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This is not a HEP talk

Also relevant in:
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∈ ℋA ∈ ℋB
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!  is genuinely entangled if it is entangled with respect to 
any bipartition of the system
|ψ⟩

N-partite system
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ℋ = ℋ1 ⊗ ℋ2 ⊗ ⋯ ⊗ ℋN

!  is genuinely entangled if it is entangled with respect to 
any bipartition of the system
|ψ⟩

The state of any part of the system 
cannot be described without referring to 
the other parts of the system

N-partite system

Genuine Entanglement
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ℋ = ℋ1 ⊗ ℋ2 ⊗ ℋ3 ⊗ ⋯ ⊗ ℋN
Bases: { | j⟩}{ | i⟩} …{ |k⟩}

A bipartition  !   is defined by a set of subsystems, ! , 
and the complementary, !  

ℋA ⊗ ℋA A
A :

understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)
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Note: In order to assess whether a state is genuinely 
entangled we need to evaluate ! concurrences, 
!  and check that all of them are !

2N−1 − 1
C2

I|I , I ∈ {i, j, k, ⋯} ≠ 0

Computationally a formidable problem

see Latorre’s lectures
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The entanglements of bipartitions are not independent each other
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For a tripartition: 

Triangular inequality:

Triangular inequality (for squares):

ℋ = ℋ1 ⊗ ℋ2 ⊗ ℋ3

Coffman, Kundu, Wootters, 1999 

The entanglements of bipartitions are not independent each other

C1|23 ≤ C2|13 + C3|12

C2
1|23 ≤ C2

2|13 + C2
3|12

6



Triangle measure of tri-partite entanglement2

(a), (b) and (c) of a bona fide GME measure.

POLYGAMY INEQUALITIES AND THEIR
GEOMETRIC IMPLICATIONS

Let HX denote a d-dimensional vector space associ-
ated with the system X. For a bipartite pure state
| iAB in vector space HA ⌦ HB , the concurrence is
given by [18–20], C(| iAB) =

p
2 [1� Tr(⇢2A)], where

⇢A = TrB(| iABh |) is the reduced density matrix by
tracing over the subsystem B. Let T (⇢) denote the lin-
ear entropy of state ⇢, T (⇢) = 1 � Tr(⇢2) [21]. For a
bipartite state ⇢AB , one has [22],

|T (⇢A)� T (⇢B)|  T (⇢AB)  T (⇢A) + T (⇢B). (1)

In the following, we consider general N -qudit sys-
tems with subsystems A1, ..., AN . For simplicity we de-
note the concurrence between the subsystem Ai and
the rest subsystems of a pure state | i 2 HA1 ⌦
... ⌦ HAN as Ci|bi(| i) := CAi|A1...Ai�1Ai+1...AN

(| i),
where bi = 1 · · · (i � 1)(i + 1) · · ·N stands for subsystem
A1...Ai�1Ai+1...AN , i.e., î stands for i being omitted in
the subindices.
Theorem 1. For any N -partite pure state | i 2

HA1 ⌦ ...⌦HAN , we have

C
2
i|bi(| i) 

NX

j 6=i

C
2
j|bj(| i), (2)

and

Ci|bi(| i) 
NX

j 6=i

Cj|bj(| i). (3)

Proof. For any N -partite pure state | i, we have

C
2
i|bi(| i) = 2

�
1� Tr(⇢2bi )

�
= 2T (⇢bi)


X

j 6=i

2T (⇢j) =
NX

j 6=i

C
2
j|bj(| i),

where the inequality is due to (1).
The inequality (3) is easily deduced by (2) sincePN
j 6=i C

2
j|bj(| i)  (

PN
j 6=i Cj|bj(| i))2. ⇤

These inequalities in Theorem 1 are valid for any N -
partite pure state | i which include the results of [23]
as special cases of N -qubit pure states. Obviously, these
polygamy inequalities guarantee that all the (squared)
one-to-rest qudit concurrences, representing the lengths
of edges, form a closed N -sided polygon. We may also
interpret them as the lengths of edges for a series of tri-
angles. We name them as the concurrence triangles.

3

1

2

3|12C 2|13C

1|23C

FIG. 1: The concurrence triangle for a tripartite system. The
lengths of the three edges corresponds to the three bipartite
concurrences.

From the inequality (3), taking into account the bipar-
tition ij|bij, we have

Cbij|ij(| i)  Ci|bi(| i) + Cj|bj(| i),
Ci|bi(| i)  Cbij|ij(| i) + Cj|bj(| i). (4)

Here, {i, j, bij} represent the three vertices of the con-
currence triangle. In fact, for N = 3, from inequal-
ity (4) one has Ck|ij(| i)  Ci|jk(| i) + Cj|ik(| i) for
i 6= j 6= k 2 {1, 2, 3}. An obvious geometric picture for
these inequalities is that the three concurrences represent
the lengths of the three edges of a concurrence triangle,
see. Fig. 1.
Set Q = 1

2

P3
i=1 Ci|bi(| i) to be the half-perimeter of

the triangle with respect to a tripartite pure state | i.
We have the following theorem, see proof in section A in
Appendix.
Theorem 2. For any tripartite pure state | i, the

area of the concurrence triangle defines a well defined
genuine tripartite entanglement measure,

F3(| i) =
h16
3
Q⇧3

i=1(Q� Ci|bi(| i))
i 1

2
,

where the factor 16
3 ensures the normalization 0 

F3(| i)  1.
Remark 1. In [16], the authors used squared concur-

rence as three edges of a triangle, and proposed the
following genuine tripartite entanglement measure for
three-qubit states,

F123 =
h16
3
Q⇧3

i=1(Q� C
2
i|jk(| i))

i 1
4
.

Unfortunately, in [17] the authors have shown that F123 is
increasing under LOCC, which means F123 is not a proper
genuine entanglement measure. In the following, we give
a genuine multipartite entanglement measure based on
the geometric mean area of concurrence triangles.

Area of the triangle 
of concurrences

Jin et al. 2022 
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tition ij|bij, we have
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h16
3
Q⇧3

i=1(Q� C
2
i|jk(| i))

i 1
4
.

