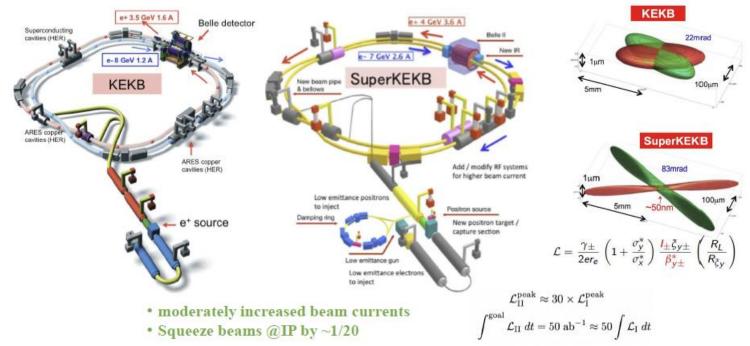


Searches for Quantum Decoherence at Belle and Belle II

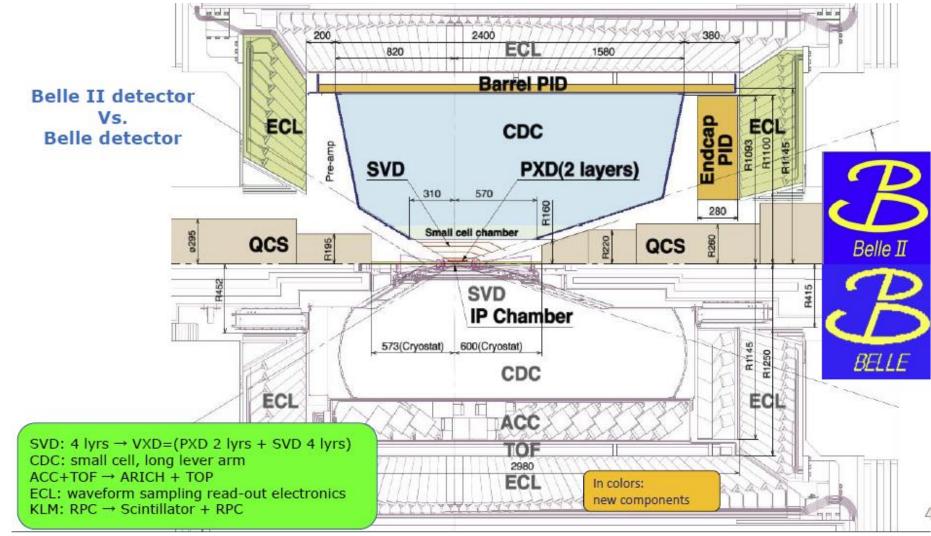


Accelerator: KEKB and superKEKB

KEKB: 1999-2010

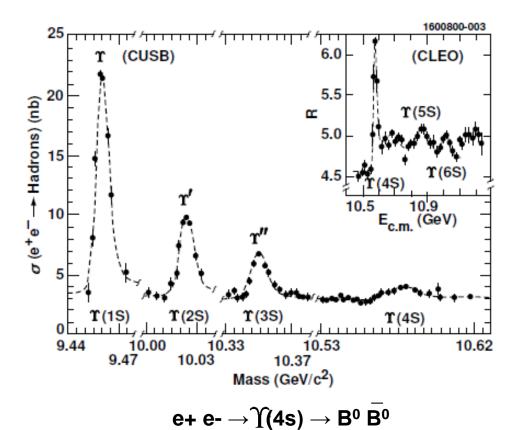
 $\beta \gamma = 0.42$ (8 GeV, 3.5 GeV)

	KEKB/Belle	SuperKEKB/Belle II		
		achieved	target	
$\begin{array}{c} \mathcal{L}_{\text{peak}} \\ [\text{cm}^{-2}\text{s}^{-1}] \end{array}$	2.1×10 ³⁴	4.7×10 ³⁴ world record	~6×10 ³⁵	
$\mathcal{L}_{\mathrm{int}}$ [fb ⁻¹]	1,004 (711 _{Y(4S)})	$\begin{array}{c} 424 \\ \hline (362_{\Upsilon(4S)}) \end{array}$	50,000	
$N(B\overline{B})_{\Upsilon(4S)}$	772×10^{6}	387×10 ⁶	~5×10 ¹⁰	


superKEKB: 2019 -

 $\beta \gamma = 0.28$ (7 GeV, 4 GeV)

Belle (II)



