# Report WP 5.3: Geant4 simulation of scintillation and photon propagation

V. PIA, M. VICENZI RIUNIONE PRIN 2017

MAR 1, 2023

#### Simulation pipeline



#### Simulation pipeline



#### Geometry

- Possibility to simulate different geometries (not only GRAIN).
- Geometry based on gdml file(s)
- Requirements:
  - A lar\_volume volume
  - One or more cam\_volume
  - One or more volumes with Sensor auxtype

```
<auxiliary auxtype="Sensor" auxvalue="S14160-6050HS">
<auxiliary auxtype="cellcount" auxvalue="32"/>
<auxiliary auxtype="cellsize" auxunit="mm" auxvalue="3.000"/>
<auxiliary auxtype="celledge" auxunit="mm" auxvalue="0.200"/>
</auxiliary>
```



퉬

#### Simulation pipeline



### Optical simulation – Photons emission

• Mean number of photons obtained from edepsim step and argon light yield:

 $N_{mean} = E_{step} [MeV] \times 40k [ph/MeV]$ 

- Number of photons extracted from a Poisson distribution ( $N_{mean} < 20$ ) or from a Gaussian distribution ( $N_{mean} > 20$ ).
- Position and time of each photon is random between start and stop of edepsim step

 $\mathbf{x}_{0} = \mathbf{x}_{\text{start}}^{\text{step}} + \text{random}(0, 1) \cdot (\mathbf{x}_{\text{stop}}^{\text{step}} - \mathbf{x}_{\text{start}}^{\text{step}})$  $t_{0} = t_{\text{start}}^{\text{step}} + \text{random}(0, 1) \cdot (t_{\text{stop}}^{\text{step}} - t_{\text{start}}^{\text{step}}) + t_{\text{scint}}$ 

- Fast and slow components selection based on experimental singlet to triplet ratio:  $fast \sim 25\% (E \gtrsim 1 \text{ MeV})$
- Photons energy randomly extracted from the emission spectrum

# Optical simulation – Photons propagation

- Refractive index parametrized from recent experimental results
- Light propagation is simulated using standard Geant4 optical processes
  - Rayleigh scattering set to 90 cm (in non-doped Argon)
  - Absorption length set to 5 m (in non-doped Argon)
- Vessel and camera mechanical support reflectivity set to 0%, absorption set to 100%



# Optical simulation – Xe doping

- Singlet-to-triplet ratio same as in pure LAr. Fast component assumed unaffected by the dopant.
  - Invisible for lens-based camera due to low transmittance
  - A suppression must be included in the simulation when using mask-based camera
- Slow component almost completely shifted to 174 nm: 10% at 127 nm, 90% at 174 nm.  $\tau_{slow} = 160$  nm
- Total light yield increased by 20%. Additional photons assumed to be slow component only.
- Parametrization of refractive index, scattering and absorption length is wavelength dependent
  - Abs length: 1000 m if  $\lambda < 151$  nm, 3.8 m if  $\lambda > 151$  nm
  - Scattering length: [4, 30000] m for  $\lambda$  in the [119, 1200] nm range

# Optical simulation – Inputs

- Three possible input files:
  - Geant4 macro
  - Edep-sim
  - Genie
- Macro based on the Geant4 General Particle Source (GPS).
  - It uses Geant4 scintillation model, not the one described earlier.
  - Useful for debug purposes
- Edep-sim uses an edepsim output file and searches for hits in the GRAIN volume.
  - It uses the scintillation model described earlier.
- Genie can be used to propagate the particles produced in the neutrino interactions skipping the edepsim step
  - It uses Geant4 scintillation model, not the one described earlier.

# Optical simulation – Inputs 2

- A configuration file is used to set all the options needed for the simulation
- Mandatory fields:

inputFile = here\_input\_path
generatorType = here\_generator
eventNumber = here\_event\_number
geometryFile = here\_geometry\_path
destinationPath = here\_output\_path
opticalPhotonsFile = no
sensorsFile = yes
ui = no

# Optical simulation – Output

- Up to three output files can be generated:
  - Primaries
    - Used to store information about the primary particles
    - Only working for macro and genie input
  - Optical photons
    - Used to store information about ALL the generated optical photons
    - Useful for debug purposes, it grows in size quickly and it will probably crash everything when used with large productions
  - Sensors
    - Used to store information about the detected photons on all the sensors

# Optical simulation – Output 2

#### • Sensors

- Used to store information about the detected photons on all the sensors
- One tree per sensor in a root file
- Multiple branches with local coordinates on the sensor, arrival time, energy, direction and more
- Each entry is an event. One event is what genie and edepsim consider a single entry (neutrino interaction, spill, other?)



#### Optical simulation – Output 3



Example of arrival time for all the detected photons on one camera for pure Argon and Xe-doped Argon.



 $\sim$ 

# Optical simulation – Tools

- Different tools to process the simulation output:
  - 2D images with and without electronic simulation
  - Mask gdml generator
  - Docker file with geant+root+edepesimIO+optical simulation
  - Time profile of each channel

| S      | sand-optical ⊕<br>Group ID: 1453 ট                              | □ ~ New s | Subgroup New project |
|--------|-----------------------------------------------------------------|-----------|----------------------|
| Subgro | ups and projects Shared projects Archived projects              | Q Search  | Name ~ 4=            |
|        | Detector Response $\oplus$                                      | ★ 0       | 1 year ago           |
|        | Detector Response GPU                                           | ★ 0       | 6 months ago         |
| 0      | Dockers $\mathbb{Q}$                                            | ★ 0       | 2 weeks ago          |
| 0      | drdf 🔂<br>Detector Response Data Format libraries and tools     | ★ 0       | 5 months ago         |
| 0      | FastElectronics 🔂<br>Simple converter from OptMen output to TH2 | ★ 0       | 1 week ago           |
| 0      | gdmlParser 🔂                                                    | ★ 0       | 10 months ago        |
| 0      | GDML geometry description                                       | ★ 0       | 4 days ago           |
| 0      | LAr Lenses 合<br>Reconstruction and analysis code for LAr lenses | ★ 0       | 3 months ago         |
| 0      | O Optical Meniscus $\mathbb{Q}$                                 | ★ 0       | 2 weeks ago          |
| 0      | Optical to Full 🕆                                               | ★ 0       | 10 months ago        |
| 0      | ProdScripts ①<br>Scripts for Simulation Production              | ★ 0       | 1 month ago          |
| 0      | Tools D<br>Miscellaneous tools and utilities                    | ★ 0       | 5 months ago         |
| 0      | ✓ VolumeReco ᠿ<br>Voxel based event reconstruction              | ★ 0       | 1 week ago           |

#### Next steps and conclusions

- Update the simulation to support more recent geant versions
- More complete Xe doping implementation

- The simulation is working without major bugs
- Flexible input parameters set with a configuration file
- Multiple output files for debugging and physics