Quantum Observables for Collider Physics

Experimental perspective on the future of quantum information in collider physics

- A very difficult task!
- Current status
- Mixture of
 - Prospects at various future colliders
 - Which machines ? ... future R&D (biased view's)
- Conclusion

Andy Jung

Workshop on Quantum Observables for Collider Physics

Nov 10th, 2023

Quantum Observables for Collider Physics

Experimental perspective on the future of quantum information in collider physics

- A very difficult task!
- Current status
- Mixture of
 - Prospects at various future colliders
 - Which machines ? ... future R&D (biased view's)
- Conclusion

S

ΙТ

Andy Jung

Workshop on Quantum Observables for Collider Physics

Hope for next iteration in 2024...

Some slide content taken from:

Nov 10th, 2023

Entanglement is there...

Slide by M.Vos

Quantum entanglement in top quark pair production

Read more about this!

https://atlas.cern/Updates/Briefing/Top-Entanglement

D < -1/3: top quarks are "entangled" This is new and exciting! Collect top quark data, separate in three regions, measure "entangled-o-meter" D

 $D \neq 0$: top quark spins are correlated. Confirms something we have known since 2012.

- Updates / News on Theory prediction
- Systematic uncertainties ?
- Need complete picture at LHC
 - \rightarrow stay tuned

A. Jung

Quantum Observables

for Collider Physics

Q: Tell me about the quantum entanglement of top quarks

A: It's important to note that the behavior of particles on the quantum level is not always intuitive, and while **entanglement is a fascinating and well-studied phenomenon**, its application and relevance depend on the specific characteristics of the particles involved.

At the current state of knowledge up to my last training cut-off in January 2022, discussions of quantum entanglement with top quarks were not a common topic in the scientific literature.

If there have been significant developments or new insights in this area beyond 2022, I recommend checking more recent sources for the latest information.

Entanglement prospects

Studied extensively theoreticaly.

Quantum Observables

for Collider Physics

- Measured by the D0, CDF, ATLAS and CMS collaborations.
- No link between spin-correlations and quantum entanglement so far.
- Spin-Correlations not Quantum **Entanglement!**
- However, Quantum Entanglement ⊂ Spin-Correlations.

Y. Afik & J. de Nova

A. Jung

 $\frac{2\Theta}{\pi}$

Experimental perspectives on the future of QI in collider physics 5

0.8

0.7

0.4

0.3

0.2

Future collider landscape

Quantum Observables for Collider Physics

A. Jung

A. Jung

Hard Groundwork

 LHCtopWG effort from both sides: joined ATLAS + CMS effort

Quantum Observables

for Collider Physics

 Enormous amount of person power also in understanding of systematic uncertainties across both experiments

A. Jung

- Facilitate future combinations, studies on systematic uncertainties, etc.
- Vital and critical for success of Run 3 (and beyond)
 Many details, please check:

[LHCtopWG: Common samples]

Towards common MC settings in ATLAS & CMS: ATL-PHYS-PUB-2021-016 & CMS NOTE-2021/005 **Prospects at the HL-LHC**

Double diff. xsec

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^a_+ d \cos \theta^b_-} = \frac{1}{4} (1 + \frac{B^a_+}{B^a_+} \cos \theta^a_+ + \frac{B^b_-}{B^b_-} \cos \theta^b_- - \frac{C(a, b)}{C(a, b)} \cos \theta^a_+ \cos \theta^b_-)$$

Quantum Observables

for Collider Physics

- Using conservation of 4-momentum (with the mass of the top and W boson assumed)
- The measured b and I momenta together help constrain the neutrino momentum to an ellipse.
- For the double neutrino case, an additional MET constraint is imposed.

A. Jung

Cut	SUSY	$t\bar{t}$	Single Top	Diboson
2 leptons	3180752	46942286	6291825	875681
$\epsilon_{tot},\epsilon_{cut}$	14 %, 14 %	14 %, 14 %	2 %, 2 %	9%,9%
2 jets	2230452	34109607	3035953	123486
$\epsilon_{tot}, \epsilon_{cut}$	10 %, 70 %	10 %, 73 %	1 %, 48 %	1 %, 14 %
MET	1867103	27796121	2462018	112145
$\epsilon_{tot}, \epsilon_{cut}$	8 %, 84 %	8 %, 81 %	1~%, 81~%	1 %, 91 %
b-tag	1812201	27133968	2204553	49470
$\epsilon_{tot}, \epsilon_{cut}$	8 %, 97 %	8 %, 98 %	1 %, 90 %	1 %, 44 %

Table 3: Summary of flat systematic uncertainties.

