Probing entanglement

 and testing Bell inequality violation with $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$ at Belle IIChristian Veelken
NICPB Tallinn

November 9th 2023

SuperKEKB collider

Circumference:
3016m
Beam energy:
$7 \mathrm{GeV}\left(\mathrm{e}^{-}\right), 4 \mathrm{GeV}\left(\mathrm{e}^{+}\right)$
$8 \cdot 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Belle II detector

т-pair production @ Belle II

Cross section $=0.92$ nb

About $700 \tau^{+} \tau^{-}$pairs produced per second by SuperKEKB at target luminosity SuperKEKB is a τ factory!

τ-spin correlations in the Standard Model

correlation between spin
polarization of τ^{+} orientations of τ^{+}and τ^{-}

$$
\rho=\frac{1}{4}\left[\mathbb{1} \otimes \mathbb{1}+\sum_{i} \mathrm{~B}_{i}^{+}\left(\sigma_{i} \otimes \mathbb{1}\right)+\sum_{j} \mathrm{~B}_{j}^{-}\left(\mathbb{1} \otimes \sigma_{j}\right)+\sum_{i, j} \mathrm{C}_{i j}\left(\sigma_{i} \otimes \sigma_{j}\right)\right]
$$

spin density matrix
polarization of τ^{-}
B^{+}and B^{-}are expected to be zero for the process $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$in the SM
The spin correlation matrix C depends on the scattering angle θ^{*}, the angle between the e^{+}and τ^{+}in the $e^{+} e^{-}$center-of-mass (CM) frame:
$\mathrm{C}=c_{0}\left(\begin{array}{ccc}\left(4 m_{\tau}^{2}-s\right) \sin ^{2} \theta & 0 & 0 \\ 0 & \left(4 m_{\tau}^{2}+s\right) \sin ^{2} \theta & 4 m_{\tau} \sqrt{s} \sin \theta \cos \theta \\ 0 & 4 m_{\tau} \sqrt{s} \sin \theta \cos \theta & -4 m_{\tau}^{2} \sin ^{2} \theta+s\left(\cos ^{2} \theta+1\right)\end{array}\right)$
where $c_{0}=1 /\left(4 m_{\tau}^{2} \sin ^{2} \theta+s\left(1+\cos ^{2} \theta\right)\right)$
The components of C are given in the helicity frame $\{n, r, k\}$
k : direction of τ^{+}momentum in CM frame
r : in $e^{+}-\tau^{+}$plane and orthogonal to $\mathrm{k}, \quad \mathrm{n}=\mathrm{r} \times \mathrm{k}$

Hadronic τ decays

JHEP 05 (2014) 104

Mass $\mathrm{m}_{\mathrm{\tau}}=1.78 \mathrm{GeV}$ Lifetime $\mathrm{c} \tau=87 \mu \mathrm{~m}$
Decay Mode Resonance BR $[\%]$ $\tau^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}} \nu_{\tau}$ 17.8 $\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$ 17.4 $\tau^{-} \rightarrow h^{-} \nu_{\tau}$ 11.5 $\tau^{-} \rightarrow h^{-} \pi^{0} \nu_{\tau}$ $\rho(770)$ 26.0 $\tau^{-} \rightarrow h^{-} \pi^{0} \pi^{0} \nu_{\tau}$ $a_{1}(1260)$ 10.8 $\tau^{-} \rightarrow h^{-} h^{+} h^{-} \nu_{\tau}$ $a_{1}(1260)$ 9.8 $\tau^{-} \rightarrow h^{-} h^{+} h^{-} \pi^{0} \nu_{\tau}$ 4.8 Other hadronic modes 1.8 All hadronic modes 64.8

h^{-}: about $95 \% \pi^{-}$and $5 \% \mathrm{~K}^{-}$
Hadronic τ Identification \cong reconstruction of $\pi^{ \pm}, \rho^{ \pm}, a_{1}{ }^{ \pm}$signatures
Leptonic τ decays not considered, because they are not as well suited for analyses of τ spin correlations as hadronic τ decays

τ polarimeter vector

Differential decay rate of τ lepton:

Spin averaged matrix

 Polarimeter vector

This relation holds for all leptonic and hadronic τ decay channels
The issue with leptonic τ decays is that the polarimeter vector is not accessible experimentally, because one would need to reconstruct the individual momenta of the two v produced in each leptonic τ decay [${ }^{*}$]

