Top-antitop reconstruction [a very biased overview]

:): 4 --x-- (Florence), 10/11/2023 Baptiste Ravina

Alexander von Humboldt

Stiftung/Foundation

For the next 20 minutes or so...

- I will discuss **some** approaches to top quark reconstruction
 - definitely not everything
- I will focus mostly on techniques used or soon-to-be-tried in ATLAS
 hello, AJ
- I will not give you all the numbers, just an **overview** of what we can do
- I will talk disproportionately about machine learning
 - Jay won't be happy
- There is no real structure, just an unordered set of ideas
 - Good luck.

The basics: what is top reconstruction?

The basics: why do we need top reconstruction?

Reconstruction for the dilepton entanglement result

the detector. Several methods are available to reconstruct the top quarks from the detector level charged leptons, jets and E_T^{miss} . The main method used in this work is the Ellipse method [70], which is a geometric approach to analytically calculate the neutrino momenta. Approximately 85% of events are successfully reconstructed by this method. If this method fails, the Neutrino Weighting method [71], which assigns a weight to each possible solution by the compatibility between the neutrino momenta and the E_T^{miss} in the event, after scanning possible values of the pseudo-rapidities of the neutrinos, is used. If both methods fail,

ATLAS-CONF-2023-069

The **Ellipses** method

Assume: everything is on-shell AND neutrinos are the source of the missing E_{τ}

 \rightarrow neutrino momenta are **geometrically** constrained to an ellipse

The Neutrino Weighting method

- Dates back to <u>D0</u> (1997), they measured $m_{top} = 172.0 \pm 7.5 \text{ GeV}$
- LHC Run 1 combination (2023) measured $m_{top} = 172.52 \pm 0.33$ GeV
- **Don't assume** that the missing E_{T} comes from the neutrinos
 - instead scan (η_1, η_2) and for each pair extract (p_{x1}, p_{y1}) and (p_{x2}, p_{y2}) from the mass constraints
 - \circ then compare to missing E_{T} and extract a weight

$$w = \exp\left(\frac{-\Delta E_x^2}{2\sigma_x^2}\right) \cdot \exp\left(\frac{-\Delta E_y^2}{2\sigma_y^2}\right)$$

Phys. Rev. Lett. 80 (1998) 2063

• Still have to check the b-jet assignments, possible dependence on m_{top}, smearing in case there are no solutions, ...

 \rightarrow very CPU-expensive!

Aside: Neutrino Weighter with a twist

 We reconstruct many Higgs each event under different assumptions of m_{W*} and η_v.

"Can we throw machine learning at it?"

Simple \rightarrow Complex: add more inputs and more layers, get *improvement in resolution*. DNN \rightarrow Probabilistic DNN: get an estimate of the aleatoric uncertainty, *remove the bias*. Reconstructing the two neutrinos' 4-vectors is the hard part...

But maybe this is not always the goal? For instance, we could regress m(ttbar) directly:

- Z'→ttbar resonance searches?
- dependence of m(ttbar) on top Yukawa?
- reducing the amount of dilution in QE/BIV measurements?

All-hadronic ttbar: should be easy, right?

All decay products are visible jets \rightarrow completely avoid the problems associated with neutrinos!

But now have to deal with combinatorics...

Machine learning instead of combinatorics: SPA-Net

11

SciPost Phys. 12 (2022) 178

Symmetry-Preserving Attention Network

Transformer-Encoder: state-of-the-art from Natural Language Processing \rightarrow relate the input jets to each other in the latent space

Tensor attention: impose

symmetries of the topology W ~ qq / top ~ bqq

		Event	SPA-NET Efficiency		χ^2 Efficiency	
	N _{jets}	Fraction	Event	Top Quark	Event	Top Quark
All Events	== 6	0.245	0.643	0.696	0.424	0.484
	== 7	0.282	0.601	0.667	0.389	0.460
	≥8	0.320	0.528	0.613	0.309	0.384
	Inclusive	0.848	0.586	0.653	0.392	0.457
Complete Events	== 6	0.074	0.803	0.837	0.593	0.643
	== 7	0.105	0.667	0.754	0.413	0.530
	≥8	0.145	0.521	0.662	0.253	0.410
	Inclusive	0.325	0.633	0.732	0.456	0.552

