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Abstract The capture of scintillation light emitted by liq-
uid Argon and Xenon under molecular excitations by charged
particles is still a challenging task. Here we present a first
attempt to design a device able to have a sufficiently high
photon detection efficiency, in order to reconstruct the path
of ionizing particles. The study is based on the use of masks to
encode the light signal combined with single-photon detec-
tors, showing the capability to detect tracks over focal dis-
tances of about tens of centimeters. From numerical simula-
tions it emerges that it is possible to successfully decode and
recognize signals, even of rather complex topology, with a

a e-mail: mihai.iliescu@lnf.infn.it
b e-mail: luigi.martina@le.infn.it (corresponding author)

relatively limited number of acquisition channels. Thus, the
main aim is to elucidate a proof of principle of a technology
developed in very different contexts, but which has poten-
tial applications in liquid argon detectors that require a fast
reading. The findings support us to think that such innova-
tive technique could be very fruitful in a new generation of
detectors devoted to neutrino physics.

1 Introduction

This work is aimed at introducing a new and more efficient
collection method of prompt photons emitted by charged
particle in noble liquid filling Time Projection Chambers
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Single View Geometry

3D to 2D camera projection

154 6 Camera Models
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Fig. 6.1. Pinhole camera geometry. C is the camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre.

computes that the point (X, Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T on the
image plane. Ignoring the final image coordinate, we see that

(X, Y, Z)T !→ (fX/Z, fY/Z)T (6.1)

describes the central projection mapping from world to image coordinates. This is a
mapping from Euclidean 3-space IR3 to Euclidean 2-space IR2.

The centre of projection is called the camera centre. It is also known as the optical
centre. The line from the camera centre perpendicular to the image plane is called the
principal axis or principal ray of the camera, and the point where the principal axis
meets the image plane is called the principal point. The plane through the camera
centre parallel to the image plane is called the principal plane of the camera.

Central projection using homogeneous coordinates. If the world and image points
are represented by homogeneous vectors, then central projection is very simply ex-
pressed as a linear mapping between their homogeneous coordinates. In particular,
(6.1) may be written in terms of matrix multiplication as




X
Y
Z
1


 !→




fX
fY
Z


 =




f 0
f 0

1 0







X
Y
Z
1


. (6.2)

The matrix in this expression may be written as diag(f, f, 1)[I | 0] where
diag(f, f, 1) is a diagonal matrix and [I | 0] represents a matrix divided up into a 3× 3
block (the identity matrix) plus a column vector, here the zero vector.

We now introduce the notation X for the world point represented by the homoge-
neous 4-vector (X, Y, Z, 1)T, x for the image point represented by a homogeneous 3-
vector, and P for the 3×4 homogeneous camera projection matrix. Then (6.2) is written
compactly as

x = PX

which defines the camera matrix for the pinhole model of central projection as

P = diag(f, f, 1) [I | 0].

Camera Model x = P X, X ∈ P3→x ∈ P2

6.2 The projective camera 159
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Fig. 6.4. The three image points defined by the columns pi, i = 1, . . . , 3, of the projection matrix are
the vanishing points of the directions of the world axes.

Under the mapping x = PX points on this line are projected to

x = PX(λ) = λPA + (1− λ)PC = λPA

since PC = 0. That is all points on the line are mapped to the same image point PA,
which means that the line must be a ray through the camera centre. It follows that C
is the homogeneous representation of the camera centre, since for all choices of A the
line X(λ) is a ray through the camera centre.
This result is not unexpected since the image point (0, 0, 0)T = PC is not defined,

and the camera centre is the unique point in space for which the image is undefined. In
the case of finite cameras the result may be established directly, since C = (C̃

T
, 1)T

is clearly the null-vector of P = KR[I | −C̃]. The result is true even in the case where
the first 3× 3 submatrix M of P is singular. In this singular case, though, the null-vector
has the form C = (dT, 0)T where Md = 0. The camera centre is then a point at infinity.
Camera models of this class are discussed in section 6.3.

Column vectors. The columns of the projective camera are 3-vectors which have a
geometric meaning as particular image points. With the notation that the columns of P
are pi, i = 1, . . . , 4, then p1,p2,p3 are the vanishing points of the world coordinate X,
Y and Z axes respectively. This follows because these points are the images of the axes’
directions. For example the x-axis has direction D = (1, 0, 0, 0)T, which is imaged at
p1 = PD. See figure 6.4. The column p4 is the image of the world origin.

