Entanglement and Entropy in Multipartite Systems: a Useful Approach

Collab. with
A. Bernal, J. Moreno

Based on: ArXiv [2307.05205]

Alberto Casas
ift
Madrid

This is not a HEP talk

This is not a HEP talk

But the notion of multipartite entanglement is relevant for systems with many particles and, maybe, QFT.

This is not a HEP talk

But the notion of multipartite entanglement is relevant for systems with many particles and, maybe, QFT.

Also relevant in:
Spin chains
Q-Cryptography
-
Biological systems

2-partite system

$$
\begin{gathered}
\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B} \\
|\psi\rangle \text { is entangled if }|\psi\rangle \neq\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle \\
\in \mathscr{H}_{A} \quad \in \mathscr{H}_{B}
\end{gathered}
$$

2-partite system

$$
\begin{gathered}
\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B} \\
|\psi\rangle \text { is entangled if }|\psi\rangle \neq\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle \\
\in \mathscr{H}_{A} \quad \in \mathscr{H}_{B}
\end{gathered}
$$

\pm Criterion: $\quad|\psi\rangle$ is entangled of $\operatorname{tr} \rho_{A}^{2} \neq 1$
with $\rho_{A}=\operatorname{tr}_{B} \rho=\operatorname{tr}_{B}|\psi\rangle\langle\psi|$

2-partite system

$$
\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}
$$

$|\psi\rangle$ is entangled if $|\psi\rangle \neq\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle$

$$
\in \mathscr{H}_{A} \quad \in \mathscr{H}_{B}
$$

\star Criterion: $|\psi\rangle$ is entangled af $\operatorname{tr} \rho_{A}^{2} \neq 1$
with $\rho_{A}=\operatorname{tr}_{B} \rho=\operatorname{tr}_{B}|\psi\rangle\langle\psi|$
© Concurrence: a practical measure of entanglement

$$
C_{A \mid B}^{2}=2\left(1-\operatorname{tr} \rho_{A}^{2}\right) \quad|\psi\rangle \text { is entangled iff } C_{A \mid B}^{2} \neq 0
$$

Genuine Entanglement

N-partite system

$$
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \cdots \otimes \mathscr{H}_{N}
$$

$|\psi\rangle$ is genuinely entangled if it is entangled with respect to any bipartition of the system

Genuine Entanglement

N -partite system

$$
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \cdots \otimes \mathscr{H}_{N}
$$

$|\psi\rangle$ is genuinely entangled if it is entangled with respect to any bipartition of the system

The state of any part of the system cannot be described without referring to the other parts of the system

$$
\begin{gathered}
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \mathscr{H}_{3} \otimes \cdots \otimes \mathscr{H}_{N} \\
\{|i\rangle\} \quad\{|j\rangle\} \quad\{|k\rangle\} \quad \cdots
\end{gathered}
$$

Bases:
A bipartition $\mathscr{H}_{A} \otimes \mathscr{H}_{\widehat{A}}$ is defined by a set of subsystems, A, and the complementary, \widehat{A} :
Bases:

$$
\begin{gathered}
\mathscr{H}= \\
=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \mathscr{H}_{3} \otimes \cdots \otimes \mathscr{H}_{N} \\
\{|i\rangle\} \quad\{|j\rangle\} \quad\{|k\rangle\} \quad \cdots
\end{gathered}
$$

A bipartition $\mathscr{H}_{A} \otimes \mathscr{H}_{\widehat{A}}$ is defined by a set of subsystems, A, and the complementary, \widehat{A} :
$A \longrightarrow$ subset of indices $I \in\{i, j, k, \cdots\}$
$\widehat{A} \longrightarrow$ complementary set $\widehat{I}=\{i, j, k, \cdots\} \backslash I$
Bases:

$$
\begin{gathered}
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \mathscr{H}_{3} \otimes \cdots \otimes \mathscr{H}_{N} \\
\\
\{|i\rangle\} \quad\{|j\rangle\} \quad\{|k\rangle\} \quad \cdots
\end{gathered}
$$

A bipartition $\mathscr{H}_{A} \otimes \mathscr{H}_{\widehat{A}}$ is defined by a set of subsystems, A, and the complementary, \widehat{A} :

$$
\begin{aligned}
& A \longrightarrow \text { subset of indices } I \in\{i, j, k, \cdots\} \\
& \widehat{A} \longrightarrow \text { complementary set } \overparen{I}=\{i, j, k, \cdots\} \backslash I
\end{aligned}
$$

