Monte Carlo simulation of top spin correlations **Eleni Vryonidou**

erc

MANCHESTER 1824

Spin density matrix (again)

Tops produced in pairs have their spins S_i , S_j correlated

Spin density matrix:

$$\rho = \frac{1}{4} \Big(\mathbb{1} \otimes \mathbb{1} + \sum_{i=1}^{3} B_i \,\sigma_i \otimes \mathbb{1} + \sum_{i=j}^{3} \bar{B}_j \,\mathbb{1} \otimes \sigma_j + \sum_{i=1}^{3} \sum_{j=1}^{3} C_{ij} \,\sigma_i \otimes \sigma_j \Big)$$

15 parameters describe the quantum state of the top pair

Spin correlation observables

15 observables are independent and can all be measured by defining a set of axes Based on lepton decay angles

Boost to top rest Fra Need to reconstruct the top and and Lab observa

 $\Delta = |C_{kk} + C_{rr}| - C_{nn} - 1 > 0 \qquad \mathcal{C}[\rho] = \begin{cases} \Delta/2, & \Delta > 0 & \text{Entangled} \\ 0 & \Delta \le 0 & \text{Classical} \end{cases}$

	Observable	Coefficient	Coefficient function
	$\cos \theta_1^k$	B_1^k	b_k^+
	$\cos \theta_2^{\hat{k}}$	$B_2^{\overline{k}}$	$b_k^{\frac{\kappa}{2}}$
	$\cos \theta_1^{\overline{r}}$	$B_1^{\overline{r}}$	$b_r^{\tilde{+}}$
	$\cos \theta_2^{\hat{r}}$	$B_2^{\tilde{r}}$	b_r^-
	$\cos \theta_1^{\overline{n}}$	$B_1^{\overline{n}}$	b_n^+
	$\cos \theta_2^n$	$B_2^{\hat{n}}$	b_n^-
	$\cos \theta_1^k \cos \theta_2^k$	$\overline{C_{kk}}$	C _{kk}
	$\cos \theta_1^{\tilde{r}} \cos \theta_2^{\tilde{r}}$	C_{rr}	C _{rr}
	$\cos \theta_1^{\overline{n}} \cos \theta_2^n$	C_{nn}	C _{nn}
	$\cos heta_1^r \cos heta_2^k + \cos heta_1^k \cos heta_2^r$	$C_{rk} + C_{kr}$	C _{rk}
	$\cos heta_1^r \cos heta_2^k - \cos heta_1^k \cos heta_2^r$	$C_{rk} - C_{kr}$	C _n
	$\cos \theta_1^n \cos \theta_2^r + \cos \theta_1^r \cos \theta_2^n$	$C_{nr} + C_{rn}$	C _{nr}
	$\cos \theta_1^n \cos \theta_2^r - \cos \theta_1^r \cos \theta_2^n$	$C_{nr} - C_{rn}$	c_k
mee	$\cos heta_1^n \cos heta_2^k + \cos heta_1^k \cos heta_2^n$	$C_{nk} + C_{kn}$	c _{kn}
	$\cos \theta_1^n \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^n$	$C_{nk} - C_{kn}$	$-c_r$
ti ton	$\cos \varphi$	D	$-(c_{kk}+c_{rr}+c_{nn})/3$
11-10p	$\cos \varphi_{ m lab}$	$A^{ ext{lab}}_{\cos arphi}$	<u>—</u>
	$ \Delta \phi_{\ell\ell} $	$A_{ \Delta \phi_{\ell \ell} }$	<u> </u>
aDIES	$ \Delta\eta_{\ell\ell} $	$ \Delta\eta_{\ell\ell} $	

CMS: FTR-18-034-pas

GGI, 10/11/23

900

1000

b

Latest experimental measurements What has been measured?

Full density matrix measured inclusively by CMS

Entanglement observation by ATLAS

GGI, 10/11/23

What do we need from the Monte Carlo?