Υ (4s)

$$m(\Upsilon(4s)) = 10.579 \ (\Gamma=0.0205) \ GeV$$

2 x m(B⁰) = 10.558 GeV
 $\Delta E = 21 \ MeV$
m(B*) - m(B) = 45.2 MeV

Entanglement in Y(4s) decays

 B^0/\overline{B}^0 from a $\Upsilon(4s)$ decay are supposed to be in an entangled state

$$\Psi = \frac{1}{\sqrt{2}} \left[|B^0(p)\rangle |\overline{B}^0(-p)\rangle - |\overline{B}^0(p)\rangle |B^0(-p)\rangle \right]$$

If one B decays, the common wave function collapses and the B⁰/B⁰ are in a defined state.

$$\gamma \beta c \tau / r(B^0) \sim 5x10^{10} => well separated spatially$$

Measurements of Δm_d and CP violation are based on entanglement (B-tag).

- 1) Can we demonstrate the entanglement (e.g. checking Bell's inequality)?
- 2) How certain are we that the entanglement is always 100%?

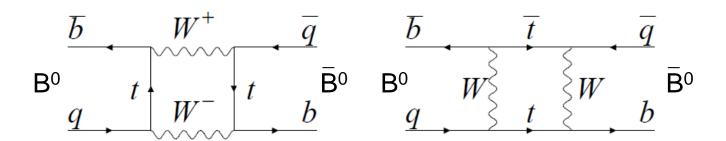
$$\Upsilon$$
(4s) \rightarrow B⁰ \overline{B} ⁰ γ

Decoherence due to interaction with (BSM) background fields

Such effects could lead to systematic errors of our CP violation measurements

B⁰ B⁰ mixing

Due to weak interaction a B⁰ can transform into its antiparticle Formally this is described by a new (weak) base of B⁰_L and B⁰_H


$$|B_{\rm L,H}\rangle = p|B_q^0\rangle \pm q|\overline{B}_q^0\rangle$$
 |p/q| = 1 (CP conserved)

These two states interfere and resulting in time dependent oscillations

$$P(B^0 \rightarrow B^0) = \frac{1}{2} \Gamma \exp(-\Gamma t) (1 - \cos(\Delta m t))$$

$$P(B^0 -> B^0) = \frac{1}{2} \Gamma \exp(-\Gamma t) (1 + \cos(\Delta m t))$$

∆m: mass difference of B⁰_H and B⁰_L

+ diagrams with u,c exchange

CP violation

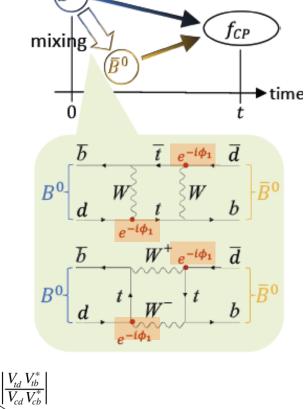
interference

Weak interaction is also a source for CP violation

CP violation is a consequence of the complex phase of the CKM matrix

It happens if two (or more) amplitudes interfere

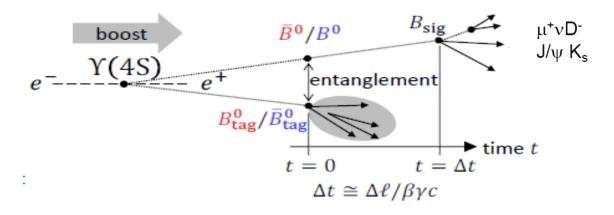
$$A_f(B^0 \rightarrow f) = A_1 \exp(i\phi_w) + A_2 \exp(i\phi_s)$$


$$A_b(\overline{B}^0 \rightarrow \overline{f}) = A_1 \exp(-i\phi_w) + A_2 \exp(i\phi_s)$$

$$=> |A_f|^2 \neq |A_b|^2$$

In decays this happens either by interference of different decay amplitudes (tree and higher order) or (more important) by interference of mixing and decay

Precise measurements of CP violation are the primary goals of the Belle and Belle II experiments


$$V_{\text{CKM}} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & \overline{V_{ub}} \\ V_{cd} & V_{cs} & V_{cb} \\ \overline{V_{td}} & V_{ts} & V_{tb} \end{pmatrix}$$

Phenomenology

 Υ (4s) created at t=0 and decays in B⁰/B⁰

Tag: one B⁰ decays at t_1 in a way that we know whether it is B⁰ or \overline{B}^0 (e.g. $\mu^+\nu D^-$) (in practice: use a BDT or NN to determine the decay state)