Row vectors. The rows of the projective camera (6.12) are 4-vectors which may be
interpreted geometrically as particular world planes. These planes are examined next.
We introduce the notation that the rows of P are PiT so that

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34


 =




P1T

P2T

P3T


 . (6.12)



Single View Geometry

Camera projection matrix
156 6 Camera Models
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Fig. 6.3. The Euclidean transformation between the world and camera coordinate frames.

centre in the world coordinate frame, and R is a 3 × 3 rotation matrix representing the
orientation of the camera coordinate frame. This equation may be written in homoge-
neous coordinates as

Xcam =

[
R −RC̃
0 1

]



X
Y
Z
1


 =

[
R −RC̃
0 1

]
X. (6.6)

Putting this together with (6.5) leads to the formula

x = KR[I | −C̃]X (6.7)

where X is now in a world coordinate frame. This is the general mapping given by a
pinhole camera. One sees that a general pinhole camera, P = KR[I | −C̃], has 9 degrees
of freedom: 3 for K (the elements f, px, py), 3 for R, and 3 for C̃. The parameters
contained in K are called the internal camera parameters, or the internal orientation
of the camera. The parameters of R and C̃ which relate the camera orientation and
position to a world coordinate system are called the external parameters or the exterior
orientation.
It is often convenient not to make the camera centre explicit, and instead to represent

the world to image transformation as X̃cam = RX̃ + t. In this case the camera matrix is
simply

P = K[R | t] (6.8)

where from (6.7) t = −RC̃.

CCD cameras. The pinhole camera model just derived assumes that the image coor-
dinates are Euclidean coordinates having equal scales in both axial directions. In the
case of CCD cameras, there is the additional possibility of having non-square pixels. If
image coordinates are measured in pixels, then this has the extra effect of introducing
unequal scale factors in each direction. In particular if the number of pixels per unit

P = K [R|t] , λ x = PX, ∀ λ ∈ R/0

R ∈ SO (3) and R3 3 t = −R c : P C = P

(
c
1

)
= 0

Camera calibration matrix K =




fx s x0
0 fy y0
0 0 1




fx , fy focal lengths, s skew parameter, (x0, y0) principal point



Single View Geometry

Application to a MURA mask

A 19× 19 MURA mask, with parameters
a→ 15, b → 1.3637, pm → 0.11, pd → 0.12 (cm)
6 point-like sources (minimal constraint)
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Single View Geometry

Calibration matrix

K = P1−3
ex R−1 =




0.281 0.223 0.236
0 0.560 −0.402
0 0 1




R = Iy Rz (0.22) Ry (0.82) Rz (0.12) c = (0.33, 1.62, 1.10)

In first approximation a Coded Mask is a Projective Camera
Different focal lengths fx 6= fy

(x0, y0) 6= 0↔ image plane Origin 6= principal point
Non vanishing skew parameter s
Rotation relative to the world frame
Traslated camera center



Single View Geometry

Optimization of the Mosaic Masks
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Figure6.7:2p�1odd(left)and2peven(right)mosaicsobtainedstartingfroma
MURAmaskofrank17.Thesinglemasksarehighlightedbydottedlinesinboth
configurations.

being2p�1and2prespectively.The2p�1oddmosaicisobtainedrotating
themaskssothatthe(0,0)elementofeachmaskislocatedatthecenterofthe
mosaic.Thetwomostcentralrowsandcolumnsarethenmergedinone,leavinga
singlecolumnofholesandasinglerowofopaqueelements.Thefinalrankofthe
mosaicisthen2p�1,wherepistherankofthesingleoriginalmask.The2peven
patternisinsteadobtainedwithacyclingpermutationofbothrowsandcolumn
ofthefourmasks.Thisoperationgeneratesamosaicwithacompletemaskinthe
centerofthepattern,withtheotherthreespreadintheremainingsectors.Both
patternsforabasemaskofrank17areshowninFig.6.7.