Unfortunately, in [17] the authors have shown that F123 is
increasing under LOCC, which means F123 is not a proper
genuine entanglement measure. In the following, we give
a genuine multipartite entanglement measure based on
the geometric mean area of concurrence triangles.

Area of the triangle 
of concurrences
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(a), (b) and (c) of a bona fide GME measure.

POLYGAMY INEQUALITIES AND THEIR
GEOMETRIC IMPLICATIONS

Let HX denote a d-dimensional vector space associ-
ated with the system X. For a bipartite pure state
| iAB in vector space HA ⌦ HB , the concurrence is
given by [18–20], C(| iAB) =

p
2 [1� Tr(⇢2A)], where

⇢A = TrB(| iABh |) is the reduced density matrix by
tracing over the subsystem B. Let T (⇢) denote the lin-
ear entropy of state ⇢, T (⇢) = 1 � Tr(⇢2) [21]. For a
bipartite state ⇢AB , one has [22],

|T (⇢A)� T (⇢B)|  T (⇢AB)  T (⇢A) + T (⇢B). (1)

In the following, we consider general N -qudit sys-
tems with subsystems A1, ..., AN . For simplicity we de-
note the concurrence between the subsystem Ai and
the rest subsystems of a pure state | i 2 HA1 ⌦
... ⌦ HAN as Ci|bi(| i) := CAi|A1...Ai�1Ai+1...AN

(| i),
where bi = 1 · · · (i � 1)(i + 1) · · ·N stands for subsystem
A1...Ai�1Ai+1...AN , i.e., î stands for i being omitted in
the subindices.
Theorem 1. For any N -partite pure state | i 2

HA1 ⌦ ...⌦HAN , we have

C
2
i|bi(| i) 

NX

j 6=i

C
2
j|bj(| i), (2)

and

Ci|bi(| i) 
NX

j 6=i

Cj|bj(| i). (3)

Proof. For any N -partite pure state | i, we have

C
2
i|bi(| i) = 2

�
1� Tr(⇢2bi )

�
= 2T (⇢bi)


X

j 6=i

2T (⇢j) =
NX

j 6=i

C
2
j|bj(| i),

where the inequality is due to (1).
The inequality (3) is easily deduced by (2) sincePN
j 6=i C

2
j|bj(| i)  (

PN
j 6=i Cj|bj(| i))2. ⇤

These inequalities in Theorem 1 are valid for any N -
partite pure state | i which include the results of [23]
as special cases of N -qubit pure states. Obviously, these
polygamy inequalities guarantee that all the (squared)
one-to-rest qudit concurrences, representing the lengths
of edges, form a closed N -sided polygon. We may also
interpret them as the lengths of edges for a series of tri-
angles. We name them as the concurrence triangles.

3

1

2

3|12C 2|13C

1|23C

FIG. 1: The concurrence triangle for a tripartite system. The
lengths of the three edges corresponds to the three bipartite
concurrences.

From the inequality (3), taking into account the bipar-
tition ij|bij, we have

Cbij|ij(| i)  Ci|bi(| i) + Cj|bj(| i),
Ci|bi(| i)  Cbij|ij(| i) + Cj|bj(| i). (4)

Here, {i, j, bij} represent the three vertices of the con-
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ity (4) one has Ck|ij(| i)  Ci|jk(| i) + Cj|ik(| i) for
i 6= j 6= k 2 {1, 2, 3}. An obvious geometric picture for
these inequalities is that the three concurrences represent
the lengths of the three edges of a concurrence triangle,
see. Fig. 1.
Set Q = 1

2

P3
i=1 Ci|bi(| i) to be the half-perimeter of

the triangle with respect to a tripartite pure state | i.
We have the following theorem, see proof in section A in
Appendix.
Theorem 2. For any tripartite pure state | i, the

area of the concurrence triangle defines a well defined
genuine tripartite entanglement measure,

F3(| i) =
h16
3
Q⇧3

i=1(Q� Ci|bi(| i))
i 1

2
,

where the factor 16
3 ensures the normalization 0 

F3(| i)  1.
Remark 1. In [16], the authors used squared concur-

rence as three edges of a triangle, and proposed the
following genuine tripartite entanglement measure for
three-qubit states,

F123 =
h16
3
Q⇧3

i=1(Q� C
2
i|jk(| i))

i 1
4
.

Unfortunately, in [17] the authors have shown that F123 is
increasing under LOCC, which means F123 is not a proper
genuine entanglement measure. In the following, we give
a genuine multipartite entanglement measure based on
the geometric mean area of concurrence triangles.
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Only if

More generically, the concurrence vector, ~C
I|ÛI , of an arbitrary bipartition, say I = {i, j, ....,m, n},

can be expressed as

~C
I|ÛI = (1� PiPj · · ·Pn) ~A

= [ (1� Pi) + (Pi � PiPj) + · · ·+ (PiPj ...Pm � PiPj ...PmPn) ] ~A

= ~Ci|Ûi + Pi
~Cj|Ûj + PiPj

~C
k|Ûk + · · ·+ PiPj · · ·Pm

~Cn|Ûn . (19)

This shows that the information contained in the N elementary concurrence vectors is enough to

built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j,Ùij}. The corresponding concurrence vectors are

related by Eq.(17), which can be written as

Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads

Cij|Ùij  Ci|Ûi + Cj|Ûj (21)

(and permutations of the three terms). This triangular inequality has been shown in previous

literature, e.g. in refs [13, 14]. With the use of concurrence vectors it is a quite trivial result since

the involved vectors form a triangle (with a permutation of components in one of them). This

provides a transparent geometrical interpretation of the triangular inequality.