Systematic Uncertainty	Yellow Report Recommendation
Muon ID	0.5 %
Electron ID	1 %
Luminosity	1 %
b-tagging	1 %
Pile Up	2 %
Theoretical	50 % of current 14 TeV cross-sections

Table 4: Summary of shape-based systematic uncertainties.

Systematic Uncertainty	Yellow Report Recommendation
PDF	M_x based look-up table
top p_T	33% of Run2
Jet Energy Scale	from shape
Jet Energy Resolution	from shape
Renormalization and Factorization Scale	50 % of Run2

Prospects at the HL-LHC

Experimental perspectives on the future of QI in collider physics 10

A. Jung

Quantum Observables

for Collider Physics

Prospects at the HL-LHC

Quantum Observables

for Collider Physics

A. Jung

Side track: What to measure...

Bin of normalized differential cross section

Correlation are non-trivial and only experiments can determine!

PURDUE UNIVERSIT

A. Jung

Quantum Observables

for Collider Physics

A. Jung

ERSIT

Future colliders (FCC like)

Proposal Name	Proposal Name CM energy Lum./IP		Years of	Years to	Construction	Est. operating
	nom. (range)		pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	$[2021 \ B\$]$	[MW]
$FCC-ee^{1,2}$	0.24	7.7(28.9)	0-2	13-18	12-18	290
	(0.09-0.37)					
$CEPC^{1,2}$	0.24	8.3(16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	$<\!\!12$	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
$\rm CCC^3$ (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25 - 0.55)					
High Energy ILC	3	6.1	5-10	19-24	18-30	$\sim \! 400$
	(1-3)					
High Energy CLIC	3	5.9	3-5	19-24	18-30	~ 550
	(1.5-3)					
High Energy CCC	3	6.0	3-5	19-24	12-18	~ 700
	(1-3)					

- A very interesting perspective is provided by future colliders, where ttbar pairs are expected to be produced from e+e- collisions, such as the FCC-ee
- Channel: In particular, in future linear e+e- colliders

A. Jung

FCC ee – Prospects

 Ultimate precision for top quark properties: mass, width, and Yukawa coupling

Quantum Observables

for Collider Physics

- Can use measurement of cross section shape around threshold to extract m_t , Γ_t , y_t and α_s
- $m_t \otimes \Gamma_t$ simultaneous fit expected δ_{stat} : ±17 MeV (m_t) , ±45 MeV (Γ_t)
- δ_{syst} dominated by theory, e.g. $m_t \sim 45$ MeV!
- Current top mass average (LHC + Tevatron): 172.69±0.3 GeV
- Entanglement prospects: Prepare initial state!
- HERA demonstrated polarization is possible but challenging and timedependent!
- EIC will have improved methods...

A. Jung

- Ultimate precision for top quark properties: mass, width, and Yukawa coupling
- Can use measurement of cross section shape around threshold to extract m_t , Γ_t , y_t and α_s
- $m_t \otimes \Gamma_t$ simultaneous fit expected δ_{stat} : ±17 MeV (m_t), ±45 MeV (Γ_t)
- δ_{syst} dominated by theory, e.g. $m_t \sim 45 \text{ MeV}!$
- Current top mass average (LHC + Tevatron): 172.69±0.3 GeV
- Entanglement prospects: Prepare initial state!
- Entanglement proxy matters...

A. Jung

[arXiv:2309.08103]

e+e- \rightarrow Zh, h \rightarrow tau tau:

Channels	Obs.	$\mathbf{Q}\mathbf{M}$	Clas.	Exp. @CEPC
7 . 00	${\cal A}$	0.164	0.119	0.155 ± 0.287
$\Sigma \rightarrow \ell \ell$	$m_1 + m_2$	> 1	≤ 1	2.12 ± 1.11
7	${\cal A}$	0.164	0.119	0.140 ± 0.098
$ m Z ightarrow \jmath \jmath$	$m_1 + m_2$	> 1	≤ 1	1.20 ± 0.37

FCC ee – Timeline

Belle II – Prospects

 Circular colliders pushing the frontier on EW precision e.g. FCC-ee at Z-pole, 5x10¹² compared to Z_{ee} ~ LEP x 10⁵