Measurements are always compared to SM predictions provided by MC generators MC also needed for calibration

- Preserves the spin information
- Higher order predictions
 - QCD corrections
 - EW corrections
 - Corrections to decays
- Off-shell effects
- Threshold effects/bound state effects
- Matching to the Parton Shower

GGI, 10/11/23

Current Monte Carlo hvq/MG5_aMC+MadSpin/bb4l

NLO Monte Carlo for top+anti-top (2->2) with spin correlations & LO decays bb4l includes 2->6 amplitudes (without demanding two tops)

Used Monte Carlo:

- hvq
- MG5_aMC@NLO+FxFx
- bb4l lacksquare

Used shower:

- Pythia8
- HW7

NLO generators

Label	tī
Generator	hvq [<mark>20</mark>]
Framework	POWHEG-BOX
NLO matrix elements	$t\bar{t}$
Decay accuracy	LO+PS
NLO radiation	Single
Spin correlations	Approx.
Off-shell $t\bar{t}$ effects	BW smearing
Wt and non-resonant effects	No
b Quark massive	Yes

Jezo et al arXiv:1607.04538

Same for MG5_aMC+MadSpin Includes single top backgrounds, which are FxFx is also allowing extra jet multiplicities removed for top pair production samples

$b\bar{b}4\ell$

bk	<mark>ه</mark> ط	1

POWHEG-BOX-RES $\ell^+ v_\ell l^- \bar{v}_l b \bar{b}$ NLO+PS	Decays in h the same al information	vq and N gorithm f from:	ladSpin are or preservi	e based on ng spin
Multiple	Frixione, La	enen. Mo	otvlinski an	d Webber.
Exact	.IHEP 0704	081 (20)	07) [hen-nk	/07021981
Exact		, 001 (20		
Exact		LO QCD	NL	O QCD
Yes			Real emission	Virtual correctio
	$t \bar{t}$ kinematics	\checkmark	\checkmark	\checkmark
	$t\bar{t}$ spin state	1	1	Approximate

	LO QCD	NLO QCD	
		Real emission	Virtual corrections
 $t\bar{t}$ kinematics	\checkmark	\checkmark	\checkmark
$t\bar{t}$ spin state	\checkmark	\checkmark	Approximate

How well does NLO MC describe the data? Example 1: Δφ distribution

Disagreement with NLO Monte Carlo at inclusive/parton-level Systematic shape difference Has this been fixed by NNLO? Or is this something else?

NNLO results $\Delta \phi @NNLO$

 $d\sigma^{
m NI}$

Behring at al arXiv:1901.05407 Eleni Vryonidou

NNLO production+ NNLO decay

^{NLO} =
$$d\sigma^{\text{NNLO} \times \text{LO}} + d\sigma^{\text{LO} \times \text{NNLO}} + d\sigma^{\text{NLO} \times \text{NLO}}$$

- $\frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} d\sigma^{\text{NLO}} - \frac{\left(\Gamma_t^{(1)}\right)^2 + 2\Gamma_t^{(0)}\Gamma_t^{(2)}}{\left(\Gamma_t^{(0)}\right)^2} d\sigma^{\text{LO}}.$

An important finding of the present work is that data extrapolation to full phase space with existing event generators seems not to be compatible with the direct NNLO QCD calculation. We believe that thanks to the very high precision of both theory predictions and experimental measurements we begin to see clear evidence that top quark measurements begin to resolve and constrain such delicate modeling effects.