We can also show very easily the (stronger) inequality for the squared of the concurrences [25],

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (22)

(and permutations). To see this notice that

C2
ij|Ùij = k(1� PiPj) ~Ak

2= k(1� Pi) ~A� (1� Pj) ~Ak
2= C2

i|Ûi + C2
j|Ûj � 2 ~A†(1� Pi)(1� Pj) ~A , (23)

where the last term is negative semidefinite:

�2 ~A†(1� Pi)(1� Pj) ~A = �
1

2
~A†((1� Pi)(1� Pj))

2 ~A = �
1

2
k(1� Pi)(1� Pj) ~Ak

2
 0 . (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e. the indices i, j can

be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)

ä
~A = PJ

Ä
~C
I|ÛI �

~C
J | ÛJ
ä
, (25)

where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
IMJ |ĪMJ = C2

I|ÛI + C2
J | ÛJ � 2 ~A†(1� PI)(1� PJ) ~A ,

�2 ~A†(1� PI)(1� PJ) ~A = �
1

2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)

5

= ⟺

8 Appendix A. The equality in the triangular relation

As mentioned in section 4, for a system of three qubits the triangular inequality

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (56)

becomes an equality i↵ either Ci|Ûi = 0 or Cj|Ûj = 0. This interesting result was proven in ref. [26].

Here we extend it to any tripartite system or any tripartition, independently of the dimensions of

the involved Hilbert spaces.

From Eqs.(23, 24) the equality in the relation (56) is equivalent to the condition

(1� Pi)(1� Pj) ~A = 0 , (57)

where ~A is the vector of the coe�cients of the state | i ⌦ | i 2 H ⌦H, see Eq. (12). Taking into

account that for any bipartition I|ÛI the concurrence reads C2
I|ÛI = k(1�Pi) ~Ak

2, our goal is to prove

that Eq.(57) requires (1� Pi) ~A = 0 or (1� Pj) ~A = 0.

8.1 3 qubits and 3 qutrits

Let us first consider the case of three qubits, so that

Aijk; i0j0k0 = (aijk) (ai0j0k0) (58)

with all indices taking two possible values, 0 and 1. Thus, in this case Eq.(57) represents (23)2

quadratic equations in the aijk variables. Actually, most of them are trivial, i.e. the l.h.s. of (57) is

identically zero. For the non-trivial ones has always the form ±q0, ±q1 or ±q2, with

q0 = a010a100 � a000a110 ,

q1 = a011a101 � a001a111 , (59)

q2 = a011a100 + a010a101 � a001a110 � a000a111

(notice that q1 = q0|aij0 !aij1). Consequently, Eq.(57) is equivalent to

{q0, q1, q2} = {0, 0, 0} . (60)

By a careful (and lengthy) inspection it is possible to check that the only consistent possibility to

fulfill Eq.(60) is indeed that either (1�Pi) ~A = 0 or (1�Pj) ~A = 0. However, a more expeditious way

to show this is the following. Using Singular, a computer algebra system for polynomial computations

[40] it is easy to prove that

k(1� P1) ~Ak
2
k(1� P2) ~Ak

2= s0q0 + s1q1 + s2q2 (61)

for some -sextic- polynomials {s0, s1, s2} on the variables aijk, a⇤ijk. (The explicit form of s0, s1, s2 is

quite longish and of no particular interest, so we omit it.). Thus, indeed, Eq.(57) requires (1�Pi) ~A =

0 or (1� Pj) ~A = 0 and the statement is proven for three qubits.

A similar computation shows that the same statement holds for a system of three qutrits, i.e.

when the indices of ~A in Eq.(58) take the values 0, 1, 2. In this case, the calculation is more involved:

Eq.(57) represents (33)2 quadratic equations, 54 of which are non-equivalent. The complexity of

Eq.(57) grows geometrically with the dimension of the Hilbert spaces of the three subsystems.

However, the result for three qutrits is all we need to recursively extend statement to any dimension,

as shown below.
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Concurrence Vector

ℋ = ℋ1 ⊗ ℋ2 ⊗ ℋ3 ⊗ ⋯ ⊗ ℋN
{ | j⟩}{ | i⟩} …{ |k⟩}

Consider a bipartition     !ℋ = ℋA ⊗ ℋA

understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)

2
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|ψ⟩ = ∑
i,j,k...
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Concurrence Vector

|ψ⟩ = ∑
i,j,k...

aijk... | i⟩ | j⟩ |k⟩⋯ separable ⟹

⟹

so that

aijk... = a
I ÛI = ↵I�ÛI . (5)

Then, if we view a
I ÛI as a matrix of coe�cients, for a separable state it has rank=1, which means

that all its 2⇥ 2 minors are vanishing. Denoting by

[a]{I1I2}{ÛI1 ÛI2} = a
I1 ÛI1aI2 ÛI2 � a

I1 ÛI2aI2 ÛI1 (6)

the minor corresponding to the rows I1, I2 and columns ÛI1, ÛI2, the state is biseparable i↵

X

I1<I2,ÛI1<ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= 0 . (7)

Here I1, I2 (ÛI1, ÛI2) run over all possible values of I (ÛI). The latter expression is actually equivalent

to the concurrence definition (3). To check this, notice that

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

[a]{I1I2}{ÛI1 ÛI2}
î
a†
ó
{ÛI1 ÛI2}{I1I2}

=
1

2

X

I1,I2

î
aa†
ó
{I1I2}{I1I2}

, (8)

where the last expression is just the sum of the principal minors of the reduced density matrix

aa† = ⇢A. On the other hand, by Cauchy-Binet theorem,

1

2

X

I1,I2

[⇢A]{I1I2}{I1I2} =
1

2

X

I1 6=I2

�I1�I2 =
1

2
(1�

X
�2I) =

1

2
(1� tr ⇢2A) , (9)

where �I are the eigenvalues of ⇢A and we have used
P
�I = 1. In summary, the concurrence

definition (3) is equivalent to

C2
I|ÛI =

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= k~C

I|ÛIk
2 , (10)

where the “concurrence vector” is the ordered list of all the minors of the matrix of coe�cients a
I ÛI :

~C
I|ÛI = {[a]{I1I2}{ÛI1 ÛI2}} = {a

I1 ÛI1aI2 ÛI2 � a
I1 ÛI2aI2 ÛI1} . (11)

Note that, denoting D = dim H, the concurrence vector has length D2, since a
I ÛI has D entries. The

previous notion of concurrence vector has been already considered in the literature [15–18].