The other B⁰ (always in the opposite state because of entanglement) starts oscillating

Sig: the other B⁰ decays at t₂ in the signal mode we are interested in

oscillation (Δ m) measurement: $\mu^+\nu D^-$ CP violation ($\sin(2\beta)$: $J/\psi K_s$

From the spatial separation and the known boost we determine $\Delta t = t_2 - t_1$

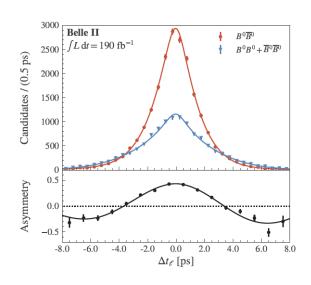
Phenomenology

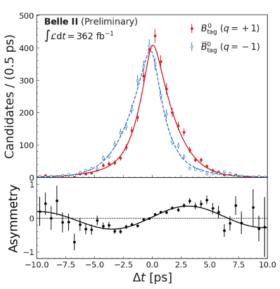
Oscillations:

$$P(B^0 \to B^0) = \frac{1}{2} \Gamma \exp(-\Gamma \Delta t) (1 - \cos(\Delta m \Delta t))$$

$$A_{osc} = \frac{N(B^0 \to B^0) - N(B^0 \to \overline{B^0})}{N(B^0 \to B^0) + N(B^0 \to \overline{B^0})} = \cos(\Delta m \Delta t)$$

In reality: take into account mistag, resolution, background


Mixing induced (or time dependent) CP violation (TDCPV):

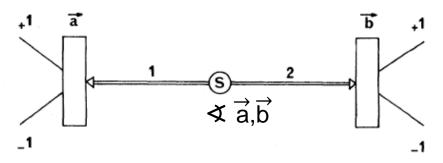

'Golden mode'
$$\overline{B}^0(q=+1)$$
; $B^0(q=-1) \rightarrow J/\psi K_s$

$$P(\Delta t,q) = \frac{1}{4} \Gamma \exp(-\Gamma \Delta t) \{1 + q [S \sin(\Delta m \Delta t) - C \cos(\Delta m \Delta t)]\}$$

For
$$J/\psi K_s$$
 $S = \sin(2\beta)$ $C \sim 0$

$$a_{CP} = \frac{N(\overline{B^0} \to f_{CP}) - N(B^0 \to f_{CP})}{N(\overline{B^0} \to f_{CP}) + N(B^0 \to f_{CP})} = S\sin(\Delta m \Delta t)$$




Can we check Bell's inequality?

Classical Aspect type correlation experiment A. Aspect et al, Phys. Rev. Lett 49, 1804 (1982)

correlation coeffs in data vs QM optimum relative angles 22.5° and 67.5°

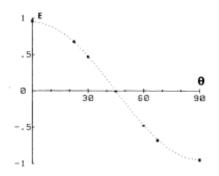
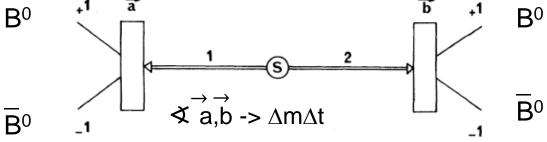


FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ±2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ±1.

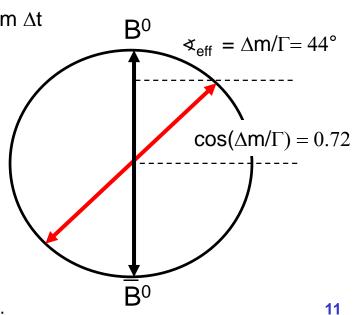
- Bell's Theorem (via Clauser, Horne, Shimony, and Holt):
 - correlation coeff: $E(\vec{a}, \vec{b}) = \frac{R_{++}(\vec{a}, \vec{b}) + R_{--}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b}) R_{-+}(\vec{a}, \vec{b})}{R_{++}(\vec{a}, \vec{b}) + R_{--}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b}) + R_{-+}(\vec{a}, \vec{b})}$
 - $S = E(\vec{a}, \vec{b}) E(\vec{a}, \vec{b}') + E(\vec{a}', \vec{b}) + E(\vec{a}', \vec{b}')$
 - $|S| \le 2$ for any local realistic model; $S_{QM} = \pm 2\sqrt{2}$ for optimal settings

$$S = 2.697 \pm 0.015$$
; cf. $S_{QM} = 2.70 \pm 0.05$


Replace \uparrow by B⁰ and \downarrow by B⁰

Bell's inequality with B⁰B⁰

$$\frac{1}{\sqrt{2}} \left[|B^0(p)\rangle | \overline{B}^0(-p)\rangle - |\overline{B}^0(p)\rangle |B^0(-p)\rangle \right]$$


