Entanglement and Entropy in Multipartite Systems:
a Useful Approach

- - ; -
i, et R R

.-'4-;“, | 4 o S

Collab. with
Oollab. Wi Alberto Casas

A. Bernal, J. Moreno
Based on: ArXiv [2307.05205] Madrid




A This is not a HEP talk



This is not a HEP talk

But the notion of multipartite entanglement is

relevant for systems with many particles and,
maybe, QFT.



This is not a HEP talk

But the notion of multipartite entanglement is

relevant for systems with many particles and,
maybe, QFT.

Also relevant in:

Spin chains
Q-Cryptography

Biological systems
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H=,8 Ky

|yw) is entangled if |y) # @) @ | ,)

N € X g

s% Criterion: |ly) is entangled iff tr pﬁ + 1

with  py = trg p = trg | y)(y|

¢ Concurrence: a practical measure of entanglement

Chp=2(1—1tr p})

ly) is entangled iff Cle + ()
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Genuine Entanglement

N—partite system

%=%1®%2®"'®%N

| ) is genuinely entangled if it is entangled with respect to
any bipartition of the system

l:ii> The state of any part of the system
cannot be described without referring to
the other parts of the system
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Bases: {1i)} tny {1k}

A bipartition #, @ # 1 is detfined by a set of subsystems, A,
and the complementary, A :

A — subset of indices I € {i,j,k, -}

A~

A — complementary set I= {i,j, k,---}\{
Concurrence of the bipartition:

C2r=2(1 - tr p}) with p, = tr7 p

The bipartition 1|1 is entangled iff CIlI # 0




Note: In order to assess whether a state is genuinely

2N—1

entangled we need to evaluate — 1 concurrences,

C1|1 , 1€ {ijk,--} and check that all of them are # 0

Computationally a formidable problem

see Latorre’s lectures
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The entanglements of bipartitions are not independent each other

For a tripartition:
H= Q¥ ® K,
pAY Triangular inequality:
Cipz < Gz + Gypp2
pAg Triangular inequality (for squares):

2 2 2
C1|23 <G o113 T C3|12

Coffman, Kundu, Wootters, 1999
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— > Triangle measure of tri-partite entanglement

S

1
Area of the triangle
Cspz Cos of concurrences
Jin et al. 2022
2 3
Cips
1
Area of the triangle of
2 2
Cinz Cons squared concurrences
Xie, Eberly 2021
2 . 3
Cips
Only if , , ,
C"=CA—|—C"\ @ C-’TZOOI'C,A,:O
1j]i] ili il il ilj

proven for 3 qubits  Xie, Eberly 2021




Concurrence Vector




Concurrence Vector

%:%1®%2®%3®...®%N
{ay  Unt {1} e e

Consider a bipartition X =X, Q #3

A — subset of indices I € {i, J,k, -}

A—s complementary indices 1= {i,7,k,---}\{



Concurrence Vector

%:%1®%2®%3®...®%N
{ay  Unt {1} e e

Consider a bipartition X =X, Q #3

A — subset of indices I € {i, J,k, -}

A—s complementary indices 1= {i,j. k,---}\{

Astate  [y)= D ay |i)])) 1K)
ijk...

is separable iff |W>=<2051|1>>®<Zﬂ7|1>>
1 1

ﬁ> Q. = ar=oyfy => rank {a;7} =1
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Concurrence Vector

)= Y ay ) 1j)|k)- separable = rank (a7} =1
i,j,k...

= Allminors a7 11751 = *ni %5 — % 5%5 =0

Define the concurrence vector:

Badziag, Horodecki, Horodecki, Horodecki

6 ~— a PN = ad. ~ Q. ~ — Q. ~QA. ~ Audenaert, Verstraete, Moor
I|T {[ ]{1112}{1112}} { L1 YL, L1 1211} khiarehona
Lie, Zhu

. = _ 2 . . .
H(j 2= 2 dim Cl|f =D, with D=dim #
1|1 I
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Why use long concurrence vectors, E)MA , instead of the

simple concurrences, C12|; ?

Cer&ainij, i the onLv merikt of 6”7 were thak ||6),|7||2 = C12|T ,

Lk would mwalkke no sense.

The concurrence-vectors are much more powerful than the
concurrence-values to explore the connection between
entanglements.

10
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A useful expression for C;

Bernal, JAC, Moreno 2023

Forastate  [y) = D ag. 1)) 1K)
ijk..
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A useful expression for C;

Bernal, JAC, Moreno 2023

Forastate  [y) = D ag. 1)) 1K)
ijk..

define A as the vector of coefficients of W Q|ly) EHX QX
Ailjlk:l...; iojoka... — (ailjlkzl...) (a”i2j2k2...) dim A = D?