2.3 A useful expression

Let us express the concurrence vector (11) in a more useful way. First define the (dimension D2)

vector ~A, with components

Ai1j1k1...; i2j2k2... = (ai1j1k1...) (ai2j2k2...) (12)

for all possible values of the indices. Notice that Ai1j1k1...; i2j2k2... are simply the coe�cients of the

state | i ⌦ | i 2 H ⌦ H. If all the coe�cients are real the entries of ~A coincide with those of

3

= 0All minors
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as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very
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Finally, the conclusions are presented in section 7.
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A useful expression for 

|ψ⟩ = ∑
i,j,k...

aijk... | i⟩ | j⟩ |k⟩⋯

define  !  as the vector of coefficients of  !⃗A |ψ⟩ ⊗ |ψ⟩ ∈ ℋ ⊗ ℋ

so that

aijk... = a
I ÛI = ↵I�ÛI . (5)

Then, if we view a
I ÛI as a matrix of coe�cients, for a separable state it has rank=1, which means

that all its 2⇥ 2 minors are vanishing. Denoting by

[a]{I1I2}{ÛI1 ÛI2} = a
I1 ÛI1aI2 ÛI2 � a

I1 ÛI2aI2 ÛI1 (6)

the minor corresponding to the rows I1, I2 and columns ÛI1, ÛI2, the state is biseparable i↵

X

I1<I2,ÛI1<ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= 0 . (7)

Here I1, I2 (ÛI1, ÛI2) run over all possible values of I (ÛI). The latter expression is actually equivalent

to the concurrence definition (3). To check this, notice that

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

[a]{I1I2}{ÛI1 ÛI2}
î
a†
ó
{ÛI1 ÛI2}{I1I2}

=
1

2

X

I1,I2

î
aa†
ó
{I1I2}{I1I2}

, (8)

where the last expression is just the sum of the principal minors of the reduced density matrix

aa† = ⇢A. On the other hand, by Cauchy-Binet theorem,

1

2

X

I1,I2

[⇢A]{I1I2}{I1I2} =
1

2

X

I1 6=I2

�I1�I2 =
1

2
(1�

X
�2I) =

1

2
(1� tr ⇢2A) , (9)

where �I are the eigenvalues of ⇢A and we have used
P
�I = 1. In summary, the concurrence

definition (3) is equivalent to

C2
I|ÛI =

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= k~C

I|ÛIk
2 , (10)

where the “concurrence vector” is the ordered list of all the minors of the matrix of coe�cients a
I ÛI :

~C
I|ÛI = {[a]{I1I2}{ÛI1 ÛI2}} = {a

I1 ÛI1aI2 ÛI2 � a
I1 ÛI2aI2 ÛI1} . (11)

Note that, denoting D = dim H, the concurrence vector has length D2, since a
I ÛI has D entries. The

previous notion of concurrence vector has been already considered in the literature [15–18].

2.3 A useful expression

Let us express the concurrence vector (11) in a more useful way. First define the (dimension D2)

vector ~A, with components

Ai1j1k1...; i2j2k2... = (ai1j1k1...) (ai2j2k2...) (12)

for all possible values of the indices. Notice that Ai1j1k1...; i2j2k2... are simply the coe�cients of the
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dim ⃗A = D2

Under permutations of the index !, !  changes asi ⃗A

Pi
⃗A = {(ai2 j1k1...) (ai1 j2k2...)}
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Under permutations of the index !, !  changes asi ⃗A

Pi
⃗A = {(ai2 j1k1...) (ai1 j2k2...)}

For the elementary bipartition   !ℋ = ℋ1 ⊗ (ℋ2 ⊗ ℋ3⋯ℋN)

the density matrix, but this is not the general case. Under a permutation of the i�index, say Pi,

associated with the Hilbert space H1, ~A changes as1

Pi
~A = {(ai2j1k1...) (ai1j2k2...)} . (13)

This is simply a certain re-ordering of the components of ~A. Note that Pi are Hermitian linear

operators satisfying P 2
i = 1 and [Pi, Pj ] = 0. Let us now consider an “elementary bipartition”, i.e.
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A useful expression for 

!  vector of coefficients of  !  !⃗A ≡ |ψ⟩ ⊗ |ψ⟩ = {(ai1 j1k1⋯)(ai2 j2k2⋯)}

so that

aijk... = a
I ÛI = ↵I�ÛI . (5)

Then, if we view a
I ÛI as a matrix of coe�cients, for a separable state it has rank=1, which means

that all its 2⇥ 2 minors are vanishing. Denoting by

[a]{I1I2}{ÛI1 ÛI2} = a
I1 ÛI1aI2 ÛI2 � a

I1 ÛI2aI2 ÛI1 (6)

the minor corresponding to the rows I1, I2 and columns ÛI1, ÛI2, the state is biseparable i↵

X

I1<I2,ÛI1<ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= 0 . (7)

Here I1, I2 (ÛI1, ÛI2) run over all possible values of I (ÛI). The latter expression is actually equivalent

to the concurrence definition (3). To check this, notice that

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

[a]{I1I2}{ÛI1 ÛI2}
î
a†
ó
{ÛI1 ÛI2}{I1I2}

=
1

2

X

I1,I2

î
aa†
ó
{I1I2}{I1I2}

, (8)

where the last expression is just the sum of the principal minors of the reduced density matrix

aa† = ⇢A. On the other hand, by Cauchy-Binet theorem,

1

2

X

I1,I2

[⇢A]{I1I2}{I1I2} =
1

2

X

I1 6=I2

�I1�I2 =
1

2
(1�

X
�2I) =

1

2
(1� tr ⇢2A) , (9)

where �I are the eigenvalues of ⇢A and we have used
P
�I = 1. In summary, the concurrence

definition (3) is equivalent to

C2
I|ÛI =

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= k~C

I|ÛIk
2 , (10)

where the “concurrence vector” is the ordered list of all the minors of the matrix of coe�cients a
I ÛI :

~C
I|ÛI = {[a]{I1I2}{ÛI1 ÛI2}} = {a

I1 ÛI1aI2 ÛI2 � a
I1 ÛI2aI2 ÛI1} . (11)

Note that, denoting D = dim H, the concurrence vector has length D2, since a
I ÛI has D entries. The

previous notion of concurrence vector has been already considered in the literature [15–18].