Behring at al arXiv:1901.05407

Spin density matrix@NNLO

Coefficient	LO (× 10^3)	NLO ($\times 10^3$)	NNLO ($\times 10^3$)	CMS $(\times 10^3)$
B_1^k	$1^{+0}_{-0}[m sc]\pm 1[m mc]$	$1^{+0}_{-1}[m sc]\pm 2[m mc]$	$-1^{+0}_{-1}[m sc]\pm 4[m mc]$	5 ± 23
B_1^r	$0^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$0^{+1}_{-0}[{ m sc}]\pm 2[{ m mc}]$	$0^{+1}_{-2}[{ m sc}]\pm 2[{ m mc}]$	-23 ± 17
B_1^n	$0^{+0}_{-0}[m sc]\pm 1[m mc]$	$3^{+1}_{-1}[m sc]\pm 1[m mc]$	$4^{+1}_{-0}[{ m sc}]\pm 3[{ m mc}]$	6 ± 13
B_2^k	$0^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$0^{+0}_{-1}[m sc]\pm 1[m mc]$	$-5^{+2}_{-3}[m sc]\pm 3[m mc]$	7 ± 23
B_2^r	$0^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$0^{+2}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$-2^{+0}_{-1}[m sc]\pm 2[m mc]$	-10 ± 20
B_2^n	$0^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$-2^{+0}_{-1}[m sc]\pm 1[m mc]$	$-3^{+1}_{-0}[m sc]\pm 3[m mc]$	17 ± 13
C_{kk}	$324^{+7}_{-7}[m sc]\pm 1[m mc]$	$330^{+2}_{-2}[{ m sc}]\pm 3[{ m mc}]$	$323^{+2}_{-5}[{ m sc}]\pm 6[{ m mc}]$	300 ± 38
C_{rr}	$6^{+5}_{-5}[{ m sc}]\pm 1[{ m mc}]$	$58^{+18}_{-12}[{ m sc}]\pm 2[{ m mc}]$	$69^{+8}_{-7}[{ m sc}]\pm 3[{ m mc}]$	81 ± 32
C_{nn}	$332^{+1}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$330^{+1}_{-1}[{ m sc}]\pm 2[{ m mc}]$	$326^{+1}_{-1}[{ m sc}]\pm4[{ m mc}]$	329 ± 20
$C_{nr} + C_{rn}$	$1^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$-1^{+1}_{-0}[m sc]\pm 3[m mc]$	$-4^{+4}_{-0}[m sc]\pm 6[m mc]$	-4 ± 37
$C_{nr}-C_{rn}$	$0^{+0}_{-1}[m sc]\pm 1[m mc]$	$-1^{+1}_{-0}[m sc]\pm 2[m mc]$	$2^{+4}_{-2}[{ m sc}]\pm 8[{ m mc}]$	-1 ± 38
$C_{nk} + C_{kn}$	$0^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$2^{+1}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$3^{+4}_{-1}[{ m sc}]\pm 3[{ m mc}]$	-43 ± 41
$C_{nk} - C_{kn}$	$1^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$1^{+1}_{-1}[m sc]\pm 2[m mc]$	$6^{+0}_{-2}[{ m sc}]\pm7[{ m mc}]$	40 ± 29
$C_{rk} + C_{kr}$	$-229^{+4}_{-4}[m sc]\pm 1[m mc]$	$-203^{+9}_{-7}[{ m sc}]\pm 2[{ m mc}]$	$-194^{+8}_{-6}[m sc]\pm7[m mc]$	-193 ± 64
$C_{rk} - C_{kr}$	$1^{+0}_{-0}[{ m sc}]\pm 1[{ m mc}]$	$1^{+0}_{-1}[m sc]\pm 4[m mc]$	$-1^{+1}_{-3} [sc] \pm 5 [mc]$	57 ± 46

Czakon, Mitov, Poncelet arXiv:2008.11133

- Perturbative series (QCD) under control
- Very small corrections at the inclusive level
- •NNLO results within scale uncertainties of NLO results
- Agreement with CMS measurement

Czakon, Mitov, Poncelet arXiv:2008.11133

NNLO+PS **MINNLOps**

A new computation:

- NNLO accuracy for tt observables
- NLO for tt+j
- LO for tt+2j

Mazzitelli et al, arXiv:2112.12135

Tree-level decay as in hvq

Decay implementation validated against MadSpin

Mazzitelli et al, arXiv:2112.12135

GGI, 10/11/23

NNLO+PS MiNNLOps

Better agreement with data Implementation publicly available

GGI, 10/11/23

NLO EW How about EW corrections?

