INEN

TRIESTE

Unfolding Methods

in Particle Physics for Quantum Information Observables

e Michele Pinamonti —
(INFN Trieste, University of Udine, ICTP Trieste)

" Quantum Observables for Collider Physics

GGI Florence, 10 Nov 2023




What is unfolding about?

e Unfoldingis:
o removal of "imperfect measurement device" effects from observed distribution,
to extract (our best-guess of) underlying true distribution
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e Inthe case of collider physics "imperfect measurement device" effects include:
o detector resolution
ffici . Interesting readings:
o acceptance / efficiency corrections Slides by Glen Cowan,
o parton-to-particle level evolution proceedings by Stefan Schmitt
. . . . (unbiased selection)
o final-state reconstruction or combinatorial background



https://www.pp.rhul.ac.uk/~cowan/stat/weizmann15/cowan_weizmann15_4.pdf
https://arxiv.org/abs/1611.01927v1
https://indico.phys.ethz.ch/event/5/contributions/52/attachments/35/47/slides.pdf
https://indico.phys.ethz.ch/event/5/contributions/52/attachments/35/47/slides.pdf

Why does unfolding matter here?

Testing Bell inequalities at the LHC with top-quark pairs

M. Fabbrichesif, R. Floreaninif, and G. Panizzo*

https://arxiv.ora/abs/2102.11883

Quantum tops at the LHC: from entanglement to Bell
inequalities

Claudio Severi! 2, Cristian Degli Esposti Boschi®#* P, Fabio Maltoni®>*® ¢, and Maximiliano Sioli%* ¢

https://arxiv.org/abs/2110.10112

e Main difference ™ tracked down to come from

We find that, under such conditions, the null hypoth-
esis and the violation of Eq. (3) can be assessed at the
98% CL with present Run II luminosity. Moreover, after
rescaling this result by the projected luminosity of the
LHC full Run III, we expect that it will be possible to
test the violation at the 99.99% CL (4o significance).
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different evaluation of resolution effect from tt reconstruction + unfolding to parton level

(*): other details matter as well, like definition of observable, exact selection applied, simultaneous fit to several bins...



https://arxiv.org/abs/2110.10112
https://arxiv.org/abs/2102.11883

To unfold or not to unfold?

e Aswe will see, unfolding can bring P e e ane
. 0161 s = 13 Tev e m, = 1705 GeV
technical and/or conceptual problems 08 selection — = 1725 GoV ]
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e Alternative approaches:
o Detector-level template fit:
m measurement extracted from comparison
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2017-17/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-069/

Advantages of "proper” unfolding

e So, why doing unfolding?
o the key is reusability!

HERE'S MY RESULT:
RE' R :
HERE'S MY RESULT OH, THAT'S CooLt
IT's 42 1 WHICH MODEL DID YOU
USE TO GET IT?

THANKS!
FEEL FREE TO GO FOR A
THE ONE YOU GAVE
ME SOYEAQ% AG’?)“. . N FOLDE LONG VACATION THEN.
WELL... THAT'S PRETTY ‘IJL‘-;IU ?‘-Dl D ) WILL HAVE ENOUGH TO
% OLD... TO MAKE YOUR DISTRIBUTION! % DO FOR THE NEXT
RESULT USEFUL, CAN YOU 10 YEARS...

RE-RUN THE ANALYSIS
WITH MY FRESH NEwW

EHM... SORRY, I'M MODEL?
MOVING TO INDUSTRY
AS OF TOMORROW...

e Some of the other possible advantages:
o combination of more information (more channels, signal regions, bins...)
o improve precision by inserting well-motivated bias (regularization)
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How does unfolding work: the binned case

e With binned distributions: d=> M
i J
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e The unfolding problem can be essentially reduced to a response-matrix-inversion problem
e (Can be done to extract:

o total-phase-space or fiducial-phase-space cross-sections

o cross-sections vs. variable defined at particle-level or at parton-level n


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2018-15/

Naive unfolding: matrix inversion or maximum likelihood

OK, THAT'S EASY THEN! e Matrix inversion gives a simple solution to the
FLL JUST USE M unfolding problem:

_ 1
~ g Zijwij q,

e Numerically, the same result can be obtained via maximume-likelihood principle:

L(t,)~exp[ =%, (d, X, M, 1)?]

o T here treated as free-floating parameters
o best-fit values of T, gives the unfolded distribution

e Note: maximum-likelihood can be used for unfolding with non-square M matrix (N

>
reco-bins Ntruth—bins )
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What about background and systematics?

e Background:
o background needs to be subtracted from observed data before unfolding

|

=Y, M (d-b)

ij I

e Systematic uncertainties:
o where are they entering the game?
m response matrix M
m background estimation b




Naive unfolding issues...

e Matrix-inversion (or maximum-likelihood) can produce results with large "oscillations"
o such amplification of statistical fluctuations is is related to off-diagonal elements in M

