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What is unfolding about?
● Unfolding is:

○ removal of  "imperfect measurement device" effects from observed distribution, 
to extract (our best-guess of) underlying true distribution

 

● In the case of collider physics "imperfect measurement device" effects include: 
○ detector resolution
○ acceptance / efficiency corrections
○ parton-to-particle level evolution
○ final-state reconstruction or combinatorial background

Interesting readings: 
slides by Glen Cowan, 
proceedings by Stefan Schmitt
(unbiased selection)
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Detector-level distribution Truth-level distribution

https://www.pp.rhul.ac.uk/~cowan/stat/weizmann15/cowan_weizmann15_4.pdf
https://arxiv.org/abs/1611.01927v1
https://indico.phys.ethz.ch/event/5/contributions/52/attachments/35/47/slides.pdf
https://indico.phys.ethz.ch/event/5/contributions/52/attachments/35/47/slides.pdf


Why does unfolding matter here?

● Main difference (*) tracked down to come from 
different evaluation of resolution effect from tt̄ reconstruction + unfolding to parton level

https://arxiv.org/abs/2110.10112 

https://arxiv.org/abs/2102.11883 

(*): other details matter as well, like definition of observable, exact selection applied, simultaneous fit to several bins...
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https://arxiv.org/abs/2110.10112
https://arxiv.org/abs/2102.11883


To unfold or not to unfold?
● As we will see, unfolding can bring 

technical and/or conceptual problems

● Alternative approaches:
○ Detector-level template fit:

■ measurement extracted from comparison 
of templates for each tested hypothesis

■ templates obtained either via MC simulation 
or through "folding"

○ Calibration curve:
■ measurement extracted 

at detector level
■ obtained value corrected 

via calibration curve
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JHEP 06 (2023) 019

ATLAS-CONF-2023-069

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2017-17/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-069/


Advantages of "proper" unfolding
● So, why doing unfolding?

○ the key is reusability!

 

● Some of the other possible advantages:
○ combination of more information (more channels, signal regions, bins...)
○ improve precision by inserting well-motivated bias (regularization)
○ ...
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HERE'S MY RESULT: 
IT's 42 ! OH, THAT'S COOL!

WHICH MODEL DID YOU 
USE TO GET IT?

THE ONE YOU GAVE 
ME 5 YEARS AGO... WELL... THAT'S PRETTY 

OLD... TO MAKE YOUR 
RESULT USEFUL, CAN YOU 
RE-RUN THE ANALYSIS 
WITH MY FRESH NEW 
MODEL?EHM... SORRY, I'M 

MOVING TO INDUSTRY 
AS OF TOMORROW...

HERE'S MY RESULT:

FULLY UNFOLDED 
DISTRIBUTION!

THANKS!
FEEL FREE TO GO FOR A 
LONG VACATION THEN.
I WILL HAVE ENOUGH TO 
DO FOR THE NEXT 
10 YEARS...



How does unfolding work: the binned case
● With binned distributions:   di = ∑ j  Mij tj

● The unfolding problem can be essentially reduced to a response-matrix-inversion problem
● Can be done to extract:

○ total-phase-space or fiducial-phase-space cross-sections
○ cross-sections vs. variable defined at particle-level or at parton-level
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detector-level 
(or "reco-level") 

distribution

truth-level
(particle-level 

or parton-level)
distribution

response 
matrix

Eur. Phys. J. C 79 (2019) 1028

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2018-15/


Naive unfolding: matrix inversion or maximum likelihood

● Numerically, the same result can be obtained via maximum-likelihood principle:
 

L( tj  ) ~ exp[ – ∑i ( di – ∑ijMij tj )
2 ]

○ Tj here treated as free-floating parameters
○ best-fit values of Tj gives the unfolded distribution

● Note: maximum-likelihood can be used for unfolding with non-square M matrix (Nreco-bins > Ntruth-bins )
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OK, THAT'S EASY THEN!
I'LL JUST USE M-1

● Matrix inversion gives a simple solution to the 
unfolding problem:
 

tj = ∑ i  Mij
-1 di



What about background and systematics?
● Background:

○ background needs to be subtracted from observed data before unfolding

● Systematic uncertainties:
○ where are they entering the game?