Concurrence of the bipartition:

$$
C_{I \mid \overparen{I}}^{2}=2\left(1-\operatorname{tr} \rho_{A}^{2}\right) \quad \text { with } \rho_{A}=\operatorname{tr}_{\overparen{I}} \rho
$$

The bipartition $I \mid \widehat{I}$ is entangled of $C_{I \mid I}^{2} \neq 0$

Note: In order to assess whether a state is genuinely entangled we need to evaluate $2^{N-1}-1$ concurrences, $C_{I \mid I}^{2}, I \in\{i, j, k, \cdots\}$ and check that all of them are $\neq 0$

Computationally a formidable problem

The entanglements of bipartitions are not independent each other

The entanglements of bipartitions are not independent each other

For a tripartition:

$$
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \mathscr{H}_{3}
$$

Triangular inequality:

$$
C_{1 \mid 23} \leq C_{2 \mid 13}+C_{3 \mid 12}
$$

Triangular inequality (for squares):

$$
C_{1 \mid 23}^{2} \leq C_{2 \mid 13}^{2}+C_{3 \mid 12}^{2}
$$

Triangle measure of tri-partite entanglement

Area of the triangle of
 squared concurrences

Xie, Eberly 2021

Triangle measure of tri-partite entanglement

Area of the triangle of

squared concurrences

Xie, Eberly 2021

Only if

$$
C_{i j \mid \widehat{i j}}^{2}=C_{i \mid \overparen{i}}^{2}+C_{j \mid \widehat{j}}^{2} \Longleftrightarrow C_{i \mid \bar{i}}=0 \text { or } C_{j \mid \widehat{j}}=0
$$

Concurrence Vector

Concurrence Vector

$$
\begin{aligned}
\mathscr{H}= & \mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \mathscr{H}_{3} \otimes \cdots \otimes \mathscr{H}_{N} \\
& \{|i\rangle\} \quad\{|j\rangle\} \quad\{|k\rangle\} \quad \cdots
\end{aligned}
$$

Consider a bipartition $\quad \mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{\widehat{A}}$
$A \longrightarrow$ subset of indices $I \in\{i, j, k, \cdots\}$
$\widehat{A} \longrightarrow$ complementary indices $\widehat{I}=\{i, j, k, \cdots\} \backslash I$

Concurrence Vector

$$
\begin{aligned}
\mathscr{H}= & \mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \mathscr{H}_{3} \otimes \cdots \otimes \mathscr{H}_{N} \\
& \{|i\rangle\} \quad\{|j\rangle\} \quad\{|k\rangle\} \quad \cdots
\end{aligned}
$$

Consider a bipartition $\quad \mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{\widehat{A}}$

$$
A \longrightarrow \text { subset of indices } I \in\{i, j, k, \cdots\}
$$

$$
\widehat{A} \longrightarrow \text { complementary indices } \widehat{I}=\{i, j, k, \cdots\} \backslash I
$$

A state $\quad|\psi\rangle=\sum_{i, j, k \ldots} a_{i j k \ldots}|i\rangle|j\rangle|k\rangle \ldots$
is separable iff $\quad|\psi\rangle=\left(\sum_{I} \alpha_{I}|I\rangle\right) \otimes\left(\sum_{\widehat{I}} \beta_{\bar{I}}|I\rangle\right)$

$$
a_{i j k \ldots}=a_{I \overparen{I}}=\alpha_{I} \beta_{\widehat{I}} \quad \Longleftrightarrow \operatorname{rank}\left\{a_{I \overparen{I} I}\right\}=1
$$

Concurrence Vector

$$
|\psi\rangle=\sum_{i, j, k \ldots . .} a_{i j k \ldots}|i\rangle|j\rangle|k\rangle \cdots \text { separable } \Longrightarrow \text { rank }\left\{a_{I T}\right\}=1
$$

\Longrightarrow All minors $\quad[a]_{\left\{I_{1} I_{2}\right\}\left\{\left\{\hat{I}_{1} \hat{I}_{2}\right\}\right.}=a_{I_{1} \hat{I}_{1}} a_{I_{2} \hat{I}_{2}}-a_{I_{1} \hat{I}_{2}} a_{I_{2} \hat{I}_{1}}=0$