6.2CodedAperturedemonstrator

Toverifythefeasibilityofthecodedaperturetechnique,asimpleprototypewas
builtexploitingasmallSiPMmatrixandtwolightsourcesobtainedwithaled.
Asimplesimulationwasperformedtostudytheexpectedresultsoftheprototype
apparatus.TheprototypeexploitedaSiPMmatrixsmallerthantheoneswhich
willbeusedinGRAIN,andwasnottestedatcryogenictemperatures.Itsmain
objectivewastoverifythecapabilitytoread-outallthechannelsofthesensorat
thesametime,andtoverifywhetherornotitwaspossibletoreconstructsimple
lightsourceswiththeuseofacodedaperturecamera.
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2× 2 (left) mosaic EVEN side by side and

(right) ODD rotated superimposed 17× 17 MURA
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Multiple View

Two - Triple - Many Views

Pi : P3→P2

λi j xj = PiXj , ∀ λi j ∈ R/0
Pi = Ki [Ri |ti] Pi Ci = 0

Ci =

(
ci
1

)
=

(
−RT

i ti
1

)

Transition f. Ha b : P2 ↔ P2



Ha a = I
Ha b Hb a = I
Ha b Hb c Hc a = I

Cocycle identities

C

C

C

Pa

Ha b

b cH

Ha c



Multiple View

Pseudo-Inverse and Reconstruction formula in double-view

P = K [R|t] x = P X

P+ =

[
RT

tT

](
I− t⊗ t

1 + |t|2
)

K−1 =

[
I
−cT

](
I− c⊗ c

1 + |c|2
)
RTK−1

⇒ X = P+x + µC µ ∈ R

λ′ x′ = P ′ X λ′ ∈ R/0

x′ ∧ x′ = 0⇒ X = P+x +
(P ′ P+ x ∧ x′) · (x′ ∧ P ′ C)

(x′ ∧ P ′ C)2 C



Multiple View

The Projective Reconstruction Theorem

The triplet
(
P, P ′, {Xα}α≥8

)
is called a 3D reconstruction of the

images {xα} and {x′α} if it satisfies the relations

λα xα = P Xα, λ′α x′α = P′ Xα

Th. A 3D reconstruction is unique up to a homography of P3.
(
P̃, P̃ ′,

{
~Xα

}
α≥8

)
is another reconstruction iff

P̃ = P H−1, P̃ ′ = P ′ H−1, ~Xα = H Xα,H : P3↔P3 linear
For any Camera Stereo Rig P1,P2, . . . its canonical form is

P̃1 = [I|0] , P̃2 = K2R2 (K1R1)−1 [I | det (K1)K1R2 (c1 − c2)] , ...

H =

(
K1R1 −K1R1c1
0T 1/ det (K1)

)



Multiple View

The Fundamental Matrix

Epipoles
e′ = P ′ C, e = P C′

x′ = P ′X = P ′ P+x + µ e′

l′ = e′ ∧ x′ = e′ ∧ P ′ P+ x
F =

[
e′
]
∧ P ′ P+

rank 2 P2 → P2, detF = 0
Corresponding image points
x′ · l′ = x′T F x = 0∑

i j x ′i Fi j xj =

det

(
P ′ x′ 0
P 0 x

)
= 0

C C’

epipolar plane

epipole

epipole ‘

F = [e′]∧ K
′ R ′ K−1 = K ′−T R ′ KT [e]∧



Multiple View

Computing F from a pair of Camera Matrices - Examples I

Equally calibrated c.s K ′ = K

front-to-front stereo rig:
P ′ = K Iz [I,−c] , c = (0, 0, c)T , Iz = diag (1, 1,−1)
e′ = c (x0, y0, 1)T = ck3, Fff−z = [k3]∧ KIzK

−1

x′TFff−zx = (y ′ − y0) x + (y0 − y) x ′ + (y − y ′) x0 = 0

X =

(
K−1x

(KIz K−1x∧x′)·(x′∧k3)
c(x′∧k3)2

)
⇒

XE = c(x′∧k3)2K−1x
(KIz K−1x∧x′)·(x′∧k3)

= c(x ′−x0)
x−2x0+x ′K

−1x = c(y ′−y0)
y−2y0+y ′K

−1x

xS = 2xAxB
xA+xB

, zS = 2zAzB
zA+zB

, yS = a xA−xB
xA+xB

= a zA−zB
zA+zB

Eur. Phys. J. C 81 (2021) 1011



Multiple View

Computing F from a pair of Camera Matrices - Examples II

Cameras at right angle:
P = K [I, 0] , P ′ = K Ry

−π/2

[
I,−r Ry

π/4ẑ
]

e = r K Ry
π/4ẑ, e′ = −r K Ry

−π/4ẑ

F⊥ =
[
K Ry

−π/4 ẑ
]
×

K Ry
−π/2 K−1 =


0 1 −y0
−1 0 x0 − α
y0 −α− x0 2α y0


Non anti-symmetric
Horopter: xT F⊥+F T

⊥
2 x = 0



Multiple View

GRAIN as a multiple-view (lens) system
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Multiple View

