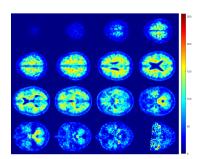
Synthetic PET images generation from small datasets

Lorenzo Di Meco, Andrea Chincarini, Daniel Remondini

nextAIM Meeting - Milano 13-15 Febbraio 2023

Aim

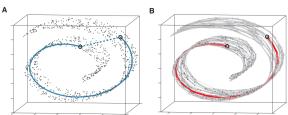
Generation of synthetic brain PET images to overcome privacy issues about management of sensitive data.

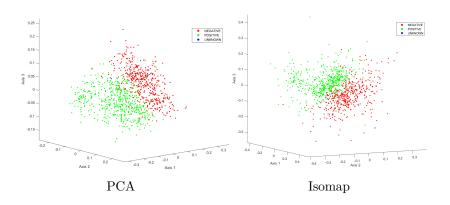

Nonlinear Dimensionality Reduction

Data Manifold mapping inversion

Dataset

1001brain PET images from 21 European research centres 457 negative, 540 positive Alzheimer's disease diagnosis and 4 unknown patients


PET images: 97-by-115-by-97 matrices, reshaped into 1082035-dimensional vectors Gray levels standarized at single-patient level


Dimensionality reduction: PCA and Isomap

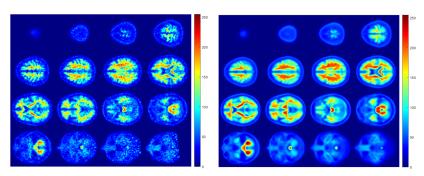
PET image
$$\vec{x} \in \mathbb{R}^{1082035} \rightarrow \vec{z} = \Phi(\vec{x}) \in \mathbb{R}^{10}$$

- 1) PCA: covariance matrix diagonalization.
- 2) Isomap: non-invertible generalisation of MDS algorithm.

PCA and Isomap dimensionality reduction

Back to original image space

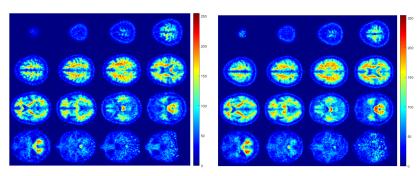
- 1) PCA: analytical backprojection onto original space
- 2) Isomap: cubic RBF interpolant


Comparison of reconstruction:

LOOCV Cross-validation of inverse mapping algorithm.

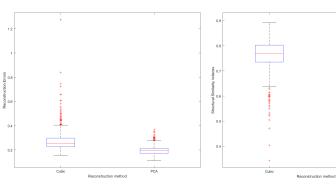
Reconstructed and original images comparison:

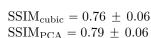
- Euclidean distance reconstruction error RMSE
- Structural Similarity Index SSI


Image reconstruction with PCA

Original PET image

PCA reconstruction SSIM ≈ 0.83


Image reconstruction with cubic RBF interpolant


Original PET image

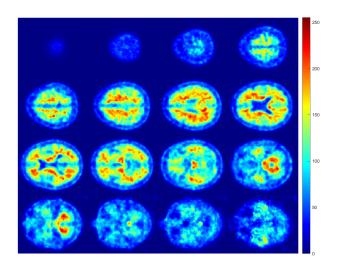
Cubic RBF reconstruction $SSIM \approx 0.78$

Dataset statistics: PCA is better!

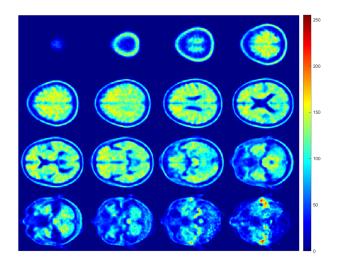
 $E_{\text{cubic}} = 0.24 \pm 0.03$ $E_{\text{PCA}} = 0.18 \pm 0.02$

Synthetic brain PET images

- Random choice of 2 neighbouring data points \vec{z}_1 and \vec{z}_2 from same patient class on 10-d Isomap space;
- interpolation of a random point \vec{z} :


$$\vec{z} = \vec{z}_1 + r \cdot (\vec{z}_2 - \vec{z}_1) \in \mathbb{R}^{10} \quad r \in (0, 1)$$

• back-reconstruction of synthetic PET via inverse mapping:


$$\vec{x} = \mathbf{\Phi}^{\dagger}(\vec{z}) \in \mathbb{R}^{1082035}$$

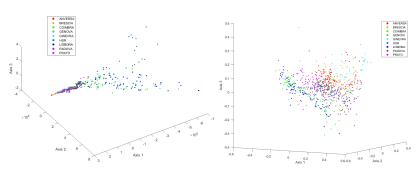
Synthetic negative PET image

Synthetic positive PET image

Manual validation by panel of experts

- 10 synthetic PET images: 5 negative and 5 positive;
- 10 real images: 5 negative and 5 positive;
- visual assessment by 4 experienced clinicians.

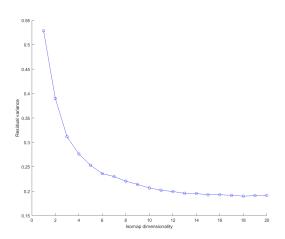
	Real	Synthetic	p-value
Clinician 1	2/10	6/10	0.63
Clinician 2	4/10	4/10	0.66
Clinician 3	7/10	8/10	0.07
Clinician 4	5/10	5/10	1


Conclusions

Generation of synthetic PET samples through low-dimensional mapping inversion

Manual validation by experts suggests good reconstruction quality

RMSE SSI quality indexes less reliable than visual inspection


Effect of data normalization on multi-center acquisition batches

Before normalization

After normalization

Residual Variance by Isomap: flattening around 10

Reconstruction performance measures

Euclidean distance reconstruction Error RMSE:

$$E = \|\boldsymbol{x}^{(i)} - \boldsymbol{\Phi}^{\dagger}(\boldsymbol{z}^{(i)})\|$$

Structural Similarity Index Measure:

SSIM(
$$\boldsymbol{a}, \boldsymbol{b}$$
) = $\frac{(2\mu_a \mu_b + C_1)(2\sigma_{ab} + C_2)}{(\mu_a^2 + \mu_b^2 + C_1)(\sigma_a^2 + \sigma_b^2 + C_2)}$

 μ_a, μ_b : voxel sample means

 σ_a , σ_b : standard deviations

 σ_{ab} : cross-covariance of local windows