Concurrence Vector

$$
\begin{gathered}
|\psi\rangle=\sum_{i, j, k \ldots} a_{i j k \ldots}|i\rangle|j\rangle|k\rangle \cdots \text { separable } \Longrightarrow \operatorname{rank}\left\{a_{I \overparen{I}}\right\}=1 \\
\Longrightarrow \text { All minors }[a]_{\left\{I_{1} I_{2}\right\}\left\{\hat{I}_{1} \widehat{I}_{2}\right\}}=a_{I_{1} \widehat{I}_{1}} a_{I_{2} \widehat{I}_{2}}-a_{I_{1} \widehat{I}_{2}} a_{I_{2} \widehat{I}_{1}}=0
\end{gathered}
$$

Define the concurrence vector:

$$
\vec{C}_{I \mid \widehat{I}}=\left\{[a]_{\left\{I_{1} I_{2}\right\}\left\{\widehat{I}_{1} \widehat{I}_{2}\right\}}\right\}=\left\{a_{I_{1} \widehat{I}_{1}} a_{I_{2} \widehat{I}_{2}}-a_{I_{1} \widehat{I}_{2}} a_{I_{2} \widehat{I}_{1}}\right\}
$$

Badziag, Horodecki, Horodecki, Horodecki Audenaert, Verstraete, Moor

Akhtarshenas
Lie, Zhu

$$
\operatorname{dim} \vec{C}_{I \mid \hat{I}}=D^{2}, \text { with } D=\operatorname{dim} \mathscr{H}
$$

Concurrence Vector

$$
|\psi\rangle=\sum_{i, j, k \ldots} a_{i j k \ldots \ldots}|i\rangle|j\rangle|k\rangle \cdots \text { separable } \Longrightarrow \quad \operatorname{rank}\left\{a_{I \overparen{I}}\right\}=1
$$

\Longrightarrow All minors $[a]_{\left\{I_{1} I_{2}\right\}\left\{\hat{I}_{1} \hat{I}_{2}\right\}}=a_{I_{1} \widehat{I}_{1}} a_{I_{2} \widehat{I}_{2}}-a_{I_{1} \widehat{I}_{2}} a_{I_{2} \hat{I}_{1}}=0$

Define the concurrence vector:

$$
\vec{C}_{I \mid \widehat{I}}=\left\{[a]_{\left\{I_{1} I_{2}\right\}\left\{\widehat{I}_{1} \widehat{I}_{2}\right\}}\right\}=\left\{a_{I_{1} \widehat{I}_{1}} a_{I_{2} \widehat{I}_{2}}-a_{I_{1} \widehat{I}_{2}} a_{I_{2} \widehat{I_{1}}}\right\}
$$

Badziag, Horodecki, Horodecki, Horodecki Audenaert, Verstraete, Moor

Akhtarshenas
Lie, Zhu

Why use long concurrence vectors, $\vec{C}_{I \mid \bar{I}}$, instead of the simple concurrences, $C_{I \mid I}^{2}$?

Why use long concurrence vectors, $\vec{C}_{I \mid \bar{I}}$, instead of the simple concurrences, $C_{I \mid I}^{2}$?

Certainly, if the only merit of $\vec{C}_{I \mid \widehat{I}}$ were that $\left\|\vec{C}_{I \mid I}\right\|^{2}=C_{I \mid \overparen{I}}^{2}$, it would make no sense.

Why use long concurrence vectors, $\vec{C}_{I \mid I}$, instead of the simple concurrences, $C_{I \mid I}^{2}$?

Certainly, if the only merit of $\vec{C}_{I \mid \widehat{I}}$ were that $\left\|\vec{C}_{I \mid I}\right\|^{2}=C_{I \mid \widehat{I}}^{2}$, it would make no sense.

The concurrence-vectors are much more powerful than the concurrence-values to explore the connection between entanglements.

A useful expression for $\vec{C}_{I \mid \hat{T}}$

Bernal, JAC, Moreno 2023
For a state

$$
|\psi\rangle=\sum_{i, j, k \ldots} a_{i j k \ldots}|i\rangle|j\rangle|k\rangle \cdots
$$

define \vec{A} as the vector of coefficients of $|\psi\rangle \otimes|\psi\rangle \in \mathscr{H} \otimes \mathscr{H}$

$$
A_{i_{1} j_{1} k_{1} \ldots ; i_{2} j_{2} k_{2} \ldots}=\left(a_{i_{1} j_{1} k_{1} \ldots}\right)\left(a_{i_{2} j_{2} k_{2} \ldots}\right) \quad \operatorname{dim} \vec{A}=D^{2}
$$

Under permutations of the index i, \vec{A} changes as

$$
P_{i} \vec{A}=\left\{\left(a_{i_{2} j_{1} k_{1} \ldots}\right)\left(a_{i_{1} j_{2} k_{2} . .}\right)\right\}
$$