Replace the angle between the polarizers by $\checkmark_{eff} = \Delta m \Delta t$

(A. Go & Chung Li, quant-ph/0310192v1 (2003): $S = 2.725 \pm 0.167 \pm 0.092$ (Belle data)

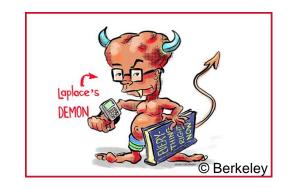
Non QM test: Assume complete decoherence (both B oscillate independently from t=0)

$$S = 2.3$$
 $S(decoherent) > 2 \text{ for } \Delta m/\Gamma < 2$

What's wrong? => high correlation due to short lifetime

No way for Bell at Belle (II)

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355-360 (2004)


crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay

Bell test impossible if x < 2.0:

system	X	
B^0/\overline{B}^0	0.77	
K^0/\overline{K}^0	0.95	
$D^0/\overline{D}{}^0$	< 0.03	
B_s^0/\overline{B}_s^0	~ 26	

Furthermore:

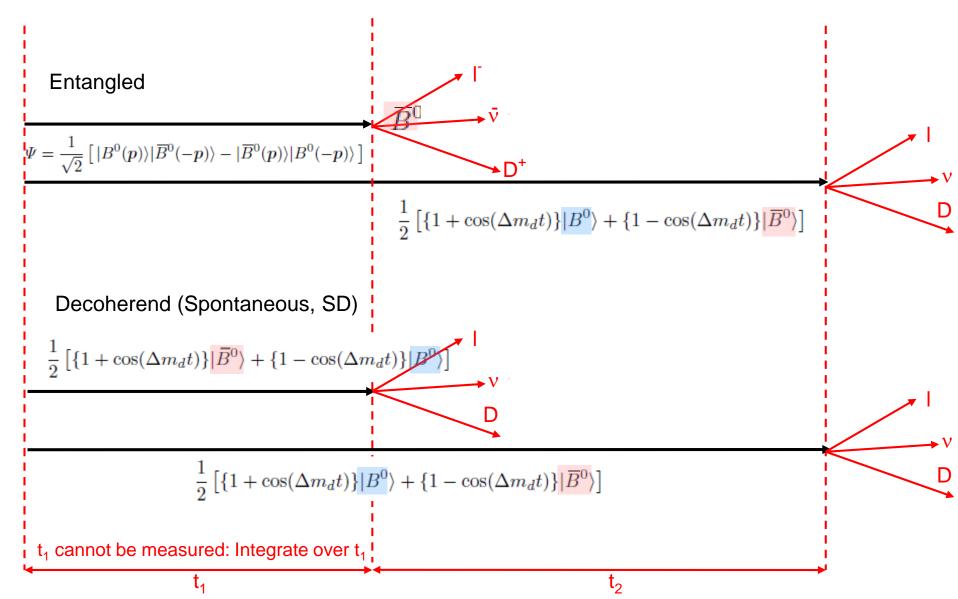
We rely on the random decays of both Bs. No (reasonable) way to **actively** determine \triangleleft a,b -> \triangle m \triangle t.

A kind of Laplace demon could tune hidden parameters (t_1 , t_2 , decay type) so that QM and Bell's inequality is emulated, despite it's not QM and local. No practical way to close this loophole.

What's left to be done

We can still calculate effects of special decoherent or non local models Fit (modified) time dependence to data

- Spontaneous decoherence (SD):
 - entanglement is lost at t=0 for a certain fraction of events decoherence fraction ζ
- Pompili Selleri model (PS) (Eur. Phys. J. C14, 469 (2000)):
 - local realism, which reproduces oscillation phenomenology
- Lindblad type decoherence (Comm. Math. Phys. 48(2) 119)


Loss of coherence due to interaction with environment. coherence is gradually lost within a decoherence time τ_{dec}

- a) $\tau_{dec} \ll \tau_B$: equivalent to SD
- b) $\tau_{dec} >> \tau_B$: can be ignored

Time dependence if decoherent

Spontaneous Decoherence

B⁰/B⁰ Oscillations: Probability to measure a same sign (SS) event:

a) Full coherence:

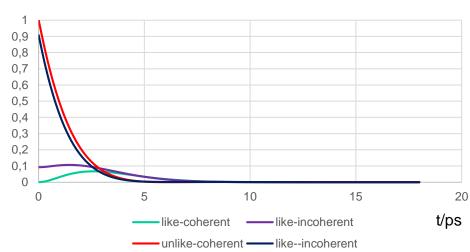
$$P(B^{0}B^{0}, \overline{B^{0}B^{0}}) = \frac{1}{2}\Gamma \exp(-\Gamma t_{2})(1 - \cos \Delta m t_{2})$$

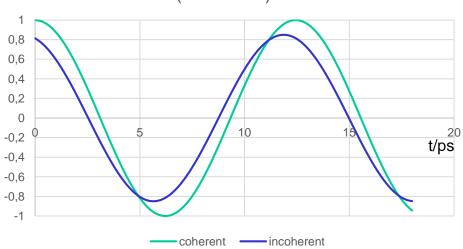
b) Full decoherence (Spontaneous decoherence, SD)

$$P(B^0B^0, \overline{B^0B^0}) = \frac{1}{2}\Gamma \exp(-\Gamma t_2)(1 - \frac{1}{2}\frac{\Delta m + 2\Gamma^2}{\Gamma^2 + \Delta m^2}\cos \Delta m t_2 + \frac{1}{2}\frac{\Gamma \Delta m}{\Gamma^2 + \Delta m^2}\sin \Delta m t_2)$$

Damping by
$$\frac{1}{2} \frac{\Delta m + 2\Gamma^2}{\Gamma^2 + \Delta m^2} \sim 0.81$$

Additional SIN-term:
$$\frac{1}{2} \frac{\Gamma \Delta m}{\Gamma^2 + \Delta m^2} \sim 0.24$$


(using PDG averages: $\Delta m = 0.505 \pm 0.002 \text{ ps}^{-1}$, $\Gamma = 0.658 \pm 0.002 \text{ ps}^{-1}$)


Time Dependence (SD)

(unlike-like)/all

The damping is probably difficult to measure, as it could be interpreted as mistag.

The SIN term (or phase shift) should be measurable.

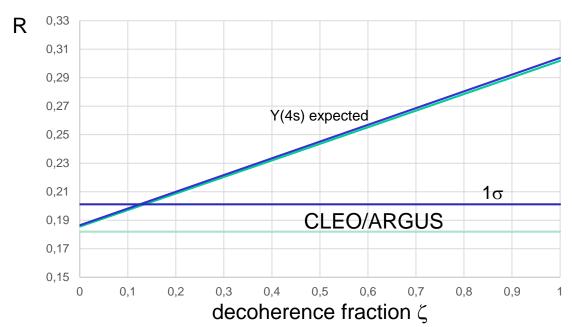
Similar damping and phase shifts in measurements of time dependent CP violation

The damping could lead to a wrong measurement of $sin(2\beta)$.

This might be compensated if the mistag is calibrated using oscillation measurements.

The phase shift leads to a cross talk between S and C.

Indirect Indicator: χ


Time integrated oscillations: measure $\chi = \frac{1}{2} \Delta m^2 / (\Delta m^2 + \Gamma^2)$ using dilepton events

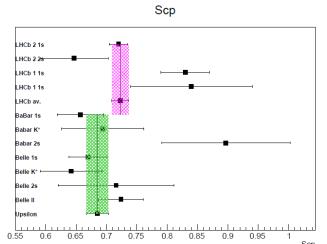
Use ∆m from LHCb as reference (no entanglement at LHCb!)

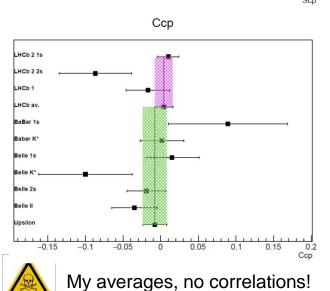
Coherence:
$$R = (N^{++} + N^{--})/(N^{++} + N^{--} + N^{+-}) = \chi$$

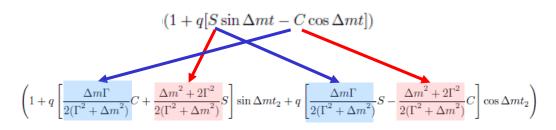
SD:
$$R = (N^{++} + N^{--})/(N^{++} + N^{--} + N^{+-}) = 2(\chi - \chi^2)$$

Use χ calculated from LHCb's Δm measurement (always decoherent)