2.3 A useful expression

Let us express the concurrence vector (11) in a more useful way. First define the (dimension D2)

vector ~A, with components
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the density matrix, but this is not the general case. Under a permutation of the i�index, say Pi,
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operators satisfying P 2
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vector (11) (with I = i) reads
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2 group. Note that PI

~A = PÛI
~A since ~A is
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H = HA ⌦ ;, corresponding to the identity of the group. So, there are in fact 2N�1
� 1 non-trivial

permutations and bipartitions. For each one, the associated concurrence vector is given by (16).

Note also that (1� PI) are “projectors”, satisfying (1� PI)2 = 2(1� PI).
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4

PI ≡ PiPj⋯Pm
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A useful expression for 

!  vector of coefficients of  !  !⃗A ≡ |ψ⟩ ⊗ |ψ⟩ = {(ai1 j1k1⋯)(ai2 j2k2⋯)}

so that

aijk... = a
I ÛI = ↵I�ÛI . (5)

Then, if we view a
I ÛI as a matrix of coe�cients, for a separable state it has rank=1, which means

that all its 2⇥ 2 minors are vanishing. Denoting by

[a]{I1I2}{ÛI1 ÛI2} = a
I1 ÛI1aI2 ÛI2 � a

I1 ÛI2aI2 ÛI1 (6)

the minor corresponding to the rows I1, I2 and columns ÛI1, ÛI2, the state is biseparable i↵

X

I1<I2,ÛI1<ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= 0 . (7)

Here I1, I2 (ÛI1, ÛI2) run over all possible values of I (ÛI). The latter expression is actually equivalent

to the concurrence definition (3). To check this, notice that

1

4

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
=

1

4

X

I1,I2,ÛI1,ÛI2

[a]{I1I2}{ÛI1 ÛI2}
î
a†
ó
{ÛI1 ÛI2}{I1I2}

=
1

2

X

I1,I2

î
aa†
ó
{I1I2}{I1I2}

, (8)

where the last expression is just the sum of the principal minors of the reduced density matrix

aa† = ⇢A. On the other hand, by Cauchy-Binet theorem,

1

2

X

I1,I2

[⇢A]{I1I2}{I1I2} =
1

2

X

I1 6=I2

�I1�I2 =
1

2
(1�

X
�2I) =

1

2
(1� tr ⇢2A) , (9)

where �I are the eigenvalues of ⇢A and we have used
P
�I = 1. In summary, the concurrence

definition (3) is equivalent to

C2
I|ÛI =

X

I1,I2,ÛI1,ÛI2

���[a]{I1I2}{ÛI1 ÛI2}
���
2
= k~C

I|ÛIk
2 , (10)

where the “concurrence vector” is the ordered list of all the minors of the matrix of coe�cients a
I ÛI :

~C
I|ÛI = {[a]{I1I2}{ÛI1 ÛI2}} = {a

I1 ÛI1aI2 ÛI2 � a
I1 ÛI2aI2 ÛI1} . (11)

Note that, denoting D = dim H, the concurrence vector has length D2, since a
I ÛI has D entries. The

previous notion of concurrence vector has been already considered in the literature [15–18].

2.3 A useful expression

Let us express the concurrence vector (11) in a more useful way. First define the (dimension D2)

vector ~A, with components

Ai1j1k1...; i2j2k2... = (ai1j1k1...) (ai2j2k2...) (12)

for all possible values of the indices. Notice that Ai1j1k1...; i2j2k2... are simply the coe�cients of the

state | i ⌦ | i 2 H ⌦ H. If all the coe�cients are real the entries of ~A coincide with those of

3

!  have a friendly algebra (commutative !  group):{PI} ZN
2

P2
I = 1

the density matrix, but this is not the general case. Under a permutation of the i�index, say Pi,

associated with the Hilbert space H1, ~A changes as1

Pi
~A = {(ai2j1k1...) (ai1j2k2...)} . (13)

This is simply a certain re-ordering of the components of ~A. Note that Pi are Hermitian linear

operators satisfying P 2
i = 1 and [Pi, Pj ] = 0. Let us now consider an “elementary bipartition”, i.e.

one between one of the initial parties and the rest, say H1 ⌦ (H2 ⌦H3 ⌦ · · ·). Then the concurrence

vector (11) (with I = i) reads

~Ci|Ûi = {ai1Ûi1ai2Ûi2 � ai1Ûi2ai2Ûi1} = (1� Pi) ~A . (14)

Similarly, the concurrence vector (11) associated to the bipartition H = (H1⌦H2)⌦ (H3⌦ · · ·) reads

~Cij|Ùij = {a
i1j1 ī1j1

a
i2j2 ī2j2

� a
i1j1 ī2j2

a
i2j2 ī1j1

} = (1� PiPj) ~A . (15)

These expressions are straightforwardly extended for other bipartitions. In general, for a bipartition

I|ÛI, with I = i, j, ...,m (or any other subset of indices) the concurrence vector reads

~C
I|ÛI = ~CÛI|I = (1� PI) ~A ⌘ (1� PiPj · · ·Pm) ~A . (16)

Mathematically, the elementary permutations, Pi, Pj , . . . are the generators of the group of all per-

mutations of indices, {PI}, which is a commutative ZN
2 group. Note that PI

~A = PÛI
~A since ~A is

obviously symmetric under the interchange of all indices. So, the group contains 2N�1 inequivalent

permutations, corresponding to the possible bipartitions of H. This includes the trivial bipartition

H = HA ⌦ ;, corresponding to the identity of the group. So, there are in fact 2N�1
� 1 non-trivial

permutations and bipartitions. For each one, the associated concurrence vector is given by (16).

Note also that (1� PI) are “projectors”, satisfying (1� PI)2 = 2(1� PI).

Next we will exploit the notion of concurrence vector and its latter expression (16) to derive

some direct consequences.

3 Connection between the entanglements of di↵erent bipartitions

The idea of concurrence vector allows to derive the entanglement of any of the 2N�1
� 1 di↵erent

bipartitions from the entanglement of the N elementary bipartitions. In other words, we can use

the concurrence vectors of the latter as building blocks to construct any other concurrence.