A useful expression for $\vec{C}_{I \mid \hat{I}}$

Bernal, JAC, Moreno 2023
For a state $\quad|\psi\rangle=\sum_{i, j, k \ldots} a_{i j k \ldots}|i\rangle|j\rangle|k\rangle \ldots$
define \vec{A} as the vector of coefficients of $|\psi\rangle \otimes|\psi\rangle \in \mathscr{H} \otimes \mathscr{H}$

$$
A_{i_{1} j_{1} k_{1} \ldots ; i_{2} j_{2} k_{2} \ldots}=\left(a_{i_{1} j_{1} k_{1} \ldots}\right)\left(a_{i_{2} j_{2} k_{2} \ldots}\right) \quad \operatorname{dim} \vec{A}=D^{2}
$$

Under permutations of the index i, \vec{A} changes as

$$
P_{i} \vec{A}=\left\{\left(a_{i_{2} j_{1} k_{1} \ldots}\right)\left(a_{i_{1} j_{2} k_{2} . .}\right)\right\}
$$

\sum For the elementary bipartition $\mathscr{H}=\mathscr{H}_{1} \otimes\left(\mathscr{H}_{2} \otimes \mathscr{H}_{3} \ldots \mathscr{H}_{N}\right)$

$$
\vec{C}_{i \mid \bar{i}}=\left(\mathbb{1}-P_{i}\right) \vec{A}
$$

is For a generic bipartition, $I \mid \widehat{I}$, with $I=i, j, \ldots, m$

$$
\vec{C}_{I \mid \widehat{I}}=\left(\mathbb{1}-P_{I}\right) \vec{A} \quad P_{I}=P_{i} P_{j} \cdots P_{m}
$$

A useful expression for $\vec{C}_{I \mid \hat{I}}$

$$
\vec{C}_{I \mid \widehat{I}}=\left(\mathbb{1}-P_{I}\right) \vec{A}
$$

$\vec{A} \equiv$ vector of coefficients of $|\psi\rangle \otimes|\psi\rangle=\left\{\left(a_{i_{1} j_{1} k_{1} \ldots}\right)\left(a_{i_{2} j_{2} k_{2} \ldots} \ldots\right)\right\}$
$P_{I} \equiv P_{i} P_{j} \cdots P_{m}$

A useful expression for $\vec{C}_{I \mid \hat{I}}$

$$
\vec{C}_{I \mid \widehat{I}}=\left(\mathbb{1}-P_{I}\right) \vec{A}
$$

$\vec{A} \equiv$ vector of coefficients of $|\psi\rangle \otimes|\psi\rangle=\left\{\left(a_{i_{1} j_{1} k_{1} \ldots}\right)\left(a_{i_{2} j_{2} k_{2} \ldots} \ldots\right)\right\}$
$P_{I} \equiv P_{i} P_{j} \cdots P_{m}$
$\left\{P_{I}\right\}$ have a friendly algebra (commutative Z_{2}^{N} group):

$$
\begin{aligned}
& P_{I}^{2}=1 \\
& {\left[P_{I}, P_{J}\right]=0} \\
& P_{I} \vec{A}=P_{\widehat{I}} \vec{A}
\end{aligned}
$$

Note also that $1-P_{I}$ is essentially a projector:

$$
\left(1-P_{I}\right)^{2}=2\left(1-P_{I}\right)
$$

Proof of previous results

is Triangular inequality, $C_{i j \mid \hat{i j}} \leq C_{i \mid \bar{i}}+C_{j \mid \hat{j}}$:

Proof of previous results

is Triangular inequality, $C_{i j \mid \overparen{i j}} \leq C_{i \mid \bar{i}}+C_{j \mid \hat{j}}$:

$$
\vec{C}_{i j \mid \widehat{i j}}=\left(\mathbb{1}-P_{i} P_{j}\right) \vec{A}=\left(\left(\mathbb{1}-P_{i}\right)+P_{i}\left(\mathbb{1}-P_{j}\right)\right) \vec{A}=\vec{C}_{i \mid \bar{i}}+P_{i} \vec{C}_{j \mid \hat{j}}
$$

$\vec{C}_{i j \mid \overline{i j}}, ~ \vec{C}_{i \mid \bar{i}}, P_{i} \vec{C}_{j \mid \bar{j}} \quad$ form a triangle
Their norms satisfy the triangular inequality