Injecting yet more physics into the machine: Topographs

Phys. Rev. D 107 (2023) 11

Physically motivated representation of the inputs: graph \rightarrow inject intermediate resonances and specify the allowed connections

- Edge regression: find best assignments
- Node regression: predict the kinematics of the resonances
- Performs as well as SPA-Net

	6j 2b	6j >=2b	7j 2b	7j >=2b	>=6j 2b	>=6j >=2b
Best Spanet [%]	81.58	79.60	65.09	63.09	68.95	66.20
Best Topograph [%]	81.44	79.53	64.91	62.81	68.86	66.24

From reconstruction to classification

Could select only those events that are **well-reconstructed**:

arXiv:2309.01886

- signal vs background?
- unfolding?
- modelling uncertainties?

Aside: other topologies

arXiv:2309.01886

A middle ground? ttbar \rightarrow lepton+jets

Final state with a single neutrino: can be **fully determined** from one mass constraint (on-shell W) \rightarrow analytical solution(s)

Is this useful for spin correlation and quantum information studies?

- \rightarrow Yes! the d-quark from the W decay has a_{spin} ~1
 - As seen in <u>Theo Maurin's talk</u>: can be accessed by c-tagging the other W-jet.
 - Can also consider the "optimal hadronic direction" (<u>Dorival Gonçalves's talk</u>)

 $p_z^{\nu} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$

```
a = (p_z^{\ell})^2 - (E^{\ell})^2,
b = \alpha p_z^\ell,
c = \frac{\alpha^2}{4} - (E^\ell)^2 (p_T^{\nu})^2,
\alpha = m_W^2 - m_\ell^2 + 2(p_x^{\ell} p_x^{\nu} + p_y^{\ell} p_y^{\nu}).
```

SPA-Net with neutrinos

- Extend the jet-only model with specialised embeddings for leptons and missing E_T
- Output targets are now (bqq) and (b)
- Also add regression tasks

arXiv:2309.01886 1

SPA-Net with neutrinos: m(ttbar)

"Simple guess" of neutrino kinematics is not very useful
→ but maybe regression of m(ttbar) can help select events for QE/BIV?

Conditional neutrino regression: v-flows SciPost Phys. 14 (2023) 159

- Embed your input particles in some way
- 2. Train a mapping of the Normal distribution to the kinematics of the neutrinos
- Learn what the likelihood of the neutrino kinematics based on the rest of the event
 - \rightarrow no assumption of on-shell W's, perfect reconstruction etc.

Conditional neutrino regression: v-flows SciPost Phys. 14 (2023) 159

19

Conditional neutrino regression: v-flows SciPost Phys. 14 (2023) 159

requency

10²

10¹

requency

10²

10¹

100

100 150 200

Truth p_{z}^{ν} [GeV]

50

150 200

Truth p_{z}^{v} [GeV]

-150

-200

-200

-150-100 -500

150

More neutrinos! v^2 -flows

2

arXiv:2307.02405

More neutrinos! v^2 -flows

Truth *m_{tī}* [GeV]

2

arXiv:2307.02405

What is CMS up to, these days?..

23

In conclusion...

- Didn't talk about ML for boosted tops / jet substructure
- Reconstruction for classification will be a very powerful tool
- Some algorithms target specific observables (e.g. m(ttbar))
- Others offer to **perform the full reconstruction**
 - harder to check for biases
 - do we trust the kinematic correlations in the absence of strong physics assumptions? (i.e. does ML know about 4-vectors)
- **Systematics** on top reconstruction: better or worse with ML?