For example, the concurrence of two parts with respect to the rest, say ~Cij|Ùij , is related to the

elementary ones, ~Ci|Ûi ,
~Cj|Ûj , by

~Cij|Ùij = (1� PiPj) ~A = Pj

Ä
(1� Pi)� (1� Pj)

ä
~A = Pj

Ä
~Ci|Ûi �

~Cj|Ûj
ä
, (17)

or equivalently

~Cij|Ùij = (1� PiPj) ~A =
Ä
(1� Pi) + Pi(1� Pj)

ä
~A = ~Ci|Ûi + Pi

~Cj|Ûj . (18)

1If we view Ai1j1k1,...; i2,j2k2,... as an D⇥D matrix (analogous to the density matrix associated with | ih |), then
this permutation is equivalent to perform a partial transpose in the i�index.
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PI ≡ PiPj⋯Pm

[PI, PJ] = 0

PI
⃗A = P I

⃗A

understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)

2

(1 − PI)2 = 2(1 − PI)

Note also that !  is essentially a projector:1 − PI
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Proof of previous results 

Triangular inequality,                               : 

More generically, the concurrence vector, ~C
I|ÛI , of an arbitrary bipartition, say I = {i, j, ....,m, n},

can be expressed as

~C
I|ÛI = (1� PiPj · · ·Pn) ~A

= [ (1� Pi) + (Pi � PiPj) + · · ·+ (PiPj ...Pm � PiPj ...PmPn) ] ~A

= ~Ci|Ûi + Pi
~Cj|Ûj + PiPj

~C
k|Ûk + · · ·+ PiPj · · ·Pm

~Cn|Ûn . (19)

This shows that the information contained in the N elementary concurrence vectors is enough to

built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j,Ùij}. The corresponding concurrence vectors are

related by Eq.(17), which can be written as

Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads

Cij|Ùij  Ci|Ûi + Cj|Ûj (21)

(and permutations of the three terms). This triangular inequality has been shown in previous

literature, e.g. in refs [13, 14]. With the use of concurrence vectors it is a quite trivial result since

the involved vectors form a triangle (with a permutation of components in one of them). This

provides a transparent geometrical interpretation of the triangular inequality.

We can also show very easily the (stronger) inequality for the squared of the concurrences [25],

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (22)

(and permutations). To see this notice that

C2
ij|Ùij = k(1� PiPj) ~Ak

2= k(1� Pi) ~A� (1� Pj) ~Ak
2= C2

i|Ûi + C2
j|Ûj � 2 ~A†(1� Pi)(1� Pj) ~A , (23)

where the last term is negative semidefinite:

�2 ~A†(1� Pi)(1� Pj) ~A = �
1

2
~A†((1� Pi)(1� Pj))

2 ~A = �
1

2
k(1� Pi)(1� Pj) ~Ak

2
 0 . (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e. the indices i, j can

be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)

ä
~A = PJ

Ä
~C
I|ÛI �

~C
J | ÛJ
ä
, (25)

where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
IMJ |ĪMJ = C2

I|ÛI + C2
J | ÛJ � 2 ~A†(1� PI)(1� PJ) ~A ,

�2 ~A†(1� PI)(1� PJ) ~A = �
1

2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)

5
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the density matrix, but this is not the general case. Under a permutation of the i�index, say Pi,

associated with the Hilbert space H1, ~A changes as1

Pi
~A = {(ai2j1k1...) (ai1j2k2...)} . (13)

This is simply a certain re-ordering of the components of ~A. Note that Pi are Hermitian linear

operators satisfying P 2
i = 1 and [Pi, Pj ] = 0. Let us now consider an “elementary bipartition”, i.e.

one between one of the initial parties and the rest, say H1 ⌦ (H2 ⌦H3 ⌦ · · ·). Then the concurrence

vector (11) (with I = i) reads

~Ci|Ûi = {ai1Ûi1ai2Ûi2 � ai1Ûi2ai2Ûi1} = (1� Pi) ~A . (14)

Similarly, the concurrence vector (11) associated to the bipartition H = (H1⌦H2)⌦ (H3⌦ · · ·) reads

~Cij|Ùij = {a
i1j1 ī1j1

a
i2j2 ī2j2

� a
i1j1 ī2j2

a
i2j2 ī1j1

} = (1� PiPj) ~A . (15)

These expressions are straightforwardly extended for other bipartitions. In general, for a bipartition

I|ÛI, with I = i, j, ...,m (or any other subset of indices) the concurrence vector reads

~C
I|ÛI = ~CÛI|I = (1� PI) ~A ⌘ (1� PiPj · · ·Pm) ~A . (16)

Mathematically, the elementary permutations, Pi, Pj , . . . are the generators of the group of all per-

mutations of indices, {PI}, which is a commutative ZN
2 group. Note that PI

~A = PÛI
~A since ~A is

obviously symmetric under the interchange of all indices. So, the group contains 2N�1 inequivalent

permutations, corresponding to the possible bipartitions of H. This includes the trivial bipartition

H = HA ⌦ ;, corresponding to the identity of the group. So, there are in fact 2N�1
� 1 non-trivial

permutations and bipartitions. For each one, the associated concurrence vector is given by (16).

Note also that (1� PI) are “projectors”, satisfying (1� PI)2 = 2(1� PI).

Next we will exploit the notion of concurrence vector and its latter expression (16) to derive

some direct consequences.

3 Connection between the entanglements of di↵erent bipartitions

The idea of concurrence vector allows to derive the entanglement of any of the 2N�1
� 1 di↵erent

bipartitions from the entanglement of the N elementary bipartitions. In other words, we can use

the concurrence vectors of the latter as building blocks to construct any other concurrence.