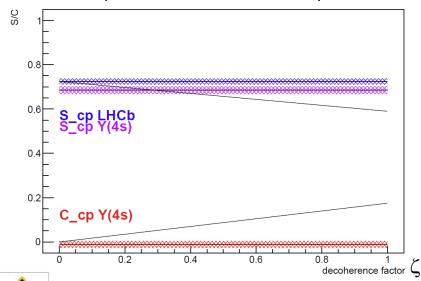
Old CLEO/ARGUS
measurement of
R = 0.182 ± 0.015 (PDG)
compatible with ~10%
decoherence


Should be able to do much better at Belle II




Indirect Indicators: TDCPV

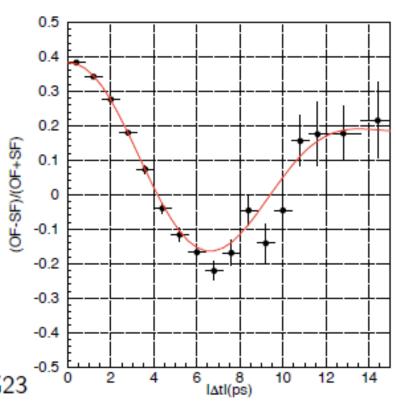
Compare S_{CP} and C_{CP} measurements at LHCb (always decoherent) and at Y(4s)



Same damping (0.81) and x-talk factors (0.24) as on slide 3

Compatible with up to 5-20% decoherence, preferred: 10% (1.7 σ)

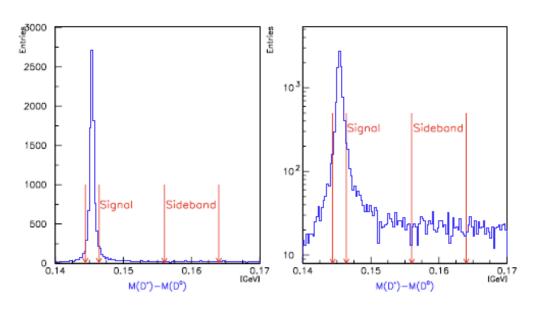
mistag calibration could cancel damping partially!


Belle Analysis

A.Go & Belle, Phys. Rev. Lett 99 (2007) 131802

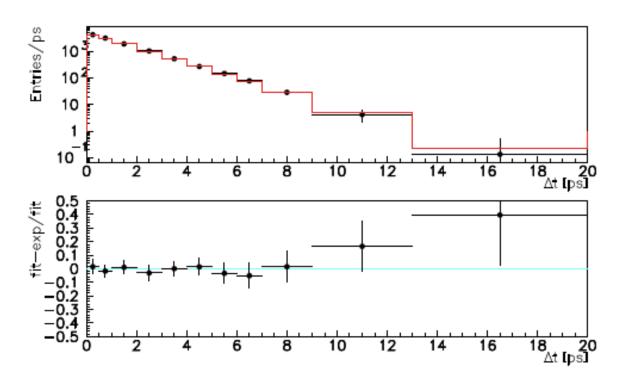
Belle's most current sin $2\phi_1$, $|\lambda|$, τ_B , Δm_d measurement at the time:

- $152 \times 10^6 \ B\overline{B}$ pairs
 - 5× the discovery dataset
 - $\frac{1}{5}$ × the eventual dataset
- 5417 CP- and 177368 flavoureigenstate B-decay candidates
- sample purities vary 63–98% depending on the decay mode
- multivariate flavour-tagging of the other B decay; ε_{eff} = 28.7%
- $\Delta m_d = (0.511 \pm 0.005 \pm 0.006) \,\mathrm{ps^{-1}}$ cf. $(0.5065 \pm 0.0019) \,\mathrm{ps^{-1}}$ PDG23


We then adapted this in various ways . . .