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

A. Jung

	Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
Flavor physics with	$\Delta lpha(m_Z)^{-1}~(imes 10^3)$	17.8^{*}	17.8^{*}		3.8(1.2)	17.8^{*}	
riavor physics with	$\Delta m_W ~({ m MeV})$	12*	0.5~(2.4)		$0.25\ (0.3)$	0.35~(0.3)	
~10 ¹² bb. cc (CKM. CP	$\Delta m_Z ~({ m MeV})$	2.1^{*}	0.7~(0.2)	0.2	0.004~(0.1)	0.005~(0.1)	2.1^{*}
	$\Delta m_H~({ m MeV})$	170*	14		2.5~(2)	5.9	78
violation in neutral B	$\Delta\Gamma_W ~({ m MeV})$	42*	2		1.2 (0.3)	1.8 (0.9)	
mesons,)	$\Delta\Gamma_Z$ (MeV)	2.3^{*}	1.5~(0.2)	0.12	0.004 (0.025)	$0.005\ (0.025)$	2.3^{*}
· •	$\Delta A_e~(imes 10^5)$	190*	14 (4.5)	1.5(8)	0.7~(2)	1.5(2)	60 (15)
 Tau physics program 	$\Delta A_{\mu}~(imes 10^5)$	1500^{*}	82 (4.5)	3(8)	2.3~(2.2)	3.0(1.8)	390 (14)
(1, 1)	$\Delta A_{ au}~(imes 10^5)$	400*	86(4.5)	3(8)	0.5~(20)	1.2(20)	550(14)
with $\sim 2 \times 10^{-1} \tau \tau$ (lepton	$\Delta A_b \; (imes 10^5)$	2000^{*}	53 (35)	9~(50)	2.4(21)	3(21)	360 (92)
universality,)	$\Delta A_c~(imes 10^5)$	2700*	140(25)	20 (37)	20 (15)	6 (30)	190 (67)
	$\Delta \sigma_{ m had}^0~({ m pb})$	37*			0.035~(4)	0.05~(2)	37*
 QCD at the Z (coupling, 	$\delta R_e~(imes 10^3)$	2.4^{*}	0.5~(1.0)	0.2 (0.5)	0.004~(0.3)	0.003~(0.2)	2.5(1.0)
fragmentation)	$\delta R_{\mu}~(imes 10^3)$	1.6^{*}	0.5(1.0)	0.2~(0.2)	$0.003\ (0.05)$	0.003~(0.1)	2.5(1.0)
nagmentation)	$\delta R_{ au}~(imes 10^3)$	2.2^{*}	0.6(1.0)	0.2~(0.4)	0.003~(0.1)	0.003~(0.1)	3.3(5.0)
 and much more 	$\delta R_b~(imes 10^3)$	3.1^{*}	0.4(1.0)	0.04~(0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.5(1.0)
	$\delta R_c(imes 10^3)$	17*	0.6(5.0)	0.2(3.0)	$0.015\ (1.5)$	0.02(1)	2.4(5.0)

"signal" region for observing Bell inequality violation

1.5

0.5

-1.0

concurrence

Belle II – Prospects

- Y(4S)(b b) decays to B0 + B0, where we have |B0> = | bd>, | B0> = |b d>.
- We get an entangled state:
 - 1√2 (|B0⟩| B0⟩ − | B0⟩|B0⟩).

solid lines: SM expectation

0.5

Horodecki observable

"signal" region for observing entang

1.0

 $\mathfrak{m}_{12}[C]$

	Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$		
)(b				e^-/e^+	$ \mathrm{ab}^{-1}/\mathrm{IP} $		
	HL-LHC	pp	14 TeV		3		
	ILC and C^3	ee	$250~{ m GeV}$	$\pm 80/\pm 30$	2		
ve	c.o.m almost		$350 { m GeV}$	$\pm 80/\pm 30$	0.2		
	similar		$500^* { m GeV}$	$\pm 80/\pm 30$	4 $ $		
			$1 { m TeV}$	$\pm 80/\pm 20$	8		
	CLIC	ee	$380 {\rm GeV}$	$\pm 80/0$	1		
	CEPC	ee	M_Z		60		
			$ 2M_W$		3.6 $ $		
			$240 \mathrm{GeV}$		20		
			$360 { m GeV}$		1		
	FCC-ee	ee	M_Z		150		
			$2M_W$		10		
			$240 \mathrm{GeV}$		5		
			$2 M_{top}$		1.5		
	muon-collider (higgs)	$\mu\mu$	125 GeV		0.02		
			$\neg \frown$				
	Assume the s	ame		olarizat	ion not		
	physics reach f	or IL		in hee	alina		
	and newly pror	noser	4	in pas	enne		
			* (design for C ³			
ement							
	С)ther	techno	logical	solution		
	(in alua				orizodi		
	(Including HELEN) summarized in						