For hadronic τ decays, the polarimeter vector is a function of the momenta of the charged and neutral hadrons produced in these decays

All hadronic τ decays have the same " τ spin analyzing power"
[*] The charged lepton only partially correlated with the polarimeter vector, resulting in a loss of τ spin analyzing power

Analyzed τ decay channels

$$
\begin{aligned}
& \tau^{-} \rightarrow \pi^{-} \nu_{\tau} \\
& \mathrm{h}_{\mu}=\text { momentum of } \pi^{-} \\
& \tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau} \quad \text { " } \rho^{\prime \prime} \text { channel (BR }=25.5 \% \text {) } \\
& v \text { momentum }=\tau-\sum \text { pion momenta } \\
& \mathrm{h}_{\mu}=-2 \gamma_{v a} M\left|f_{2}\right|^{2} \frac{\left[2(q \cdot \sqrt{N}) \boldsymbol{q}-q^{2} N\right]}{\omega+\hat{\omega}} \\
& \text { difference between } \pi^{-} \text {and } \pi^{0} \text { momenta } \\
& \tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \\
& \text { " } a_{1} \text { " channel (BR = 9.3\%) }
\end{aligned}
$$

No analytic formula available, h_{μ} based on model for dynamics of hadronic interactions in a_{1} decay, which is fitted to data

The decay channel $\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$ is not included in the analysis, because we do not know how well Belle Il can separately reconstruct the two π^{0}

The combination of π, ρ, and a_{1} decay channels covers 21% of all $\tau^{+} \tau^{-}$pair decays

Measurement of τ spin correlations

Comput.Phys.Commun. 64 (1991) 275
The spin-dependent differential cross section for tau-pair production is given by:

$$
d \sigma=|\mathcal{A}|^{2}\left(1-b_{\mu}^{+} s_{+}^{\mu}-b_{\nu}^{-} s_{-}^{\nu}+c_{\mu \nu} s_{+}^{\mu} s_{-}^{\nu}\right) d \mathrm{Lips}
$$

where $|\mathcal{A}|^{2}$ denotes the spin-averaged matrix element for the process
$e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$and d Lips the Lorentz-invariant phase-space measure
The cross section for the combined process of tau-pair production and decay is:

$$
d \sigma=|\mathcal{A}|^{2}|\overline{\mathcal{M}}|^{2}\left|\overline{\mathcal{M}}^{\prime}\right|^{2}\left(1+\mathbf{B}^{+} \cdot \mathbf{h}^{+}+\mathbf{B}^{-} \cdot \mathbf{h}^{-}+\mathbf{h}^{+} \cdot \mathbf{C} \cdot \mathbf{h}^{-}\right) d \mathrm{Lips}
$$

where $|\overline{\mathcal{M}}|^{2}$ and $\left|\overline{\mathcal{M}}^{\prime}\right|^{2}$ refer to the spin-averaged matrix elements for the decays of τ^{+}and τ^{-}

Acta Phys. Polon. B 15 (1984) 115
Using this relation, we determine the elements of the polarization vectors B^{+}and B and the elements of the spin correlation matrix C by an unbinned maximumlikelihood (ML) fit, with the likelihood function:

$$
\mathcal{L}=\prod_{i}\left(1+\mathbf{B}^{+} \cdot \mathbf{h}_{i}^{+}+\mathbf{B}^{-} \cdot \mathbf{h}_{i}^{-}+\mathbf{h}_{i}^{+} \cdot \mathrm{C} \cdot \mathbf{h}_{i}^{-}\right)
$$

where the product extends over all events i in the $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$sample

Monte Carlo study

200 mio $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$Monte Carlo (MC) events generated for $\sqrt{s}=10.579 \mathrm{GeV}$ using MadGraph with leading order matrix elements.
The τ lepton decays are simulated with PYTHIA8 [*].
This MC sample corresponds to about half of the data already published by Belle II and less than 1% of the data expected by the end of the experiment

Phys.Rev.D 102 (2020) 111101 arXiv:1809.01958
Experimental resolutions are simulated by "smearing" MC-truth values by Gaussian distributions. The resolution parameters are taken from the Belle II detector technical design report arXiv:1011.0352
Numerical values given in appendix
Simulated events are analyzed at MC-truth and on "reconstruction" level, i.e. after smearing the events and reconstructing the momenta of the v produced in the τ decays
[*] we also tried TauDecay and KKMC (with a special version of TAUOLA used by Belle II) and observed good agreement between all three