		Unexpanded		Exp	anded
Asymmetry	LO QCD $[\%]$	NLO QCD $[\%]$	NLO QCD+EW $[\%]$	NLO QCD $[\%]$	NLO QCD+EW [%]
A_C^{tt}	0	$0.453(5)^{+28.2\%}_{-20.5\%}~^{+3.4\%}_{-3.4\%}$	$0.546(6)^{+25.1\%}_{-18.0\%}~^{+2.4\%}_{-2.4\%}$	$0.62(2)^{+18.1\%}_{-14.8\%}~^{+3.3\%}_{-3.3\%}$	$0.73(3)^{+13.8\%}_{-11.5\%}~^{+2.3\%}_{-2.3\%}$
$A_C^{\ell\ell}$	0	$0.27(2)^{+29.3\%}_{-21.4\%}~^{+3.8\%}_{-3.8\%}$	$0.33(3)^{+25.0\%}_{-17.8\%}~^{+3.8\%}_{-3.8\%}$	$0.36(3)^{+19.3\%}_{-15.9\%}~^{+3.7\%}_{-3.7\%}$	$0.45(4)^{+14.6\%}_{-12.0\%}~^{+3.9\%}_{-3.9\%}$
$A_{\Delta\Phi}$	$17.51(1)^{+3.2\%}_{-2.8\%} {}^{+0.4\%}_{-0.4\%}$	$12.65(2)^{+8.3\%}_{-14.8\%} {}^{+0.4\%}_{-0.4\%}$	$12.42(3)^{+8.7\%}_{-15.5\%}~^{+0.4\%}_{-0.4\%}$	$10.88(3)^{+7.2\%}_{-10.1\%}~{}^{+0.3\%}_{-0.3\%}$	$10.58(4)^{+7.4\%}_{-10.5\%}~^{+0.4\%}_{-0.4\%}$
$A_{\Delta heta}$	$14.63(1)^{+4.0\%}_{-4.6\%}~^{+1.5\%}_{-1.5\%}$	$16.03(2)^{+4.0\%}_{-2.2\%}~^{+1.4\%}_{-1.4\%}$	$16.24(2)^{+4.1\%}_{-2.2\%}~^{+1.4\%}_{-1.4\%}$	$16.54(3)^{+2.9\%}_{-1.7\%}~^{+1.3\%}_{-1.3\%}$	$16.83(4)^{+2.8\%}_{-1.5\%}~^{+1.3\%}_{-1.3\%}$

Frederix, Tsinikos, Vitos arXiv:2105.11478

Small EW corrections to the asymmetries

$$\mathscr{O} = \frac{\sigma_{\mathscr{O}}}{\sigma} = \frac{\sigma_{\mathscr{O},\text{NLO}}^{\text{QCD}+\text{EW}}}{\sigma_{\text{NLO}}^{\text{QCD}+\text{EW}}} \qquad \qquad \mathscr{O}_{\text{NLO}}^{\text{QCD}} = \frac{N_{\text{NLO}}^{\text{QCD}}}{D_{\text{NLO}}^{\text{QCD}}} \qquad \qquad \text{unexpanded}$$

$$\tilde{\mathscr{O}}_{\rm NLO}^{\rm QCD+EW} = K_{\rm NLO}^{\rm QCD} \mathscr{O}_{\rm NLO}^{\rm QCD+EW} + (1 - K_{\rm NLO}^{\rm QCD}) \frac{N_{\rm LO}^{\rm QCD}}{D_{\rm LO}^{\rm QCD}}$$

expanded

NLO EW How about EW corrections?