Reconstructed
>
¢
B30k = —mcwo < Truth correlation coefficients
g Dbackground é %’ - MC %
%200 % 2 i - data
< i 3 O -=- inversion = O
= [ test wrt data: > —
100 < le1 6=0.8 prob=0.701 | 2 [
2 50001 5| o
2 =)
— e - S 2
migration probabilities =
> s Q
o I 1 .l s
oy 7
& e . 0
~ .5
CL’_ -. 4
- 3
5 22
4

Overflow bin

P,/ GeV P.(gen) / GeV

20 40 credits: Stefan Schmitt

P;(gen)/ GeV a



https://arxiv.org/abs/1611.01927v1

Ways to overcome oscillations

e Possible ways to mitigate to statistical fluctuation amplification in unfolding:

o "let's ignore the off-diagonal elements in M"
— bin-by-bin correction factors

o "let's reduce off-diagonal elements in M"
— experimental resolution improvement |
— binning optimisation x|

COMESON!
UL’FOLD, YOU--

o "let's add more information”
— maximum-likelihood unfolding with N

>
co-bins Ntruth—bins

o "let's just dump these oscillations"
— regularisation

~



The reqularization idea

e Regularization in unfolding means adding external constraints in order to dump oscillations

e Simple example the maximum likelihood formalism:

L(t;)~exp[—x~ ]

where

02 =3, (d =%, M t)/d 417y (11

yJj

e More in general (Tikhonov regularization):
=, K with  x.° =(t—t")'R'R(t—1")
N

\ bias vector

Tikonov factor controlling regularization strength regularization condition matrix
(more often used 2" derivative constraint)




Regularization in action
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https://arxiv.org/abs/1611.01927v1

Unfolding checks: variance vs. bias

e Regularisation, in any form, introduces a bias:

o external information is added to the system, in the form of prior probability distribution of
parameters or relationships between them (e.g. constraint on distribution smoothness)

e Bias is usually quantified with a number of stress-tests:
o basic (but pretty general) example:
m pseudo-data produced by folding (with M) alternative truth-distribution t ),
to obtain a detector-distribution d'

m this d"unfolded (keeping M and regularization built with nominal model)
to obtain t'

m Jdifference t'-t,' quantifies bias

e Strength of regularization usually determined by minimizing bias and at the same time
minimizing variance (i.e. statistical uncertainty, i.e. expected statistical fluctuations)

~



lterative Bayesian Unfolding (IBU) <

e Uses Bayes theorem iteratively: Systematics: ,
e notincluded in the
tata ece)  response formalism
distribution matrix e accessed via "ensemble test"

p(T|D,M) e LDIT,M)-n(T)
. ~ J . e J g,—J

posterior likelihood prior

o prior based on theoretical prediction in first iteration p1(T|D) x L - n(T)

o following iterations use result of previous ones as prior ‘ p2(T|D) L - p1(T|D)

12

p3(T|D) o< L - po(T|D)
5 s
g 11p unfolding
£ Regularization:
5 1Or T uctuations e achieved by stopping after a few iterations
< = build up : . . . . .
| g/ (N.., — « = unregularized unfolding, i.e. matrix inversion)
SR e finding optimal stopping point
S is an important feature of using IBU

Number of iterations m


https://arxiv.org/pdf/1010.0632.pdf

Interlude: Profile Likelihood Fit (PLF)

e An approach to properly include systematic uncertainties in maximume-likelihood fits:
o include systematic uncertainties as unknown parameters in the model:
m nuisance parameters modifying expectations in a parametric way
o prior probabilities on values of nuisance parameters to reflect limited knowledge

e The binned profile-likelihood:

Gaussian
data Poisson (or other pdf...)

N - | S I /
L(n | 6, k) =TI, P(n,| S(0, ky+B (6, k))  T1, G(6)

_ / v !

. . data events  prediction in bin i constraint term
constrained parameters: C : :

; in bin i (signal+background) for nuisance
nuisance parameters (NPs) arameter i
associated to systematic P J
uncertainties unconstrained parameters:

parameter of interest (POI or “p”) + unconstrained nuisance

parameters (e.g. background normalization parameters) n



Nuisance parameters and systematic uncertainties

normal distribution

Each (independent) source of systematic uncertainty =
included in the likelihood as b
constrained nuisance parameters (NPs): -
o affecting S+B prediction in a coherent way b
o effectinterpolated and extrapolated
from 3 discrete values S
(0 = nominal, 1 ="“up”var., -1 =“down” var.) Tt 5

to range of continuous values

L(n | 5, ]:) =, P(n_| Si(79,7c)+Bi(79,7c)) X Hj G(@j ) 2log(L)

e The fit procedure becomes a multi-dimensional
Likelihood maximisation problem
o the fit result is not just the value (and uncertainty)
on parameter(s) of interest (POI), but a set of values for A A
all the parameters, including nuisance parameters: ([, 0o, ...0n—-1) : L(f1,0) = mazx