Proof of previous results

is Triangular inequality, $C_{i j \mid \overline{i j}} \leq C_{i \mid \bar{i}}+C_{j \mid \hat{j}}$:

$$
\vec{C}_{i j \mid \widehat{i j}}=\left(\mathbb{1}-P_{i} P_{j}\right) \vec{A}=\left(\left(\mathbb{1}-P_{i}\right)+P_{i}\left(\mathbb{1}-P_{j}\right)\right) \vec{A}=\vec{C}_{i \widehat{i}}+P_{i} \vec{C}_{j \mid \hat{j}}
$$

 $\vec{C}_{i j \mid \overline{i j}}, ~ \vec{C}_{i \mid \bar{i}}, P_{i} \vec{C}_{j \mid \bar{j}} \quad$ form a triangle

Their norms satisfy the triangular inequality

iv Triangular inequality for the squares, $C_{i j \mid \overline{i j}}^{2} \leq C_{i \mid \sqrt{i}}^{2}+C_{j \mid \bar{j}}^{2}$:

$$
C_{i j \mid \widehat{i j}}^{2}=C_{i \sqrt{i}}^{2}+C_{j \mid \bar{j}}^{2}-\frac{1}{2}\left\|\left(\mathbb{1}-P_{i}\right)\left(\mathbb{1}-P_{j}\right) \vec{A}\right\|^{2}
$$

New results

Relationships between entanglements of non-disjoint subsystems

New results

it Relationships between entanglements of non-disjoint subsystems

New results

it Relationships between entanglements of non-disjoint subsystems

New results

is Relationships between entanglements of non-disjoint subsystems

Define
$I \Delta J=I \cup J \backslash I \cap J$ (set of indices in I or J, but in both)

New results

is Relationships between entanglements of non-disjoint subsystems

Define
$I \Delta J=I \cup J \backslash I \cap J$ (set of indices in I or J, but in both)

New results

is Relationships between entanglements of non-disjoint subsystems

Define $\quad I \Delta J=I \cup J \backslash I \cap J$ (set of indices in I or J, but in both)

$$
\begin{aligned}
& C_{I \Delta J \mid \widehat{I \Delta J}} \leq C_{I \mid \widehat{I}}+C_{J \mid \widehat{J}} \\
& C_{I \Delta J \mid \widehat{I \Delta J}}^{2} \leq C_{I \mid \widehat{I}}^{2}+C_{J \mid \widehat{J}}^{2}
\end{aligned}
$$

New results

is More generally, using

one gets many more inequalities.

New results

it More generally, using

one gets many more inequalities.
E.g.

$$
\vec{A}^{\dagger}\left(1-P_{i} P_{j}\right)\left(1-P_{j} P_{k}\right)\left(1+P_{i} P_{k}\right) \vec{A} \geq 0
$$

$$
C_{i k \mid \sqrt{k}}^{2} \leq C_{i j \mid \overline{i j}}^{2}+C_{j k \mid \sqrt{k} k}^{2}
$$

New results

is We have also proven that the result

$$
C_{i j \mid \overparen{i j}}^{2}=C_{i \mid \widehat{i}}^{2}+C_{j \mid \hat{j}}^{2} \Longleftrightarrow C_{i \mid \hat{i}}=0 \text { or } C_{j \mid \bar{j}}=0
$$

holds for any dimension of the three Hilbert spaces of the tripartition, not just for three qubits.

New results

is We have also proven that the result

$$
C_{i j \mid \overparen{i j}}^{2}=C_{i \mid \overparen{i}}^{2}+C_{j \mid \widehat{j}}^{2} \Longleftrightarrow C_{i \mid i}=0 \text { or } C_{j \mid \widehat{j}}=0
$$

holds for any dimension of the three Hilbert spaces of the tripartition, not just for three qubits.

Hence, the area of the triangle of squared concurrences is a sound measure of genuine entanglement (for a tripartition)

From an entropy-of-entanglement perspective, the concurrence can be identified with the Tsallis-2 ("linear") entropy

$$
C_{I \mid \widehat{I}}^{2}=2\left(1-\operatorname{tr} \rho_{A}^{2}\right) \equiv 2 S_{2}\left(\rho_{A}\right)
$$

From an entropy-of-entanglement perspective, the concurrence can be identified with the Tsallis-2 ("linear") entropy

$$
C_{I \mid \widehat{I}}^{2}=2\left(1-\operatorname{tr} \rho_{A}^{2}\right) \equiv 2 S_{2}\left(\rho_{A}\right)
$$

We can use the relationships between concurrences to obtain relations between (linear) entropies for generic (pure or mixed) states