Kinematic reconstruction

The τ polarimeter vectors need to be computed in the restframes of τ^{+}and τ^{-}
We need to reconstruct the full event kinematics, in particular the momenta of the v produced in the τ decays

The event reconstruction is performed in two stages:
(1) By solving a set of analytic equations, using 2τ mass constraints, $2 v$ mass constraints, and the 4 -momentum of the initial $e^{+} e^{-}$pair to solve for the 8 components of the two 4 -momentum vectors of the ν and $\bar{\nu}$

Phys.Rev.D 107 (2023) 093002
The two-fold sign ambiguity of the analytic equations is resolved by choosing the solution more compatible with transverse impact parameters (π, ρ) or the τ decay vertex $\left(\mathrm{a}_{1}\right)$

Phys.Lett.B 313 (1993) 458
(2) The solution obtained in the $1^{\text {st }}$ stage is refined by a kinematic fit, which employs the transverse impact parameters, τ decay vertices, and the knowledge of experimental resolutions to improve the event reconstruction
arXiv:1805.06988 CMS-TS-2011-021

Observables

We use two observables, $\mathrm{C}[\rho]$ and $\mathrm{m}_{12}[\mathrm{C}]$, to probe entanglement and Bell inequality violation formal definition of observables in backup
Both observables are functions of the spin correlation matrix C
As C depends on the scattering angle θ^{*}, both observables depend on θ^{*} :

Observation of entanglement and Bell inequality violation helped by selecting events in which τ leptons are produced perpendicular to beam axis

Optimization of cut on $\cos \left(\theta^{*}\right)$

Horodecki observable $\mathrm{m}_{12}[\mathrm{C}]$

MC-truth level

Reconstruction level

Significance computed as $\left(\mathrm{m}_{12}[\mathrm{C}]-1\right) / \delta \mathrm{m}_{12}[\mathrm{C}]$, with (statistical) uncertainty $\delta \mathrm{m}_{12}[\mathrm{C}]$ estimated by bootstrapping

Combination of π, ρ, and a_{1} decay channels improves significance by about a factor 3 on reconstruction level, compared to $\pi^{+} \pi^{-}$channel
Choose cut $\left|\cos \left(\theta^{*}\right)\right|<0.4$ to enhance significance

Results

MC-truth level

Decay channel	$\mathcal{C}[\rho]$	$\mathfrak{m}_{12}[\mathrm{C}]$
$\pi^{+} \pi^{-}$	0.7087 ± 0.0054	1.462 ± 0.012
$\pi^{ \pm} \rho^{\mp}$	0.7090 ± 0.0022	1.466 ± 0.006
$\pi^{ \pm} \mathrm{a}_{1}^{\mp}$	0.6695 ± 0.0034	1.370 ± 0.011
$\rho^{+} \rho^{-}$	0.7095 ± 0.0017	1.467 ± 0.005
$\rho^{ \pm} \mathrm{a}_{1}^{\mp}$	0.6711 ± 0.0025	1.378 ± 0.006
$\mathrm{a}_{1}^{+} \mathrm{a}_{1}^{-}$	0.6328 ± 0.0051	1.282 ± 0.013
All channels	0.6947 ± 0.0011	1.430 ± 0.003

Decay channel	$\mathcal{C}[\rho]$	$\mathfrak{m}_{12}[\mathrm{C}]$
$\pi^{+} \pi^{-}$	0.6379 ± 0.0059	1.399 ± 0.014
$\pi^{ \pm} \rho^{\mp}$	0.6332 ± 0.0022	1.279 ± 0.006
$\pi^{ \pm} \mathrm{a}_{1}^{\mp}$	0.6145 ± 0.0042	1.271 ± 0.011
$\rho^{+} \rho^{-}$	0.6106 ± 0.0021	1.227 ± 0.006
$\rho^{ \pm} \mathrm{a}_{1}^{\mp}$	0.5974 ± 0.0029	1.219 ± 0.007
$\mathrm{a}_{1}^{+} \mathrm{a}_{1}^{-}$	0.6111 ± 0.0089	1.240 ± 0.021
All channels	0.6169 ± 0.0012	1.255 ± 0.003

Bell inequality violation expected to be observed with significance of about 80 standard deviations in 200mio $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events

Observation of entanglement expected to be easier than observation of Bell inequality violation