GRAIN

Set of lenses centered at

cε1, ε2, ε3m =

(
ξε2, ε3m h
ψε1, ε3m b
ζε2, ε3m `

)
=




[
(1− ε3) δm − (−1)ε2

2 ε3

]
h

− (1− ε3) (−1)ε1 βm b[
− (1− ε3) (−1)ε2

2 + λ ε3 m
]
`




for εi = 0, 1 and 0 ≤ |m| ≤ 3
δ−m = −δm, δ0 = 0 and β−m = βm Set of Projection Matrices

Pε1 ε2 ε3m = K (Rx
π)ε2(1−ε3)

(
Ry

(−1)ε2 π
2

)ε3
[I,−cε1, ε2, ε3m ]

Fundamental Matrices

F
ε1 ε2 ε3 ε′1 ε

′
2 ε
′
3

m m′ =
(
P
ε′1 ε
′
2 ε
′
3

m′

)+ T
(Pε1 ε2 ε3m )T

[
eε1 ε2 ε3 ε

′
1 ε
′
2 ε
′
3

m m′

]



Multiple View

Point-like Light sources in GRAIN and their reconstruction

Joint work with L. Di Noto and M. Vicenzi
Case Study: 1000 selected light source points (randomly/uniformly)
in 800× 1200× 460 mm3 point Volume ⊂ GRAIN
Energy release: 100 MeV per point



Multiple View

Points and Cameras Distribution I
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Multiple View

Reconstruction by double-View

K = diag (−f ,−f , 1) ∀m, ε1, ε2, ε3 of Pε1 ε2 ε3m , f = 100mm

Each point is detected/seen by N ≤ 38 cameras
The image coordinates are given by the centroids of the
photon distribution.
There are M = N!

2!(N−2)! possible double-views

Check the consistency conditions
xm′

ε′1 ε
′
2 ε
′
3

T · F ε1 ε2 ε3 ε
′
1 ε
′
2 ε
′
3

m m′ · xm
ε1 ε2 ε3 ≈ 0

Perform M reconstructions by the 3D formula
take the mean value of the M possible reconstructions for each
coordinate

X =

∑N
i<j Xij

M
, Y =

∑N
i<j Yij

M
, Z =

∑N
i<j Zij

M



Multiple View

Errors in reconstruction I
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∆X = Xc − Xt Distribution
Xc : calculated , Xt : original coordinates

∆X ≈ 10−2mm ∆X 21/2
≈ 5mm



Multiple View

Errors in reconstruction II
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Multiple View

Errors in computing the corresponding points

S = {x1, . . . , xN} , S ′ =
{
x′1, . . . , x

′
N′
}
→ S × S ′ =

{(
xα, x′β

)}

Corresponding points : Scp =
{(

xα, x′β
)

: x′β F xα = 0
}

Empirical data 0 ≤ Eα,β = | x′β F xα | ≤ ε

Bounded spread criterion(
xα, x′β

)
=
(
x0
α + ∆x, x′0β + ∆x′

)

|∆x| ≤ ε

|x′0
β̄
| ||F || , |∆x′| ≤ ε

|x0
β̄
| ||F ||



Multiple View

The Fundamental matrix from data

The set Scp of the corresponding points is known and #Scp ≥ 8
x′α Fxα = 0 ⇒ AF = 0 with A ∈ Rn×9

rank (A) = 8⇒ F is determined mod. scalar 6= 0
rank (A) = 9 a least square solution is found by solving

MinA||AF|| subject to ||F|| = 1



Multiple View

Extraction of Camera Matrices from F

Singular Value Decomposition : F = U D V T with
D = diag (p, q, ε) , ε� q < p, U,V orthogonal

Introduce the matrices Z =
( 0 −1 0

1 0 0
0 0 0

)
and

W =
( 0 −1 0

1 0 0
0 0 1

)

Compute S = UZUT and M = UW TDV T , which satisfy
F = SM

An associated to F pair of cameras is
P = [I|0] , P ′ = [M|U.3]