Under permutations of the index i, A changes as

PA = {(aizjlkl...) (ail jzkz...)}
\_/V

Y5 For the elementary bipartition # =%, Q (#,Q H 5+ I y)

—

C-=(1-P)A

il

i\( For a generic bipartition, I\f, with I =14,7,....m

—

Cl|f:<]1 —P])A PIZPin'"Pm
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A useful expression for C;

—

51|f =(1 - P)A

—

A = vector of coefficients of |y) ® |y) = {(ailjlkl...)(ai2j2k2...)}
P,=PpP.P,

{P;} have a friendly algebra (commutative Zév group):

P} =1
[PIan] =0
P, A =P;A

Note also that 1 — P; is essentially a projector:

(1-P)*=2(1-P)

12
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Proot of previous results

Y5 Triangular inequality, Coiig SCip +Cy5

li

(1= P)+P(1—P))A=Cp+PC,

ili 7l

— (1 — PP)A

ij]ig
f:ﬁ> Cmfj o G Pz'ng form atrlangle

= >  Their norms satisfy the triangular inequality
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Proot of previous results

Y5 Triangular inequality, Coiig SCip +Cy5

li

(L-P)+P1-P))A=Cr+PC -

ila Jli

— (1 — PP)A

ij]ig
— > C.~, C-, PC. forma triangle
ij|ig il 77

= >  Their norms satisfy the triangular inequality

: : : 5 5 5
PAe Triangular inequality for the squares, Cz.j@ < Cz.ﬁ—i— ng

1 —
2 2 2 _ (1 = PY1 — P:)AI?
Cig = CintCip— 5l =R = PpA|
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New results

3¢ Relationships between entanglements of non-disjoint subsystems

Detine I AJ=IUJ\INJ (setofindicesinlorJ, butin both)

@ Cranizs S Cnrt s

2 02 02
INT|INT II T J|J

VAN

14



New results

Y¢ More generally, using

AT(1 — P)(1 £ Py)(1 + Pg)--- (1 £ Py)A >0

\ /
\/ K
Combination of squared concurrences

one gets many more inequalities.

since
+ P) = (1% P)?/2
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New results

Y¢ More generally, using

AT(1 — P)(1 £ Py)(1 + Pg)--- (1 £ Py)A >0

\ /
\/ K
Combination of squared concurrences
since

P)=(1=%P)?/2
one gets many more inequalities.

E.g. R R
AT(1-PP)(1-PP)(1+PPHA >0

-

2 2 2
Czklzk = Cz‘jlz? + Cjklﬁé

15
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New results

¢ We have also proven that the result

C? = (C% 4+ C?

L~ L~ - S C-’?:OOTC-":
ijlig af ili il

Jlj

holds for any dimension of the three Hilbert spaces of the
tripartition, not just for three qubits.
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New results

¢ We have also proven that the result

C? = (C% 4+ C?

O e ~ & C.A.:OOI’C.AIO
ijlig ap ili il

Jlj

holds for any dimension of the three Hilbert spaces of the
tripartition, not just for three qubits.

@ Hence, the area of the triangle of squared concurrences is a
sound measure of genuine entanglement (for a tripartition)
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Relation to (linear) entropy

From an entropy-of-entanglement perspective, the concurrence
can be identified with the Tsallis-2 (“linear”) entropy

C?ﬁ: 2(1—trp%) =2 S2(pa)

— > We can use the relationships between
concurrences to obtain relations between (linear)
entropies for generic (pure or mixed) states

17
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Relation to (linear) entropy

E.g. for a tri-partition of the Hilbert space:

H=H,QHp® X 3
(i LY (1) = {11i))

Triangular inequalities (for squares):

C2 - <C 4+0C% > Sy(pap) <S2(pa)+S2(pB)

ijlig = Tili T gl
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Relation to (linear) entropy

E.g. for a tri-partition of the Hilbert space:

H=H,QHp® X 3
(i LY (1) = {11i))

Triangular inequalities (for squares):

C2 - <C 4+0C% > Sy(pap) <S2(pa)+S2(pB)

ijlig = ild 4|7
.
C2< C24C? ~

T TR | = |S2(pa) = S2(pB) < Sa (pan)

2 2 2
Ci < Gt G5

@ [!52 (pa) = S2(pB) |< S2(paB) < S2(pa) + 52 (PB)J
Subadditivity Conditions

18
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Relation to (linear) entropy

[52 (pa) = S2 (pB) |< S2 (paB) < S2(pa) + 52 (pB)J

Note:

Sub&dcﬁ.i%ivi&v Condikions

Even though the relation has been obtained starting with
a pure global state,

W) EX =, QK p® X i

The subadditivity relation holds for pure or mixed states since

any p,p can be obtained from a pure state by appropriately
choosing the “environment” Z i3

Pap = W43 lwHy] (purification theorem)



Relation to (linear) entropy

[\52 (pa) = S2 (pB) |< S2 (paB) < S2(pa) + 52 (PB)J

Sub&dcii&vi&v Condikions

Also: the equality in the subadditivity, i.e.