Experimental resolution expected to degrade sensitivity by about a factor 2

Effects not included in MC study

Non-Gaussian tails of experimental resolutions

Backgrounds

Misreconstruction of τ decay channels, due to detector inefficiencies, spurious photons,...

$$
e^{+} e^{-} \rightarrow q \bar{q}
$$

- $\quad \gamma \gamma \rightarrow$ hadrons overlay background

Dominant background expected to be due to τ decay channel misreconstruction This type of background needs to be simulated with the full Belle II detector simulation, based on GEANT4

Systematic uncertainties

We expect these effects to have only a moderate effect on the sensitivity to observe entanglement and Bell inequality violation at Belle II

Summary

- The prospects for detecting entanglement and Bell inequality violation has been studied using the process $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$at Belle II
- The spin orientations of τ leptons are measured using τ polarimeter vectors in a combination of π, ρ, and a_{1} decay channels
- Compared to the decay channel $\pi^{+} \pi^{-}$, the combination of π, ρ, and a_{1} decay channels increases the sensitivity of the analysis by about a factor 3
- Assuming a dataset of 200mio $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events, we expect entanglement and Bell inequality violation to be observed with a significance of about 80 standard deviations
In total, 50 billion $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events expected to be recorded until the end of the Belle II experiment
- We expect effects not simulated in our MC study, such as non-Gaussian tails of experimental resolutions, background contributions, and systematic uncertainties, to degrade the sensitivity by only a moderate amount

Backup

Formal definition of observables

Concurrence C[ρ]

Rev. Mod. Phys. 81 (2009) 865

$$
\mathcal{C}[\rho]=\max \left\{0, \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right\} \in[0,1]
$$

where λ_{i} are the eigenvalues, in decreasing order, of the matrix

$$
R=\sqrt{\sqrt{\rho} \tilde{\rho} \sqrt{\rho}} \quad \text { with } \quad \tilde{\rho}=\left(\sigma_{2} \otimes \sigma_{2}\right) \rho^{*}\left(\sigma_{2} \otimes \sigma_{2}\right)
$$

$\mathrm{C}[\rho]>0$ signals entanglement

Horodecki observable m_{12} [C]

$$
\mathfrak{m}_{12}[\mathrm{C}]=m_{1}+m_{2}
$$

where $m_{1} \geq m_{2} \geq m_{3}$ are the eigenvalues of the matrix $\mathrm{C}^{T} \mathrm{C}$
$m_{12}[C]>1$ signals Bell inequality violation

Optimization of cut on $\cos \left(\theta^{*}\right)$

Concurrence $\mathrm{C}[\rho]$

Significance computed as $\mathrm{C}[\rho] / \delta \mathrm{C}[\sigma]$, with (statistical) uncertainty $\delta \mathrm{C}[\rho]$ estimated by bootstrapping

Entanglement easier to observe than Bell inequality violation (cf. slide 13)
Cut $\left|\cos \left(\theta^{*}\right)\right|<0.4$ yields close to optimal sensitivity for $\mathrm{C}[\rho]$ as well as $\mathrm{m}_{12}[\mathrm{C}]$