■ response matrix M
■ background estimation b

8

tj = ∑ i  Mij
-1 (di - bi )



Naive unfolding issues...
● Matrix-inversion (or maximum-likelihood) can produce results with large "oscillations"

○ such amplification of statistical fluctuations is is related to off-diagonal elements in M
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credits: Stefan Schmitt

https://arxiv.org/abs/1611.01927v1


Ways to overcome oscillations
● Possible ways to mitigate to statistical fluctuation amplification in unfolding:

○ "let's ignore the off-diagonal elements in M"
→ bin-by-bin correction factors

○ "let's reduce off-diagonal elements in M"
→ experimental resolution improvement
→ binning optimisation

○ "let's add more information"
→ maximum-likelihood unfolding with Nreco-bins > Ntruth-bins

○ "let's just dump these oscillations"
→ regularisation
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The regularization idea
● Regularization in unfolding means adding external constraints in order to dump oscillations

● Simple example the maximum likelihood formalism:

L( tj  ) ~ exp[ – χ 2 ]
where

χ 2 = ∑i ( di – ∑ij Mij tj  )
2/di + τ 2 ∑ j ( tj – tj

0 )2

● More in general (Tikhonov regularization):

χ 2 = χ0
2 + τ 2 χR

2 with      χR
2 = ( t – t 0 )TRTR ( t – t 0 )
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regularization condition matrix
(more often used 2nd derivative constraint)

Tikonov factor controlling regularization strength

bias vector



Regularization in action
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https://arxiv.org/abs/1611.01927v1


Unfolding checks: variance vs. bias
● Regularisation, in any form, introduces a bias:

○ external information is added to the system, in the form of prior probability distribution of 
parameters or relationships between them (e.g. constraint on distribution smoothness)

● Bias is usually quantified with a number of stress-tests:
○ basic (but pretty general) example:

■ pseudo-data produced by folding (with M) alternative truth-distribution t0', 
to obtain a detector-distribution d'

■ this d' unfolded (keeping M and regularization built with nominal model) 
to obtain t'

■ difference t'-t0' quantifies bias

● Strength of regularization usually determined by minimizing bias and at the same time 
minimizing variance (i.e. statistical uncertainty, i.e. expected statistical fluctuations)
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Iterative Bayesian Unfolding (IBU)
● Uses Bayes theorem iteratively:

○ prior based on theoretical prediction in first iteration
○ following iterations use result of previous ones as prior
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https://arxiv.org/pdf/1010.0632.pdf 

true 
distribution

data (“reco”) 
distribution response 

matrix

posterior likelihood prior

Systematics:
● not included in the 

formalism
● accessed via "ensemble test"

Regularization:
● achieved by stopping after a few iterations

(Niter → ∞ ⇒ unregularized unfolding, i.e. matrix inversion)
● finding optimal stopping point 

is an important feature of using IBU

https://arxiv.org/pdf/1010.0632.pdf


Interlude: Profile Likelihood Fit (PLF)
● An approach to properly include systematic uncertainties in maximum-likelihood fits:

○ include systematic uncertainties as unknown parameters in the model:
■ nuisance parameters modifying expectations in a parametric way

○ prior probabilities on values of nuisance parameters to reflect limited knowledge

● The binned profile-likelihood:

L(n | θ, k) = ∏i P(ni | Si(θ, k)+Bi(θ, k)) × ∏j G(θj)
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data

data events 
in bin iconstrained parameters:

nuisance parameters (NPs) 
associated to systematic 
uncertainties unconstrained parameters:

parameter of interest (POI or “µ”) + unconstrained nuisance 
parameters (e.g. background normalization parameters)

Poisson

prediction in bin i  
(signal+background)

Gaussian
(or other pdf...)

constraint term 
for nuisance 
parameter j



Nuisance parameters and systematic uncertainties

L(n | θ, k) = ∏i P(ni | Si(θ, k)+Bi(θ, k)) × ∏j G(θj)

● The fit procedure becomes a multi-dimensional 
Likelihood maximisation problem

○ the fit result is not just the value (and uncertainty) 
on parameter(s) of interest (POI), but a set of values for 
all the parameters, including nuisance parameters:
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● Each (independent) source of systematic uncertainty 
included in the likelihood as 
constrained nuisance parameters (NPs):

○ affecting S+B prediction in a coherent way
○ effect interpolated and extrapolated 

from 3 discrete values 
(0 = nominal, 1 = “up” var., -1 = “down” var.) 
to range of continuous values

normal distribution



Profile Likelihood Unfolding (PLU)
● Unfolding can be handled with the profile-likelihood method
● How does it work?