S (Pag) =S5 (pa) + 55 (p)

occurs Iff

5 (PA) =0 or 5, (PB) =0

(hew)

20



Relation to (linear) entropy

3¢ You can also easily check that the strong subadditivity:
S (pasc) + 5 (pB) < 5 (paB) + 5 (pBc)

does not hold (in general) for the linear entropy

21
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Relation to (linear) entropy

3¢ You can also easily check that the strong subadditivity:
S (pasc) + 5 (pB) < 5 (paB) + 5 (pBc)

does not hold (in general) for the linear entropy

s% ...and find modified (weaker) versions that do hold, e.g.

S5 (Pasc) + S (P8) < S5 (pag) + S5 (Pec)+ 152 (a) + S5 (Pc) =S, (pAC)]

\— —

extra terms > (0

¢ All relationships found for concurrences can be translated to
relationships between linear entropies, e.g.

S2 (pac) < S2(paB) + S2 (pBC)

22
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Sufficient Conditions for Genuine Entanglement

Recall:

In order to assess whether a state is genuinely entangled we need

2N=1 _ 1concurrences, C3-, I € {i,j,k, -} and check

to evaluate I

that all of them are # 0 (a very hard Frabtenﬂ):
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Sufficient Conditions for Genuine Entanglement

Recall:

In order to assess whether a state is genuinely entangled we need

to evaluate 2V-!

that all of them are # 0

— 1 concurrences, C12|1 ,1e{ijk, -} and check

(a very hard Fxrobtem):

Can our expression (¢ -=(1-P)A be of some help?

11
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Sufficient Conditions for Genuine Entanglement

Suppose the Hilbert space is
%=%1®%2®”‘®%N

with N even.

Consider now the vector
Vy=(0=P)1=P)(1=Py_DA
(evauable in N —1 simple steps)

which is a linear combination of all the concurrence vectors:

Ww= Y (D¥a-pr)A = Y (_1)#fél‘f
Ic{1,2,.N—1} Ic{1,2,..N—1}



Sufficient Conditions for Genuine Entanglement

Suppose there is a certain odd bipartition, Z|§, which is

separable:
Cyy=(1—-P)A =0 Py = PP, --P, (withm odd)
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Sufficient Conditions for Genuine Entanglement

Suppose there is a certain odd bipartition, Z|§, which is

separable:
Cyy=(1—-P)A =0 Py = PP, --P, (withm odd)

= =1 Y (DH(-P)- (- PP A=0
Ic{1,2,..N—1}

:> Vy#0 is a sufficient condition to guarantee genuine
entanglement w.r.t. all ( ~ 2¥~2) odd bipartitions.

and is evauable in polynomial time ( ~ N steps)

s’e  For the other cases, ¥ even, N odd, we got also sufficient
conditions for genuine entanglement, computable in pol. time.

25



Conclusions

S’ In a multipartite system, the notion of concurrence vector is a
powerful tool to explore the connections between the entanglements
associated to bipartitions.
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Conclusions

A

A

In a multipartite system, the notion of concurrence vector is a
powerful tool to explore the connections between the entanglements

associated to bipartitions.

For a given bipartition, I|I , a useful expression for the associated

concurrence vector is

—

Cl|f:<]l —P]>A PIZPin"'Pm
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Conclusions

A

A

In a multipartite system, the notion of concurrence vector is a
powerful tool to explore the connections between the entanglements

associated to bipartitions.

For a given bipartition, I|I , a useful expression for the associated

concurrence vector is

Crp=- P)A P,=P,Py-P,
with A = vector of coefficients of lv) ® |y, dim A = D?

In this way, many new relationsships between the concurrences of the
various bipartitions of a multipartite system can be obtained
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v< The same holds for the Tsallis-2 (or “linear") entropy, e.g. a
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27



Conclusions

v< The same holds for the Tsallis-2 (or “linear") entropy, e.g. a

S2 (pac) < S2(paB) + S2 (pBC)

v< This approach is also useful to obtain sufficient conditions for
genuine entanglement, computable in polynomial time.

27



Prospects

Explore:

pure state — mixed state

linear entropy — other quantum entropies (e.g. von Neumann)

necessary-and-sufficient conditions for genuine entanglement
(pure states)

relation of the formalism with entanglement invariants

28