For example, the concurrence of two parts with respect to the rest, say ~Cij|Ùij , is related to the

elementary ones, ~Ci|Ûi ,
~Cj|Ûj , by

~Cij|Ùij = (1� PiPj) ~A = Pj

Ä
(1� Pi)� (1� Pj)

ä
~A = Pj

Ä
~Ci|Ûi �

~Cj|Ûj
ä
, (17)

or equivalently

~Cij|Ùij = (1� PiPj) ~A =
Ä
(1� Pi) + Pi(1� Pj)

ä
~A = ~Ci|Ûi + Pi

~Cj|Ûj . (18)

1If we view Ai1j1k1,...; i2,j2k2,... as an D⇥D matrix (analogous to the density matrix associated with | ih |), then
this permutation is equivalent to perform a partial transpose in the i�index.
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} = (1� PiPj) ~A . (15)

These expressions are straightforwardly extended for other bipartitions. In general, for a bipartition

I|ÛI, with I = i, j, ...,m (or any other subset of indices) the concurrence vector reads

~C
I|ÛI = ~CÛI|I = (1� PI) ~A ⌘ (1� PiPj · · ·Pm) ~A . (16)

Mathematically, the elementary permutations, Pi, Pj , . . . are the generators of the group of all per-

mutations of indices, {PI}, which is a commutative ZN
2 group. Note that PI

~A = PÛI
~A since ~A is

obviously symmetric under the interchange of all indices. So, the group contains 2N�1 inequivalent

permutations, corresponding to the possible bipartitions of H. This includes the trivial bipartition

H = HA ⌦ ;, corresponding to the identity of the group. So, there are in fact 2N�1
� 1 non-trivial

permutations and bipartitions. For each one, the associated concurrence vector is given by (16).
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a
i2j2 ī1j1
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Triangular inequality for the squares,                               : 

More generically, the concurrence vector, ~C
I|ÛI , of an arbitrary bipartition, say I = {i, j, ....,m, n},

can be expressed as

~C
I|ÛI = (1� PiPj · · ·Pn) ~A

= [ (1� Pi) + (Pi � PiPj) + · · ·+ (PiPj ...Pm � PiPj ...PmPn) ] ~A

= ~Ci|Ûi + Pi
~Cj|Ûj + PiPj

~C
k|Ûk + · · ·+ PiPj · · ·Pm

~Cn|Ûn . (19)

This shows that the information contained in the N elementary concurrence vectors is enough to

built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j,Ùij}. The corresponding concurrence vectors are

related by Eq.(17), which can be written as

Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads

Cij|Ùij  Ci|Ûi + Cj|Ûj (21)

(and permutations of the three terms). This triangular inequality has been shown in previous

literature, e.g. in refs [13, 14]. With the use of concurrence vectors it is a quite trivial result since

the involved vectors form a triangle (with a permutation of components in one of them). This

provides a transparent geometrical interpretation of the triangular inequality.

We can also show very easily the (stronger) inequality for the squared of the concurrences [25],

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (22)

(and permutations). To see this notice that

C2
ij|Ùij = k(1� PiPj) ~Ak

2= k(1� Pi) ~A� (1� Pj) ~Ak
2= C2

i|Ûi + C2
j|Ûj � 2 ~A†(1� Pi)(1� Pj) ~A , (23)

where the last term is negative semidefinite:

�2 ~A†(1� Pi)(1� Pj) ~A = �
1

2
~A†((1� Pi)(1� Pj))

2 ~A = �
1

2
k(1� Pi)(1� Pj) ~Ak

2
 0 . (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e. the indices i, j can

be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)

ä
~A = PJ

Ä
~C
I|ÛI �

~C
J | ÛJ
ä
, (25)

where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
IMJ |ĪMJ = C2

I|ÛI + C2
J | ÛJ � 2 ~A†(1� PI)(1� PJ) ~A ,

�2 ~A†(1� PI)(1� PJ) ~A = �
1

2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)
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�2 ~A†(1� PI)(1� PJ) ~A = �
1

2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)

5

More generically, the concurrence vector, ~C
I|ÛI , of an arbitrary bipartition, say I = {i, j, ....,m, n},

can be expressed as

~C
I|ÛI = (1� PiPj · · ·Pn) ~A

= [ (1� Pi) + (Pi � PiPj) + · · ·+ (PiPj ...Pm � PiPj ...PmPn) ] ~A

= ~Ci|Ûi + Pi
~Cj|Ûj + PiPj

~C
k|Ûk + · · ·+ PiPj · · ·Pm

~Cn|Ûn . (19)

This shows that the information contained in the N elementary concurrence vectors is enough to

built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j,Ùij}. The corresponding concurrence vectors are

related by Eq.(17), which can be written as

Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads

Cij|Ùij  Ci|Ûi + Cj|Ûj (21)

(and permutations of the three terms). This triangular inequality has been shown in previous

literature, e.g. in refs [13, 14]. With the use of concurrence vectors it is a quite trivial result since

the involved vectors form a triangle (with a permutation of components in one of them). This

provides a transparent geometrical interpretation of the triangular inequality.

We can also show very easily the (stronger) inequality for the squared of the concurrences [25],

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (22)

(and permutations). To see this notice that

C2
ij|Ùij = k(1� PiPj) ~Ak

2= k(1� Pi) ~A� (1� Pj) ~Ak
2= C2

i|Ûi + C2
j|Ûj � 2 ~A†(1� Pi)(1� Pj) ~A , (23)
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�2 ~A†(1� Pi)(1� Pj) ~A = �
1

2
~A†((1� Pi)(1� Pj))

2 ~A = �
1

2
k(1� Pi)(1� Pj) ~Ak

2
 0 . (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e. the indices i, j can

be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)

ä
~A = PJ

Ä
~C
I|ÛI �

~C
J | ÛJ
ä
, (25)

where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
IMJ |ĪMJ = C2
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J | ÛJ � 2 ~A†(1� PI)(1� PJ) ~A ,
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2
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 0 , (26)
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built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j,Ùij}. The corresponding concurrence vectors are

related by Eq.(17), which can be written as

Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads
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(and permutations of the three terms). This triangular inequality has been shown in previous

literature, e.g. in refs [13, 14]. With the use of concurrence vectors it is a quite trivial result since

the involved vectors form a triangle (with a permutation of components in one of them). This
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We can also show very easily the (stronger) inequality for the squared of the concurrences [25],
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(and permutations). To see this notice that
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2
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be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)
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~A = PJ

Ä
~C
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~C
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where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
IMJ |ĪMJ = C2