Resolutions used in MC study

Belle II detector resolution

arXiv:1011.0352

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium double-wall	$\begin{gathered} \text { Cylindrical, inner radius } 10 \mathrm{~mm}, \\ 10 \mu \mathrm{~m} \mathrm{Au}, 0.6 \mathrm{~mm} \mathrm{Be}, \\ 1 \mathrm{~mm} \text { coolant (paraffin), } 0.4 \mathrm{~mm} \mathrm{Be} \end{gathered}$		
PXD	Silicon pixel (DEPFET)	Sensor size: $15 \times 100(120) \mathrm{mm}^{2}$ pixel size: $50 \times 50(75) \mu \mathrm{m}^{2}$ 2 layers: $8(12)$ sensors	10 M	impact parameter resolution $\sigma_{z_{0}} \sim 20 \mu \mathrm{~m}$ (PXD and SVD)
SVD	Double sided Silicon strip	Sensors: rectangular and trapezoidal Strip pitch: $50(\mathrm{p}) / 160(\mathrm{n})-75(\mathrm{p}) / 240(\mathrm{n}) \mu \mathrm{m}$ 4 layers: $16 / 30 / 56 / 85$ sensors	245 k	
CDC	Small cell drift chamber	$\begin{gathered} 56 \text { layers, } 32 \text { axial, } 24 \text { stereo } \\ \mathrm{r}=16-112 \mathrm{~cm} \\ -83 \leq z \leq 159 \mathrm{~cm} \end{gathered}$	14 k	$\begin{gathered} \sigma_{r \phi}=100 \mu \mathrm{~m}, \sigma_{z}=2 \mathrm{~mm} \\ \sigma_{p_{t}} / p_{t}=\sqrt{\left(0.2 \% p_{t}\right)^{2}+(0.3 \% / \beta)^{2}} \\ \sigma_{p_{t}} / p_{t}=\sqrt{\left(0.1 \% p_{t}\right)^{2}+(0.3 \% / \beta)^{2}}(\text { with SVD }) \\ \sigma_{d E / d x}=5 \% \end{gathered}$
TOP	RICH with quartz radiator	16 segments in ϕ at $r \sim 120 \mathrm{~cm}$ 275 cm long, 2 cm thick quartz bars with 4 x 4 channel MCP PMTs	8 k	$\begin{gathered} N_{\text {p.e. }} \sim 20, \sigma_{t}=40 \mathrm{ps} \\ \mathrm{~K} / \pi \text { separation : } \\ \text { efficiency }>99 \% \text { at }<0.5 \% \text { pion } \\ \text { fake prob. for } B \rightarrow \rho \gamma \text { decays } \\ \hline \end{gathered}$
ARICH	RICH with aerogel radiator	4 cm thick focusing radiator and HAPD photodetectors for the forward end-cap	78 k	$\begin{gathered} N_{\text {p.e. }} \sim 13 \\ \mathrm{~K} / \pi \text { separation at } 4 \mathrm{GeV} / c: \\ \text { efficiency } 96 \% \text { at } 1 \% \text { pion fake prob. } \end{gathered}$
ECL	$\operatorname{CsI}(\mathrm{Tl})$ (Towered structure)	$\begin{gathered} \text { Barrel: } r=125-162 \mathrm{~cm} \\ \text { End-cap: } z= \\ -102 \mathrm{~cm} \text { and }+196 \mathrm{~cm} \\ \hline \end{gathered}$	6624 1152 (F) 960 (B)	$\begin{gathered} \frac{\sigma E}{E}=\frac{0.2 \%}{E} \oplus \frac{1.6 \%}{\sqrt[4]{E}} \oplus 1.2 \% \\ \sigma_{\text {pos }}=0.5 \mathrm{~cm} / \sqrt{E} \\ (\mathrm{E} \text { in } \mathrm{GeV}) \end{gathered}$
KLM	barrel: RPCs end-caps: scintillator strips	14 layers (5 cm Fe +4 cm gap) 2 RPCs in each gap 14 layers of $(7-10) \times 40 \mathrm{~mm}^{2}$ strips read out with WLS and G-APDs	$\begin{gathered} \theta: 16 \mathrm{k}, \phi: 16 \mathrm{k} \\ 17 \mathrm{k} \end{gathered}$	$\Delta \phi=\Delta \theta=20$ mradian for K_{L} $\sim 1 \%$ hadron fake for muons $\Delta \phi=\Delta \theta=10$ mradian for K_{L} $\sigma_{p} / p=18 \%$ for $1 \mathrm{GeV} / c K_{L}$