https://arxiv.org/pdf/2209.14136.pdf

By Christian Veelken

-0.5

A. Jung

0.0

A. Jung

UNIVERSITY

...even further into the Future

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. $(range)$	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
Muon Collider	10	20 (40)	> 10	> 25	12-18	~ 300
	(1.5-14)					
FCC-hh	100	30(60)	>10	> 25	30-50	$\sim \! 560$
SPPS	125	13(26)	> 10	$>\!25$	30-80	$\sim \! 400$
	(75-125)					

...even further into the Future

FCC timeline

Quantum Observables

for Collider Physics

FUTURE

CIRCULAR

A. Juna

IINIVERSIT

→ Essentially need to start R&D on detector (& accelerator) now-ish!

US perspective: Snowmass

Proton Driver	Front End	Cooling	ς μ+			Accelerati	ion		Colli	der Ring E _{COM} :			
SC Linac Accumulator Buncher Combiner	MW-Class Target Capture Sol. I Decay Channel Buncher	Phase Rotator Initial 6D Cooling Charge Separator 6D Cooling	Bunch Merge	6D Cooling	Final Cooling	Accelerator Linacs, RLA	rs: or FFA	AG, RCS		to 10 TeV			
Short, intense proton bunch		Ionisation muon in i	n cooli matter	ng of		Accelerat energy	tion to	collision	Col	lision			
Protor decay muons	s produce p into muons are capture	ions which ed					500			· · · · ·	• • • • •	· · · · ·	
Parameter	Symbol	unit											
Centre-of-mass energy	E_{cm}	TeV	3	10	14		200						
Luminosity	\mathcal{L}	$10^{34} {\rm cm}^{-2} {\rm s}$	1.8	20	40	Te/	200	ļ					1
Collider circumference	C_{coll}	km	4.5	10	14		100						
Average field	$\langle B \rangle$	Т	7	10.5	10.5	s	100	a service a serv					
Muons/bunch	N	10^{12}	2.2	1.8	1.8		50	/ /					
Repetition rate	f_r	$_{\rm Hz}$	5	5	5								1
Beam power	P_{coll}	MW	5.3	14.4	20								1
Longitudinal emittance	ϵ_L	MeVm	7.5	7.5	7.5		20	5	10	15	20	25	 3(
Transverse emittance	ϵ	$\mu { m m}$	25	25	25			5	10	15	20	25	50
IP bunch length	σ_z	$\mathbf{m}\mathbf{m}$	5	1.5	1.07					$\sqrt{s_{II}}$ [T	eV∣		
IP betafunction	β	mm	5	1.5	1.07								
IP beam size	σ	$\mu { m m}$	3	0.9	0.63								

E A. Jung

Quantum Observables for Collider Physics

- Significant R&D is required to demonstrate MuC elements (Cooling, Fast ramping magnets, Target, Neutrino Flux, Beam Induced Background,...)
 - Renewed interest in the U.S. and Europe
 - Formal collaboration formed

• Exciting new opportunities...

A. Jung

 \rightarrow Essentially need to start R&D on detector (& accelerator) now-ish!

A. Jung

US Snowmass perspective

	LHC	Higgs Factory	Multi TeV Colliders
2025-2030	Prioritize LHC and aux. experiments	Establish a targeted e⁺e⁻ Higgs factory detector R&D program.	 Develop an initial design for a first stage TeV-scale Muon Collider in the US. Support critical detector R&D towards EF multi-TeV colliders.
2030-2035	Continue strong support for the HL-LHC physics program.	Support construction of an e⁺e⁻ Higgs factory.	1. Demonstrate principal risk mitigation for a first stage TeV-scale Muon Collider.
After 2035	Continuing support of the HL-LHC physics program to the conclusion of archival measurements	Support completing construction and establishing the physics program of the Higgs factory.	 Demonstrate readiness to construct a first-stage TeV-scale Muon Collider. Ramp up funding support for detector R&D for energy frontier multi-TeV colliders.