		Unexpanded		
	LO QCD $[\%]$	NLO QCD $[\%]$	NLO QCD+EW [%]	
C_{kk}	$32.68(3)^{+1.5\%}_{-1.7\%}~^{+0.8\%}_{-0.8\%}$	$32.88(3)^{+1.3\%}_{-0.4\%}~^{+0.7\%}_{-0.7\%}$	$32.69(5)^{+1.1\%}_{-0.4\%}~^{+0.7\%}_{-0.7\%}$	
C_{nn}	$33.01(3)^{+0.3\%}_{-0.5\%}~^{+0.2\%}_{-0.2\%}$	$31.97(3)^{+0.9\%}_{-1.1\%}~^{+0.2\%}_{-0.2\%}$	$31.89(5)^{+0.9\%}_{-1.3\%}~^{+0.2\%}_{-0.2\%}$	
C_{rr}	$0.71(3)^{+45.1\%}_{-51.5\%}~^{+3.2\%}_{-3.2\%}$	$4.80(3)^{+28.9\%}_{-19.2\%}~^{+2.8\%}_{-2.8\%}$	$4.83(5)^{+29.4\%}_{-19.4\%}~^{+2.5\%}_{-2.5\%}$	
$C_{nr} + C_{rn}$	$-0.02(4)^{+18.4\%}_{-18.8\%}~^{+1.0\%}_{-1.0\%}$	$0.002(50)^{+0\%}_{-0\%}~^{+0\%}_{-0\%}$	$0.08(7)^{+60.6\%}_{-59.7\%}~^{+3.8\%}_{-3.8\%}$	
$C_{nr} - C_{rn}$	$0.02(4)^{+10.5\%}_{-12.0\%}~^{+1.8\%}_{-1.8\%}$	$-0.05(4)^{+29.9\%}_{-53.6\%}~^{+4.0\%}_{-4.0\%}$	$-0.08(7)^{+34.1\%}_{-54.3\%}~^{+8.3\%}_{-8.3\%}$	
$C_{nk} + C_{kn}$	$-0.02(4)^{+13.1\%}_{-10.3\%}~^{+3.3\%}_{-3.3\%}$	$-0.004(60)^{+0\%}_{-0\%}~^{+0\%}_{-0\%}$	$-0.14(9)^{+30.8\%}_{-40.6\%}~^{+5.1\%}_{-5.1\%}$	
$C_{nk} - C_{kn}$	$-0.004(40)^{+54.1\%}_{-59.2\%}~^{+3.3\%}_{-3.3\%}$	$-0.03(6)^{+79.7\%}_{-80.1\%}~^{+13.9\%}_{-13.9\%}$	$0.12(9)^{+13.7\%}_{-11.4\%}~^{+4.0\%}_{-4.0\%}$	
$C_{rk} + C_{kr}$	$-22.87(4)^{+1.5\%}_{-1.5\%}~^{+0.4\%}_{-0.4\%}$	$-20.51(6)^{+3.8\%}_{-2.8\%}~^{+0.4\%}_{-0.4\%}$	$-20.48(9)^{+4.1\%}_{-2.9\%}~^{+0.4\%}_{-0.4\%}$	
$C_{rk} - C_{kr}$	$0.02(4)^{+17.2\%}_{-15.7\%}~^{+5.1\%}_{-5.1\%}$	$-0.13(6)^{+18.1\%}_{-30.7\%}~^{+2.2\%}_{-2.2\%}$	$0.09(9)^{+52.4\%}_{-29.4\%}~^{+4.7\%}_{-4.7\%}$	

Frederix, Tsinikos, Vitos arXiv:2105.11478

Small corrections to the Spin Correlation coefficients NLO EW results fall with the uncertainties of the NLO QCD predictions

Frederix, Tsinikos, Vitos arXiv:2105.11478

0

 $\cos \Delta \theta_{\ell \ell}$

-0.5

-1

Modelling the decay NLO in the decay?

Most currently used MC e.g. hvq, MG5_aMC have LO decays Could corrections in the decays have an impact?

QCD order / $[\%]$	C_{kk}	C_{nn}	C_{rr}
NLO × NLO 2008.11133	33.0(3)	33.0(2)	5.8(2)
$NLO \times LO (MCFM)$	33.04(4)	33.09(4)	5.96(4)

How about the virtual corrections?

	LO QCD $[\%]$	NLO
C_{kk}	$32.68(3)^{+1.5\%}_{-1.7\%}~^{+0.8\%}_{-0.8\%}$	$32.88(3)^{+1}_{-0}$
C_{nn}	$33.01(3)^{+0.3\%}_{-0.5\%}~^{+0.2\%}_{-0.2\%}$	$31.97(3)^{+0.1}_{-1.1}$
C_{rr}	$0.71(3)^{+45.1\%}_{-51.5\%}~^{+3.2\%}_{-3.2\%}$	$4.80(3)^{+28.}_{-19.}$

Frederix, Tsinikos, Vitos arXiv:2105.11478

Small impact on Spin Correlation coefficients relevant for entanglement measurement

25% difference between the value of C_rr due to approximation of virtual corrections (in MadSpin and Hvq) **Relevant?**

Parton shower dependence

ATLAS-CONF-2023-069

Big difference in low mass region • Does this happen for other spin observables? • Why is this region affected by the shower ordering? Does this go away with vetoing additional radiation?

Threshold issues? Bound state

Not included in current MC but a very localised effect Split 340-380 GeV interval? Approximate effect by reweighting?

GGI, 10/11/23

Conclusions

- Significant advances in theory calculations of spin correlation observables over the last years
- Important to evaluate impact of higher order effects as well as approximations in existing Monte Carlo
- Eventually MC should include more physics effects, interesting to see if any of these will resolve the difference between MC and data

Thank you for your attention

Eleni Vryonidou

GGI, 10/11/23

