminant classifier for the couple scoring

• Creation of the fully connected network

• Thresholding on network weights

• Extraction of connected components as putative 
signature

• Evaluation of the signatures

https://github.com/Nico-Curti/DNetPRO


Algorithm representation

Curti et al., Scientific Report, 2022

Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 1

Evaluation of all the 
possible couples of features 

(genes in this case)

https://github.com/Nico-Curti/DNetPRO
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Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 2

Discriminant classifier for 
the couple scoring

Algorithm representation

https://github.com/Nico-Curti/DNetPRO
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Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 3

Creation of the 
fully connected network

weighted on couple 
performances

Algorithm representation

https://github.com/Nico-Curti/DNetPRO
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Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 4

Thresholding on network 
weights according to the 
performances, i.e., keep 

only the best couples

Algorithm representation

https://github.com/Nico-Curti/DNetPRO
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Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 5

Extraction of all the 
connected components as 
putative signature for the 

final classification task

Signature 1 Signature 2

Signature 3

Signature 4

Algorithm representation

https://github.com/Nico-Curti/DNetPRO
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Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Step 6

Evaluation of the signatures
in terms of classification 

efficiency and 
dimensionality

Best 
Signature

Algorithm representation

https://github.com/Nico-Curti/DNetPRO
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Source code: https://github.com/Nico-Curti/DNetPRO
Implementation: C++ (backend), Python (frontend)
Algorithm complexity: O(N2)
Parallelism: naïve parallel

Algorithm representation

https://github.com/Nico-Curti/DNetPRO


Application on real data

Synapse Dataset

• Application of TCGA dataset

• 4 cancer dataset (GBM, KIRC, OV, LUSC)

• 3 omics for each dataset (mRNA, miRNA, RPPA)

Curti et al., Scientific Report, 2022

Cytokine Dataset

• 289 patients

• CTL vs MCI vs AD

Bovine Dataset

• 12k genes

• 15 samples (PP vs NP vs NN)

Boccardi et al., JAD, 2019

Malvisi et al., Animals, 2020



Application on real data

Curti et al., Scientific Report, 2022

     

          

     

     

     

     

     

              

 

 

 

 

 
     

     

     

     

     

     

     

     

     

     

     

     

     

     

Results obtained by the DNetPRO on the mRNA, 
miRNA, and RPPA samples related to the four 
cancer types in the Synapse dataset.
Comparison of the DNetPRO results with the 
methods used in the work of Yuan et al., Nature 
Biotechnology (2014), in terms of the maximum 
AUC value obtained on a 10-fold cross-validation 
procedure. 
Distributions of the AUC values related to each 
analyzed dataset. 

Benchmark with a set of state-of-
the-art classifiers.

Yuan et al., Nature Biotechnology,
2014

Synapse Dataset



Application on real data

Boccardi et al., JAD, 2019

Cytokine Dataset

Signature CTL vs MCI Signature CTL vs AD

Network rendering using:
https://github.com/Nico-Curti/BlendNet

https://github.com/Nico-Curti/BlendNet


Application on real data

Malvisi et al., Animals, 2020

Bovine Dataset

Network rendering using:
https://github.com/Nico-Curti/BlendNet

Best signature of 123 probes with 100% accuracy

https://github.com/Nico-Curti/BlendNet


Application on no-Bio data

Mizzi et al., EPJ Data Science, 2018

Network pedestrian mobility

Unraveling pedestrian mobility on a road network using ICTs 
data during great tourist events.

• Reconstruction of the pedestrian mobility network

• Same network analysis of DNetPRO algorithm

• Roads play the role of genes

• Couples weighted according to the mobility score



Conclusion

• Combinatorial approach to explore the entire feature space

• Easy interpretation of the results

• Fast computation in parallel architectures

• Large scalability on high-throughput data

• Algorithm tailored to omics data but applied also to no-biological data



Thank you for 
the attention
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