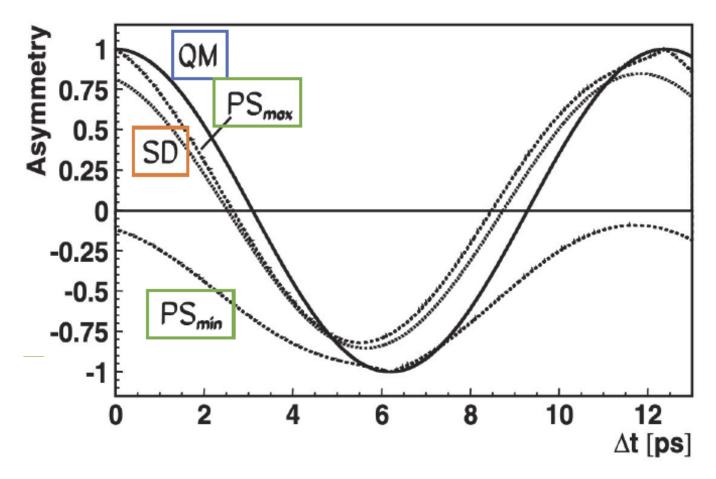
Event Selection

- restrict 177368 \to 84823 flavour eigenstates, choosing only $B^0 \to D^{*-} \ell^+ \nu$ where the lepton explicitly determines the B-flavour
- restrict 84823 → 8565 by choosing only the best flavour tags of the other B: highest of 7 purity categories; leptons only
- ullet signal relies on $D^{*-}
 ightarrow \overline{D}{}^0 \pi^-$ tag: energy release $Q \ll m_\pi \ll m_D$
- estimate background under peak using sideband region:



Check: fit B⁰ lifetime

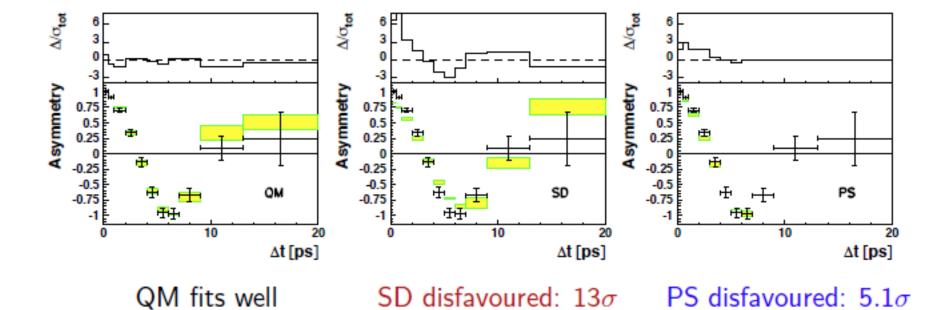
- Background subtraction, deconvolution of ∆t resolution, mistag.....
- Fit for the B⁰ lifetime:



finds lifetime $\tau_B^0 = (1.532 \pm 0.017) \, \mathrm{ps}$, with $\chi^2/n_{dof} = 3/11$ cf. world average $(1.530 \pm 0.009) \, \mathrm{ps}$ from PDG2006

Fit functions

QM: standard quantum mechanical entanglement


SD: spontaneous decoherence

PM: A. Pompili & F. Selleri, Eur. Phys. J. C14, 469 (2000)

Results

• "SD fraction": $(1 - \zeta_{B^0\overline{B}^0})A_{QM} + \zeta_{B^0\overline{B}^0}A_{SD}$, $\zeta_{B^0\overline{B}^0} = 0.029 \pm 0.057$

 $\chi^2/n_{dof} = 5/11$ $\chi^2/n_{dof} = 174/11$ $\chi^2/n_{dof} = 31/11$

Pompili-Selleri class: QM-like states, stable mass, flavor correlations;
 QM predictions for single B-mesons preserved

What do we learn?

SD excluded by 13 σ , but more relevant is the fraction of decoherent events

$$f = (1-\zeta) A_{QM} + \zeta A_{SD}$$
 $\zeta = 0.029 \pm 0.057$

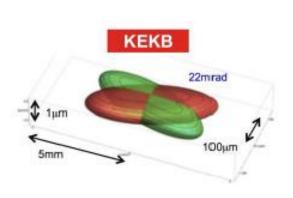
A fraction of ~10% is still possible!

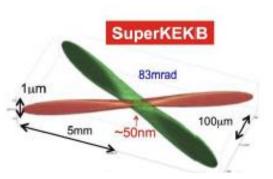
This could lead to a shift of our S_{cp} measurements by $\Delta S_{cp} \sim 0.012$ (@ $\Upsilon(4s)$)

The total systematic errors of the Belle II J/ψ K_s analysis is 0.014!

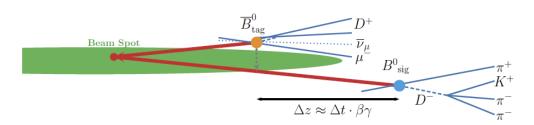
largest single systematic error?