Profile Likelihood Unfolding (PLU)

e Unfolding can be handled with the profile-likelihood method
e How does it work?
o  profile-likelihood unfolding
o basicidea very simple:
m reco distribution is a function of the differential cross-section, i.e.
the N parameters of interest (POIs), where N is the number of truth-distribution bins:

L(n| 0.k, 0,...0,) = [1,P(n,| S0, k. 0,,....0,)+B 0. k)) * [, G(0)

or
L(n | 0, K, ptpeost) = 1, POL| SO, ks et )¥B (0, 1)) X [T, G(O)
with p = signal strengths for the different truth bins (o, =y, 0,

unfolding = maximum-likelihood fit to find best-fit values of 0,,...,0
systematics included in the same (natural) way as usual PLF

ﬁ
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Profile likelihood unfolding in action

e CMS Top mass from tt+1jet differential cross-section JHEP 07 (2023) 077
-1
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https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-008/index.html

Profile likelihood unfolding in action (ll)

e ATLAS ttW differential cross-section measurement ATLAS-CONF-2023-019
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-019/

Unfolding for Entanglement
& Bell inequalities - The ideal case -

e (T — dilep case
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https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-006/index.html
https://arxiv.org/abs/2102.11883

Reality - so far...

e Why didn't do unfoldind for the ATLAS result?
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Where could profile-likelihood unfolding help?

e When background is large:
o main use-case: H — WW'!
o can have in-situ background constraints

lllllll||I||||I|||||l|||[l'|||l
ATLAS Preliminary 4 Data  \\ Uncertainty
3000F-5 = 13 Tev, 139 b W, HH.
H - WW* — evuv BotherH  ttimt
AEw Nz

[ Misid [l Other vv

Events / 0.2 rad

e To constrain systematic uncertainties:
o in case we get dominated by systematics
that we are allowed to constraint
© need Nreco—bins - Ntruth—bins

(which, by the way, mitigates oscillations...)

Unit norm.

e To sensibly combine different channels:

X 1 1.5 2 2
o different decay channels see A. Barr talk A¢. [rad]

o event categories with different purities or resolution...
o combination giving single unfolded distribution to be used to extract the result(s)

ﬁ


https://agenda.infn.it/event/34555/contributions/212398/attachments/112609/160987/Barr-GGI_2023.pdf

correlation coefficients

To reqularize or not to reqularize?

e Results can look "unphysical”, even if they are "correct™:
o estimated t,are strongly (anti-)correlated
o  zero bias by definition:
m Dby folding back the obtained distribution,
we re-obtain he reco-data

m by unfolding an alternative reco-pseudo-data,
we obtain the correspondent alternative truth-distribution

P;(gen)/ GeV

P.(gen)/ GeV

e Then, do we really need to use regularization, > —Mmc S
. . . - data ]

or can we just use unregularized unfolding? O -=inversion £ L

~ test wrt data: = <,

;:'; 500 %2/16=0.8 prob=0.701 % =]

. . N . > B = &L

o extraction of quantities from unfolded distribution < 8 -
can/should properly take into account correlations! -

o however: important to consider numerical precision
of result when strong (anti-)correlations are involved...

P; / GeV a



https://arxiv.org/abs/1611.01927v1

Is unfolding model-independent?

e Is unfolding safer than calibration curve?

e Isunfolding procedure independent on underlying physics we want to test?
o atleast the unregularized one?

e Actually, response matrix built with SM Monte Carlo...
o different hypotheses for underlying physics could in general change it!
o relevant specific case:
m would a hypothetical "entanglement-off" MC sample lead to the same response matrix?

|
tj: Zi M’j_] (di' bi)
|

e |n addition: background could also depend on underlying physics...

~



Other kinds of unfolding

e Other classical unfolding methods exist:

Detector-level Particle-level

o Fully Bayesian Unfolding = Data Truth
o  SVD unfolding *23 \/)‘\\ Y~
o) \ AN
i . Step 1: Step 2:
e In addition, new unfolding methods being developed: e B
Vp—1 ata) Wn Vn—1 l} Vn

Pull Weights

Simulation | | Generation

- -

o OmniFold Phys. Rev. Lett. 124, 182001 (2020)
(Nachman, Andreassen, Komiske, Metodiev, Thaler)
m unbinned unfolding
m based on iterative machine-learning reweighting

P N—

Push Weights

Synthetic

o Unfolding via Quantum Annealing Tme
|. High Energ. Phys. 2019, 128 (2019) (Cormier, Di Sipio, Wittek)

m likelihood-based regularized unfolding

on a quantum computer i3

L

Measured

S Distribution
izin
Distribution Quantum
Processing Unit



https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/1908.08519

Time for discussion!
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