"The US EF community has also expressed renewed interest and ambition to bring back energy-frontier collider physics to the US soil while maintaining its international collaborative partnerships and obligations."

Other opportunities: EIC

- → Will be the 2^{nd} ep/lon collider after 1^{st} HERA ep collider @DESY
- \rightarrow Probes of Entanglement ?

Key facts

Quantum Observables

for Collider Physics

- The Electron-Ion Collider User Group *(EICUG)* consists of more than **1200 physicists** from over 250 laboratories and universities from around the world
- 2.4 miles long accelerator

Project Design Goals

- High Luminosity: L= 10³³ 10³⁴ cm⁻²sec⁻¹, 10 100 fb-1/year
- Highly Polarized Beams: 70%

A. Jung

- Large Center of Mass Energy Range: $E_{cm} = 20 140$ GeV
- Large Ion Species Range: protons Uranium
- Accommodate a Second Interaction Region (IR) with a 2nd detector

Physics goals: Understand origin of mass & spin of the nucleon structure / proton

Ep/ion: Entanglement Entropy

- Entanglement entropy based on number of charged particles
- Always very hard to model accurately

$$S = -\operatorname{tr} \rho \ln \rho = -\sum_{n} p_{n} \ln p_{n}$$
$$S = \ln[xG(x)]$$

DUE A. Jung

Quantum Observables

for Collider Physics

Initial State: Polarization of e-beam

- HERA demonstrated polarization is possible but challenging and timedependent!
- EIC will have improved methods...but
- Need high polarization for hadrons and electrons of > 70%

Quantum Observables

for Collider Physics

- Need both polarization directions present in the same fill to suppress systematics
- Spin need to be longitudinal in the IP
- Electron spin need to be vertical in the arcs

A. Jung

 Systematic uncertainties for entanglement proxies ?

Lots of opportunities ahead...

- ECFA (European Committee for Future Accelerators) matrix of experiment/detector" mapped to technologies / R&D (DRD)
- ECFA Detector R&D roadmap: https://cds.cern.ch/record/2784893

R&D collaborations

<u>US CPAD RDC's</u>

Quantum Observables

for Collider Physics

- Europe CERN DRD's
- → Just few examples, Get involved!

A. Jung

Personal bias...

 R&D efforts on low-mass support structures with integrated services for silicon detector systems

Basic Research Needs for High Energy Physics Detector Research & Development

A. Juna

ominal therm

Through-plane thermal conductivity of layer [W/mK

- Multi-functional composite structure
- Integration of cooling and other services into the support structures to reduce mass further
- Novel approach to mechanics design from inception phase of the detector
- Need to start early/ier with R&D...

Future Mechanics and R&D:

- "BlueSky Mechanics" for detectors at future Colliders (FCC, muon, LC, etc.) <u>https://arxiv.org/abs/2203.14347</u>
- 2. "CalVision" project for mechanics of dual readout calorimetry <u>https://arxiv.org/abs/2203.04312</u>

Want great physic's results – why should you care ?

- Future detectors are huge, "mechanics" is a significant fraction of material and also of the cost – serious risks related to raw and rare materials
- Substantial R&D in all areas to make FCC-ee/hh, muonC or others a reality
 - Interdisciplinary R&D can realize additional synergistic activities

Quantum Observables for Collider Physics

A. Jung

Lowest mass yet stiff and conductive (thermally and electrically) requires new approaches

https://arxiv.org/abs/2203.14347

Can improve b-ID efficiencies by ~2% per b-jet and high b-jet multiplicity ~10% (absolut!)
Significant improvement by novel approach, b-ID relevant for top & Higgs physics

Conclusions & Outlook

- Quantum entanglement/tomography (at high energy colliders)
 - New and exciting field of Quantum Information in HEP
 - New approach to test & challenge the SM

Quantum Observables

for Collider Physics

A. Jung

- Very interesting workshops (Oxford, $1/\sqrt{3}$ Purdue, Florencia)
- LHC: ATLAS measurement of entanglement in top quark events, non-trivial, complex "mixed-state" production
- Future e⁺e⁻ machines: carefully prepared initial state (including tunable beam polarization, except C³)
- e+e- seems promising scenarios to study QI problems