Relation to (linear) entropy

E.g. for a tri-partition of the Hilbert space:

$$
\begin{aligned}
\mathscr{H}= & \mathscr{H}_{A} \otimes \mathscr{H}_{B} \otimes \mathscr{H}_{\widehat{A B}} \\
& \{|i\rangle\} \quad\{|j\rangle\} \quad\{|k\rangle\} \equiv\{|\overparen{i j}\rangle\}
\end{aligned}
$$

Triangular inequalities (for squares):

$$
\left.\begin{array}{l}
C_{i j \mid \overparen{j}}^{2} \leq C_{i \mid \bar{i}}^{2}+C_{j \mid \bar{j}}^{2} \quad \leadsto S_{2}\left(\rho_{A B}\right) \leq S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{B}\right) \\
C_{i \mid \bar{i}}^{2} \leq C_{j \mid \bar{j}}^{2}+C_{i j \mid \overparen{j}}^{2} \\
C_{j \mid \bar{j}}^{2} \leq C_{i \mid i}^{2}+C_{i j \mid \overparen{j}}^{2}
\end{array}\right\} \leadsto\left|S_{2}\left(\rho_{A}\right)-S_{2}\left(\rho_{B}\right)\right| \leq S_{2}\left(\rho_{A B}\right)
$$

Relation to (linear) entropy

E.g. for a tri-partition of the Hilbert space:

$$
\begin{aligned}
\mathscr{H}= & \mathscr{H}_{A} \otimes \mathscr{H}_{B} \otimes \mathscr{H}_{\widehat{A B}} \\
& \{|i\rangle\} \quad\{|j\rangle\} \quad\{|k\rangle\} \equiv\{|\overparen{i j}\rangle\}
\end{aligned}
$$

Triangular inequalities (for squares):

$$
\begin{aligned}
& C_{i j \mid \overline{i j}}^{2} \leq C_{i \mid \bar{i}}^{2}+C_{j \mid \widehat{j}}^{2} \longmapsto S_{2}\left(\rho_{A B}\right) \leq S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{B}\right) \\
& \left.C_{i \mid i}^{2} \leq C_{j \mid \bar{j}}^{2}+C_{i j \mid \overparen{j}}^{2}\right\} \leadsto\left|S_{2}\left(\rho_{A}\right)-S_{2}\left(\rho_{B}\right)\right| \leq S_{2}\left(\rho_{A B}\right) \\
& C_{j \mid \hat{j}}^{2} \leq C_{i \mid i}^{2}+C_{i j \mid i \bar{j}}^{2} \\
& \left|S_{2}\left(\rho_{A}\right)-S_{2}\left(\rho_{B}\right)\right| \leq S_{2}\left(\rho_{A B}\right) \leq S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{B}\right)
\end{aligned}
$$

Subaddikivily Condikions

Relation to (linear) entropy

$$
\left|S_{2}\left(\rho_{A}\right)-S_{2}\left(\rho_{B}\right)\right| \leq S_{2}\left(\rho_{A B}\right) \leq S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{B}\right)
$$

Subadditivity Conditions

Note: Even though the relation has been obtained starting with a pure global state,

$$
|\psi\rangle \in \mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B} \otimes \mathscr{H}_{\widehat{A B}}
$$

The subadditivity relation holds for pure or mixed states since any $\rho_{A B}$ can be obtained from a pure state by appropriately choosing the "environment" $\mathscr{H}_{\overparen{A B}}$

$$
\rho_{A B}=\operatorname{tr}_{\overparen{A B}}|\psi\rangle\langle\psi|
$$

(purification theorem)

$$
\left|S_{2}\left(\rho_{A}\right)-S_{2}\left(\rho_{B}\right)\right| \leq S_{2}\left(\rho_{A B}\right) \leq S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{B}\right)
$$

Subaddikivity Conditions
Also: the equality in the subadditivity, i.e.

$$
S_{2}\left(\rho_{A B}\right)=S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{B}\right)
$$

occurs iff

$$
S_{2}\left(\rho_{A}\right)=0 \quad \text { or } \quad S_{2}\left(\rho_{B}\right)=0
$$

Relation to (linear) entropy

it You can also easily check that the strong subadditivity:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

does not hold (in general) for the linear entropy

Relation to (linear) entropy

T. You can also easily check that the strong subadditivity:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

does not hold (in general) for the linear entropy
...and find modified (weaker) versions that do hold, e.g.
$S_{2}\left(\rho_{A B C}\right)+S_{2}\left(\rho_{B}\right) \leq S_{2}\left(\rho_{A B}\right)+S_{2}\left(\rho_{B C}\right)+\left[S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{C}\right)-S_{2}\left(\rho_{A C}\right)\right]$
extra terms ≥ 0