SuperKEKB machine parameters

arXiv:1809.01958

		KEKB		SuperKEKB		Units
		LER (e+)	HER (e-)	LER (e+)	HER (e-)	
Beam energy	E	3.5	8.0	4.0	7.007	GeV
Circumference	C	3016.262		3016.315		m
Half crossing angle	θ_{x}	$0\left(11^{(*)}\right)$		41.5		mrad
Piwinski angle	$\phi_{\text {Piw }}$	0	0	24.6	19.3	rad
Horizontal emittance	ε_{x}	18	24	3.2 (1.9)	4.6 (4.4)	nm
Vertical emittance	ε_{y}	150	150	8.64	12.9	pm
Coupling		0.83	0.62	0.27	0.28	\%
Beta function at IP	$\beta_{x}^{*} / \beta_{y}^{*}$	1200/5.9	1200/5.9	$32 / 0.27$	25/0.30	mm
Horizontal beam size	σ_{x}^{*}	147	170	10.1	10.7	$\mu \mathrm{m}$
Vertical beam size	σ_{y}^{*}	940	940	48	62	nm
Horizontal betatron tune	ν_{x}	45.506	44.511	44.530	45.530	
Vertical betatron tune	ν_{y}	43.561	41.585	46.570	43.570	
Momentum compaction	α_{p}	3.3	3.4	3.20	4.55	10^{-4}
Energy spread	σ_{ε}	7.3	6.7	7.92(7.53)	6.37(6.30)	10^{-4}
Beam current	I	1.64	1.19	3.60	2.60	A
Number of bunches	n_{b}	1584		2500		
Particles/bunch	N	6.47	4.72	9.04	6.53	10^{10}
Energy loss/turn	U_{0}	1.64	3.48	1.76	2.43	MeV
Long. damping time	τ_{z}	21.5	23.2	22.8	29.0	msec
RF frequency	$f_{R F}$	21.5508.9		508.9		MHz
Total cavity voltage	V_{c}	8.0	13.0	9.4	15.0	MV
Total beam power	P_{b}	~ 3	~ 4	8.3	7.5	MW
Synchrotron tune	ν_{s}	-0.0246	-0.0209	-0.0245	-0.0280	
Bunch length	σ_{z}	~ 7	~ 7	6.0 (4.7)	5.0 (4.9)	mm
Beam-beam parameter	ξ_{x} / ξ_{y}	0.127/0.129	0.102/0.090	0.0028/0.088	0.0012/0.081	
Luminosity	L	2.108	10^{34}			$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$
Integrated luminosity	$\int L$					$a b^{-1}$

Alternative measurement techniques

- Expectation value

Phys. Rev. D 107 (2023) 093002

$$
\mathrm{C}_{i j}=-9\left\langle\mathbf{h}_{i}^{+} \mathbf{h}_{j}^{-}\right\rangle \text {where } i, j \in\{n, r, k\} \text { and the expectation }
$$

value is computed as average over the events in the MC sample

- Double-differential cross section

Nucl. Phys. B 690 (2004) 81

$$
\begin{aligned}
& \quad \frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_{i}^{+} d \cos \theta_{j}^{-}}=\frac{1}{4}\left(1-\mathrm{C}_{i j} \cos \theta_{i}^{+} \cos \theta_{j}^{-}\right) \\
& \text {where } \cos \theta_{i}^{+}=\mathbf{h}^{+} \cdot \hat{e}_{i}\left(\cos \theta_{j}^{+}=\mathbf{h}^{+} \cdot \hat{e}_{j}\right) \text { with } i, j \in\{n, r, k\}
\end{aligned}
$$

- Single-differential cross section

$$
\frac{1}{\sigma} \frac{d \sigma}{d \xi_{i j}}=\frac{1}{2}\left(1-\mathrm{C}_{i j} \xi_{i j}\right) \ln \left(\frac{1}{|\xi|}\right) \text { with } \xi_{i j}=\cos \theta_{i}^{+} \cos \theta_{j}^{-}
$$

- Forward/backward asymmetry

Eur. Phys. J. C 82 (2022) 66

$$
A_{i j}=\frac{N\left(\cos \theta_{i}^{+} \cos \theta_{j}^{-}>0\right)-N\left(\cos \theta_{i}^{+} \cos \theta_{j}^{-}<0\right)}{N\left(\cos \theta_{i}^{+} \cos \theta_{j}^{-}>0\right)+N\left(\cos \theta_{i}^{+} \cos \theta_{j}^{-}<0\right)}=-\frac{1}{4} \mathrm{C}_{i j}
$$

Comparison of measurement techniques

Method	$\mathcal{C}[\rho]$	$\mathfrak{m}_{12}[\mathrm{C}]$
Exp. value	0.6917 ± 0.0013	1.4237 ± 0.0035
2d distr.	0.6950 ± 0.0012	1.4299 ± 0.0030
1d distr.	0.6915 ± 0.0012	1.4228 ± 0.0030
FB asymm.	0.6925 ± 0.0018	1.4303 ± 0.0048
ML fit	0.6947 ± 0.0011	1.4305 ± 0.0029

Results obtained by all measurement techniques are compatible within the quoted uncertainties

The ML-fit method yields the smallest uncertainties, as expected, but the expectation value and cross section method come close

The restriction to counting "forward" and "backward" events by the forward/backward asymmetry method rather than using the full distribution in $\mathbf{h}^{+} \cdot \mathbf{h}^{-}$causes information loss, which results in a loss of sensitivity