	Belle II 362 fb ⁻¹ , preliminary		
Source	$\sigma(\varepsilon_{\mathrm{tag}})$ [%]	$\sigma(S_{CP})$	$\sigma(C_{CP})$
$B^0 \to D^{(*)} - \pi^+$ sample size	0.43	0.004	0.007
$B^0 \to J/\psi K_S^0$ sample size		0.035	0.026
Fit model			
Analysis bias	0.02	0.002	0.005
Fixed resolution parameters	0.07	0.004	0.004
$\tau \& \Delta m_d$	0.06	0.001	0.000
$\sigma_{\Delta t}$ binning	0.04	0.000	0.000
Δt measurement			
Alignment	0.06	0.005	0.003
Beam spot	0.16	0.002	0.002
CMS Energy	0.03	0.000	0.001
Backgrounds			
$B^{0} \rightarrow D^{(*)} \pi^{+}$ sWeight bias	0.24	0.001	0.001
$B^0 \rightarrow D^{(*)-}\pi^+\Delta E$ background	0.11	0.001	0.001
Signal ΔE shape	0.08	0.002	0.000
Tag-side interference	_	0.010	0.007
Total systematic	0.34	0.014	0.012


Plans @ Belle II



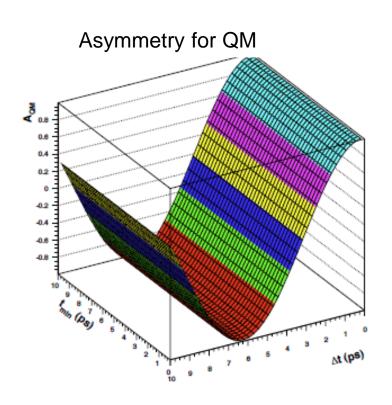
Repeat Belle analysis with higher statistics, more channels, better resolution

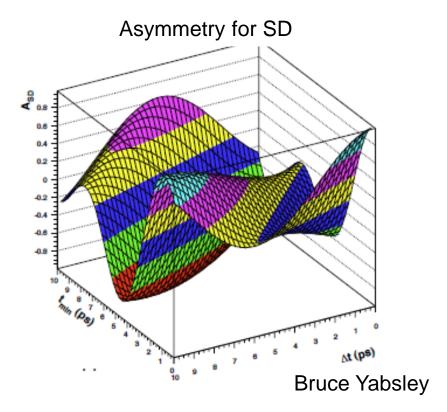

$$B^0 o D^- \pi^+$$
 , $D^{*-} \pi^+$, $D^{*-} \rho^+$

Make use of better vertex resolution and smaller interaction region:

	KEKB	superKEKB
σ_{x}	150 µm	10 μm
σ_{y}	940 nm	50 nm
σ_z , eff	7 mm	0.25 mm

γβτc = 0.125 mm Not perfect yet, but some chance to limit t_1


Transverse separation ~50 μ m Vertex resolution σ_{res} ~20 μ m



Discrimination Power

Access to t₁ adds a new dimensions and should result higher sensitivity

Entanglement: depends only on Δt

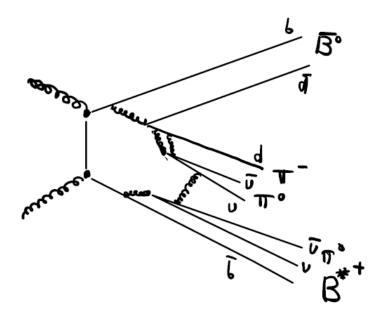
Decoherence: depends on t_1 and Δt

Setting a lower limit on t₁ could also make a check of Bell's inequality possible (randomize)

Conclusions

- 'Aspect' style experiments to check Bell's inequality are not possible with $\Upsilon(4s) \to B^0 \, \overline{B}{}^0$
 - no active measurement (random decay of the B⁰): conspiracy loophole!
 - short B⁰ lifetime induces correlations which violate Bell's inequality even for a local realistic scenario.
- QM and alternative models can be tested fitting the time dependence of B⁰ oscillations. Belle analysis: alternative scenarios excluded by 13σ (SD) and 5.1σ (PS).
- A fraction of ~10% of decoherent events is still compatible with the data.
- Possible systematic error of our time dependent CP violation measurements (so far not taken into account!).
- Belle II has the potential to improve on this.
- Questions to theory: what mechanisms (SM or BSM) could lead to a loss of coherence?

With contributions from


Sven Vahsen & team (Hawaii), Bruce Yabsley (Sidney) Fumiaki Otani, Takeo Higuchi (IPMU)

Backup: LHCb

Any entanglement destroyed by fragmentation and hadronization B⁰/B(any) system created with many other hadrons: mixed state Primary Vertex detectable: each B⁰ timed independently