Relation to (linear) entropy

T. You can also easily check that the strong subadditivity:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

does not hold (in general) for the linear entropy
is ... and find modified (weaker) versions that do hold, e.g.

$$
S_{2}\left(\rho_{A B C}\right)+S_{2}\left(\rho_{B}\right) \leq S_{2}\left(\rho_{A B}\right)+S_{2}\left(\rho_{B C}\right)+[\underbrace{S_{2}\left(\rho_{A}\right)+S_{2}\left(\rho_{C}\right)-S_{2}\left(\rho_{A C}\right)}_{\text {extra terms } \geq 0}]
$$

All relationships found for concurrences can be translated to relationships between linear entropies, e.g.

$$
S_{2}\left(\rho_{A C}\right) \leq S_{2}\left(\rho_{A B}\right)+S_{2}\left(\rho_{B C}\right)
$$

Sufficient Conditions for Genuine Entanglement

Recall:

In order to assess whether a state is genuinely entangled we need to evaluate $2^{N-1}-1$ concurrences, $C_{I \mid I}^{2}, I \in\{i, j, k, \cdots\}$ and check that all of them are $\neq 0$
(a very hard problem):

Sufficient Conditions for Genuine Entanglement

Recall:

In order to assess whether a state is genuinely entangled we need to evaluate $2^{N-1}-1$ concurrences, $C_{I \mid I}^{2}, I \in\{i, j, k, \cdots\}$ and check that all of them are $\neq 0$
(a very hard problem):

Can our expression $\quad \vec{C}_{I \mid \widehat{I}}=\left(\mathbb{1}-P_{I}\right) \vec{A}$ be of some help?

Sufficient Conditions for Genuine Entanglement

Suppose the Hillbert space is

$$
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \cdots \otimes \mathscr{H}_{N}
$$

with \underline{N} even.

Sufficient Conditions for Genuine Entanglement

Suppose the Hilbert space is

$$
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \cdots \otimes \mathscr{H}_{N}
$$

with \underline{N} even.
Consider now the vector

$$
\vec{V}_{N}=\left(1-P_{1}\right)\left(1-P_{2}\right) \cdots\left(1-P_{N-1}\right) \vec{A}
$$

(evauable in $N-1$ simple steps)

Sufficient Conditions for Genuine Entanglement

Suppose the Hillbert space is

$$
\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \cdots \otimes \mathscr{H}_{N}
$$

with \underline{N} even.
Consider now the vector

$$
\vec{V}_{N}=\left(1-P_{1}\right)\left(1-P_{2}\right) \cdots\left(1-P_{N-1}\right) \vec{A}
$$

(evauable in $N-1$ simple steps)
which is a linear combination of all the concurrence vectors:

$$
\vec{V}_{N}=\sum_{I \subset\{1,2, \ldots N-1\}}(-1)^{\# I}\left(\mathbb{1}-P_{I}\right) \vec{A}=\sum_{I \subset\{1,2, \ldots N-1\}}(-1)^{\# I} \vec{C}_{I \mid \widehat{I}}
$$

Sufficient Conditions for Genuine Entanglement

Suppose there is a certain odd bipartition, $\Sigma \mid \widehat{\Sigma}$, which is
separable:

$$
\vec{C}_{\Sigma \mid \Sigma}=\left(1-P_{\Sigma}\right) \vec{A}=0
$$

$$
P_{\Sigma}=P_{\sigma_{1}} P_{\sigma_{2}} \cdots P_{\sigma_{m}}(\text { with } m \text { odd })
$$

Sufficient Conditions for Genuine Entanglement

Suppose there is a certain odd bipartition, $\Sigma \mid \widehat{\Sigma}$, which is separable:

$$
\begin{aligned}
& \vec{C}_{\Sigma \mid \Sigma}=\left(1-P_{\Sigma}\right) \vec{A}=0 \quad P_{\Sigma}=P_{\sigma_{1}} P_{\sigma_{2}} \cdots P_{\sigma_{m}}(\text { with } m \text { odd }) \\
& \vec{V}_{N}=\frac{1}{2} \sum_{I \subset\{1,2, \ldots N-1\}}(-1)^{\# I}\left(\left(\mathbb{1}-P_{I}\right)-\left(\mathbb{1}-P_{I} P_{\Sigma}\right)\right) \vec{A}=0
\end{aligned}
$$