Multiple View

Three view reconstruction

λα xα = P Xα, λ′α x′α = P′ Xα, λ”α x”α = P” Xα



P xα 0 0
P ′ 0 x′α 0
P” 0 0 x”α







Xα

−λα
−λ′α
−λ”α


 = 0

Since a solution exists, then all 7× 7 sub-matrices have 0
determinant ⇒∑3

i ,j ,k,q,r=1 x i x
′j x”kεjquεkrvT qr

i = 0 4 independent eq.s
9 trilinear conditions involving the trifocal tensor (27 components)
T qr

i = (−1)i+1 det
(
Pî ,P ′q,P”r

)

7 triplets of corresponding points completely determine T qr
i

Known T qr
i , three views allow to reconstruct X

tri-linear equations hold for corresponding points, lines and
mixed point-line ones.



Conclusions I

A proof of principle for the application and implementation of
the coded masks

Different reconstruction algorithms are in development.

A coded mask can be treated as a projective camera

Camera projection , Fundamental matrices and trifocal tensors
are common tools in a multiple - view treatment.

3D Reconstruction formulas are displayed for generic and
special arrangements of cameras.

Camera projection matrices, fundamental matrices and trifocal
tensors can be derived from constructive design data

Alternatively, they can be derived from calibration methods,
exploiting a minimal finite number of empirical data.



Conclusions II

Optimization methods in the above calculations are already at
our disposal.

Several tests addressed to evaluate the capability of 3D
reconstruction point like sources in different regions of GRAIN
have been performed.

Adopting the trifocal tensor approach, point and line sources
can be treated at the same foot.

Generalized methods in presence of more than three view
should be developed.

Accurate reconstruction methods are intended to be developed
for lines, performing both analytical and numerical studies.



Determining equation for P

n source points
Xi ↔ xi ⇔ ∃ λi : λi xi = λi (xi , yi , wi )

T = P Xi i = 1, . . . , n

xi ∧ P Xi = 0⇔




0T −wi XT
i yi XT

i

wi XT
i 0T −xi XT

i

−yi XT
i xi XT

i 0T






P1

P2

P3


 = 0

A =




0T −w1 XT
1 y1 XT

1
w1 XT

1 0T −x1 XT
1

. . . . . . . . .

. . . . . . . . .
0T −wn XT

n yn XT
n

wn XT
n 0T −xn XT

n




: A




P1

P2

P3


 = 0

A ∈ R2n×12 det A = 0, rank A = 11
P is defined by n ≥ 6 points (modulo a scale factor)



Sorgenti (cm) Punti Immagine (cm)
−6.6 −6.6 16.5
7.92 7.92 15.75
−5.28 7.92 15.
−2.64 −1.32 14.25
9.24 1.32 13.5
5.28 −5.28 12.75

−0.44 −0.44
0.66 0.66
−0.44 0.66
−0.22 −0.11
0.88 0.11
0.44 −0.55

⇒ Aex , detAex 6= 0, Aex Pex = 0



Solving for P

Direct Linear Algorithm
Assemble A ∈ R2n×12

Performe the Singular Valued Decomposition A = U D V T ,
with D = diag (λmax , . . . , λmin) ∈ R12×12, λi > 0
P = V12th column

λmin of Aex = 0.05042

Pex =



−0.081 −0.404 0.480 0.174
0.209 −0.839 −0.534 1.851
−1.074 0.136 1. −0.920




Pex .Sorgenti −→ ∆Immagini
Immagini

=




0.005 0.005
0.02 0.01
0.01 0.02
0.02 0.03
0.03 0.01
0.003 0.01






Optimization

for n ≥ 6 find the Maximum Likelihood estimate of P by
The Standard Algorithm (Hartley)

1 Estimate P by a linear procedure
2 Normalize source and image points : X̃i = U Xi , x̃i = T xi ,

such that
∑

i

X̃i = 0,
∑

i

x̃i = 0
∑

i |X̃i |2
n − 1

= 3,
∑

i |x̃i |2
n − 1

= 2

3 Generate A
({

X̃i

}
, {x̃i}

)
and take its normalized eigenvector

~pmin↔λmin 6= 0 ⇒ P̃

4 Minimize recursively minP

(∑n
i=1 |xi − P̃Xi |2

)

5 Back in the original coordinates : P = T−1 P̃ U
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