○ profile-likelihood unfolding
○ basic idea very simple:

■ reco distribution is a function of the differential cross-section, i.e. 
the N parameters of interest (POIs), where N is the number of truth-distribution bins:
 

L(n | θ, k, σ1,...,σN) = ∏i P(ni | Si(θ, k, σ1,...,σN)+Bi(θ, k)) × ∏j G(θj)
or

L(n | θ, k, µ1,...,µN) = ∏i P(ni | Si(θ, k, µ1,...,µN)+Bi(θ, k)) × ∏j G(θj)
 

with µ = signal strengths for the different truth bins (σk = µk σk
th)

■ unfolding = maximum-likelihood fit to find best-fit values of σ1,...,σN
■ systematics included in the same (natural) way as usual PLF

17



Profile likelihood unfolding in action
● CMS Top mass from tt̄+1jet differential cross-section
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JHEP 07 (2023) 077

https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-008/index.html


Profile likelihood unfolding in action (II)
● ATLAS tt̄W differential cross-section measurement
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ATLAS-CONF-2023-019

Signal Regions

Control Regions

Response Matrix *

Regularization

*: "migration matrix" actually (without acceptance and efficiency correction parts)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-019/


Unfolding for Entanglement 
& Bell inequalities - The ideal case

● tt̄ → dilep case
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kk kr kn

rk rr rn

nk nr nn

plot from Phys. Rev. D 100 (2019) 072002https://arxiv.org/abs/2102.11883 

https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-006/index.html
https://arxiv.org/abs/2102.11883


Reality - so far...
● Why didn't do unfoldind for the ATLAS result?
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Where could profile-likelihood unfolding help?
● When background is large:

○ main use-case: H → WW !
○ can have in-situ background constraints

● To constrain systematic uncertainties:
○ in case we get dominated by systematics 

that we are allowed to constraint
○ need Nreco-bins > Ntruth-bins

(which, by the way, mitigates oscillations...)

● To sensibly combine different channels:
○ different decay channels
○ event categories with different purities or resolution...
○ combination giving single unfolded distribution to be used to extract the result(s)

● ...
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see A. Barr talk

https://agenda.infn.it/event/34555/contributions/212398/attachments/112609/160987/Barr-GGI_2023.pdf


To regularize or not to regularize?
● Results can look "unphysical", even if they are "correct":

○ estimated tj are strongly (anti-)correlated
○ zero bias by definition:

■ by folding back the obtained distribution,
we re-obtain he reco-data

■ by unfolding an alternative reco-pseudo-data,
we obtain the correspondent alternative truth-distribution

● Then, do we really need to use regularization, 
or can we just use unregularized unfolding?

○ extraction of quantities from unfolded distribution 
can/should properly take into account correlations!

○ however: important to consider numerical precision 
of result when strong (anti-)correlations are involved...
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credits: Stefan Schm
itt

https://arxiv.org/abs/1611.01927v1


Is unfolding model-independent?
● Is unfolding safer than calibration curve?

● Is unfolding procedure independent on underlying physics we want to test?
○ at least the unregularized one?

● Actually, response matrix built with SM Monte Carlo...
○ different hypotheses for underlying physics could in general change it!
○ relevant specific case:

■ would a hypothetical "entanglement-off" MC sample lead to the same response matrix?

● In addition: background could also depend on underlying physics...
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tj = ∑ i  Mij
-1 (di - bi )



Other kinds of unfolding
● Other classical unfolding methods exist:

○ Fully Bayesian Unfolding
○ SVD unfolding
○ ...

● In addition, new unfolding methods being developed:

○ OmniFold Phys. Rev. Lett. 124, 182001 (2020) 
(Nachman, Andreassen, Komiske, Metodiev, Thaler)

■ unbinned unfolding
■ based on iterative machine-learning reweighting

○ Unfolding via Quantum Annealing 
J. High Energ. Phys. 2019, 128 (2019) (Cormier, Di Sipio, Wittek)

■  likelihood-based regularized unfolding 
on a quantum computer
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https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/1908.08519


Time for discussion!
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