Sufficient Conditions for Genuine Entanglement

Suppose there is a certain odd bipartition, $\Sigma \mid \widehat{\Sigma}$, which is separable:

$$
\begin{aligned}
& \vec{C}_{\Sigma \mid \Sigma}=\left(1-P_{\Sigma}\right) \vec{A}=0 \quad P_{\Sigma}=P_{\sigma_{1}} P_{\sigma_{2}} \cdots P_{\sigma_{m}}(\text { with } m \text { odd }) \\
& \vec{V}_{N}=\frac{1}{2} \sum_{I \subset\{1,2, \ldots N-1\}}(-1)^{\# I}\left(\left(\mathbb{1}-P_{I}\right)-\left(\mathbb{1}-P_{I} P_{\Sigma}\right)\right) \vec{A}=0
\end{aligned}
$$

$\vec{V}_{N} \neq 0$ is a sufficient condition to guarantee genuine entanglement w.r.t. all ($\sim 2^{N-2}$) odd bipartitions.
and is evauable in polynomial time ($\sim N$ steps)

Sufficient Conditions for Genuine Entanglement

Suppose there is a certain odd bipartition, $\Sigma \mid \widehat{\Sigma}$, which is separable:

$$
\begin{aligned}
& \vec{C}_{\Sigma \mid \Sigma}=\left(1-P_{\Sigma}\right) \vec{A}=0 \quad P_{\Sigma}=P_{\sigma_{1}} P_{\sigma_{2}} \cdots P_{\sigma_{m}}(\text { with } m \text { odd }) \\
& \vec{V}_{N}=\frac{1}{2} \sum_{I \subset\{1,2, \ldots N-1\}}(-1)^{\# I}\left(\left(\mathbb{1}-P_{I}\right)-\left(\mathbb{1}-P_{I} P_{\Sigma}\right)\right) \vec{A}=0
\end{aligned}
$$

$\vec{V}_{N} \neq 0$ is a sufficient condition to guarantee genuine entanglement w.r.t. all ($\sim 2^{N-2}$) odd bipartitions.
and is evauable in polynomial time ($\sim N$ steps)
is For the other cases, Σ even, N odd, we got also sufficient conditions for genuine entanglement, computable in pol. time.

Conclusions

\pm In a multipartite system, the notion of concurrence vector is a powerful tool to explore the connections between the entanglements associated to bipartitions.

Conclusions

\pm In a multipartite system, the notion of concurrence vector is a powerful tool to explore the connections between the entanglements associated to bipartitions.
i For a given bipartition, $I \mid \widehat{I}$, a useful expression for the associated concurrence vector is

$$
\vec{C}_{I \mid \widehat{I}}=\left(\mathbb{1}-P_{I}\right) \vec{A} \quad P_{I}=P_{i} P_{j} \cdots P_{m}
$$

with $\vec{A} \equiv$ vector of coefficients of $|\psi\rangle \otimes|\psi\rangle, \quad \operatorname{dim} \vec{A}=D^{2}$

Conclusions

\uparrow In a multipartite system, the notion of concurrence vector is a powerful tool to explore the connections between the entanglements associated to bipartitions.
$\hat{\sim}$ For a given bipartition, $I \mid \widehat{I}$, a useful expression for the associated concurrence vector is

$$
\vec{C}_{I \mid \widehat{I}}=\left(\mathbb{1}-P_{I}\right) \vec{A} \quad P_{I}=P_{i} P_{j} \cdots P_{m}
$$

with $\vec{A} \equiv$ vector of coefficients of $|\psi\rangle \otimes|\psi\rangle, \quad \operatorname{dim} \vec{A}=D^{2}$
\uparrow In this way, many new relationsships between the concurrences of the various bipartitions of a multipartite system can be obtained

Conclusions

it The same holds for the Tsallis-2 (or "linear") entropy, e.g. a

$$
S_{2}\left(\rho_{A C}\right) \leq S_{2}\left(\rho_{A B}\right)+S_{2}\left(\rho_{B C}\right)
$$

Conclusions

it The same holds for the Tsallis-2 (or "linear") entropy, e.g. a

$$
S_{2}\left(\rho_{A C}\right) \leq S_{2}\left(\rho_{A B}\right)+S_{2}\left(\rho_{B C}\right)
$$

it This approach is also useful to obtain sufficient conditions for genuine entanglement, computable in polynomial time.

Prospects

Explore:

- pure state \longrightarrow mixed state
- linear entropy \longrightarrow other quantum entropies (e.g. von Neumann)
- necessary-and-sufficient conditions for genuine entanglement (pure states)
- relation of the formalism with entanglement invariants