I|ÛI + C2
J | ÛJ � 2 ~A†(1� PI)(1� PJ) ~A ,
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2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)
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Define                             (set of indices in ! or !, but in both)                             I Jand in consequence the triangular inequalities (21, 22) generalize to non-disjoint subsystems as

C
IMJ |ĪMJ  C

I|ÛI + C
J | ÛJ ,

C2
IMJ |ĪMJ  C2

I|ÛI + C2
J | ÛJ . (27)

On the other hand, in ref. [26] it was shown that, if the system consists of three qubits, the

inequality (22) becomes an equality only when either Ci|Ûi or Cj|Ûj are vanishing; otherwise the “  ”

sign in (22) becomes strict inequality “ < ”. In Appendix A we show that this interesting result

holds for any tripartition, independently of the dimension of the subsystems. As a consequence,

the area of the “concurrence triangle” built up with the squared concurrences of a tripartite system

is a consistent measure of genuine entanglement. This entanglement measure was advocated in

ref. [14, 26] for systems of three qubits, but this result shows that it can be extended to arbitrary

dimension of the subsystems. Besides, the same property holds for non-disjoint tripartitions, i.e.

Eq.(27) becomes an strict equality i↵ either C
I|ÛI or C

J | ÛJ are vanishing.

Finally, using the general expression (19) one can go beyond tripartitions and derive other in-

equalities. An obvious one comes from the fact that the vectors involved in (19) form a (non-

necessarily flat) polygon, so they satisfy the polygonal inequality (i.e. the extension of the triangu-

lar inequality to polygons). Since the permutations do not modify the norm of the various vectors

involved, we conclude that

C
I|ÛI  Ci|Ûi + Cj|Ûj + · · ·+ Cm|Ùm ,

C2
I|ÛI  C2

i|Ûi + C2
j|Ûj + · · ·+ C2

m|Ùm , (28)

as well as

C
IMJM···MM |ˇ�IMJM···MM  C

I|ÛI + C
J | ÛJ + · · ·+ C

M |ıM ,

C2

IMJM···MM |ˇ�IMJM···MM
 C2

I|ÛI + C2
J | ÛJ + · · ·+ C2

M |ıM (29)

(and permutations).

A straightforward way to get new inequalities among concurrences is to consider the inequality

~A†(1� PI)(1± PJ)(1± PK) · · · (1± PM ) ~A � 0 . (30)

Since (1±P ) = (1±P )2/2, the l.h.s. of this equation is positive semidefinite, and it can be expressed

as a combination of concurrences.

5 Subadditivity and strong subadditivity

From an entropy-of-entanglement perspective, the concurrence can be identified (up to a normaliza-

tion factor) with the so-called Tsallis-2 (or “linear”) entropy [27–29]

C2
I|ÛI = 2

�
1� tr ⇢2A

�
⌘ 2 S2 (⇢A) , (31)

where we have kept the notation previously introduced. Some of the well-known properties of the

von Neumann entropy, SVN(⇢) = � tr (⇢ log ⇢), are also shared by S2(⇢) [30]. In particular, given

two subsystems, HA ⌦HB, the S2�entropy satisfies the subadditivity conditions [31, 32]:

|S2 (⇢A)� S2 (⇢B) | S2 (⇢AB)  S2 (⇢A) + S2 (⇢B) . (32)
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⃗A †(1 − PiPj) (1 − PjPk) (1 + PiPk) ⃗A ≥ 0

On the other hand, the quantity (37) becomes obviously negative semidefinite for Pj
~A = ~A, i.e.

C2
j|Ûj = 0,

�2 ~A†(1� Pi)(1� Pk) ~A  0 , (39)

so in this case the strong subadditivity is fulfilled. Actually, this instance is equivalent to the

“ordinary” subadditivity (32) for the tripartition H = HA ⌦HC ⌦H
ÃC

.

Notice also that for C2
i|Ûi = 0 or C2

k|Ûk = 0 Eq.(37) vanishes, so the strong subadditivity holds as

an equality.

To finish this section, let us construct a modified version of the strong subadditivity which does

always hold for the Tsallis-2 entropy (31). Expanding the inequality (see Eq.(30))

~A†(1� Pi)(1+ Pj)(1� Pk) ~A � 0 (40)

we get

C2
ijk|îjk + C2

j|Ûj  C2
ij|Ùij + C2

jk|ıjk +
⇣
C2
i|Ûi + C2

k|Ûk � C2
ik|Ùik

⌘
, (41)

where the term within brackets is positive semidefinite, see Eq.(22), and represents the departure

from the strong-subadditivity condition (36). In terms of the Tsallis-2 entropy this softened version

of strong subadditivity reads

S2 (⇢ABC) + S2 (⇢B)  S2 (⇢AB) + S2 (⇢BC) +
î
S2 (⇢A) + S2 (⇢C)� S2 (⇢AC)

ó
,

where the positivity (semi)definiteness of the term in brackets is equivalent to the ordinary subad-

ditivity condition (32). In terms of mutual information this relation reads I (A : B)  I (A : BC) +

I (A : C). Since we can exchange B $ C, it can be expressed as

|I (A : B)� I (A : C)|  I (A : BC) . (42)

On the other hand, we can yet construct an alternative subadditivity using the general relation

(27). By considering a Hilbert space partitioned as H = HA ⌦HB ⌦HC ⌦H
ĂBC

, and identifying

I = {i, j}, J = {j, k}, we get

C2
ik|Ùik  C2

ij|Ùij + C2
jk|ıjk . (43)

In terms of entropies:

S2 (⇢AC)  S2 (⇢AB) + S2 (⇢BC) , (44)

which is a kind of triangular inequality for the S2�entropies. Analogously to the ordinary subad-

ditivity, the fact that relation (43) becomes an equality i↵ either Cij|Ùij or C
jk|ıjk are vanishing (see

Appendix A), it follows that

S2 (⇢AC) = S2 (⇢AB) + S2 (⇢BC) () S2 (⇢AB) = 0 or S2 (⇢BC) = 0 . (45)

Concerning the mutual information, further inequalities can also be derived. In particular, applying

Eq. (30) to the combination (1 � Pi)(1 � Pj)(1 � Pk) we obtain a non-negative condition over the
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S2 (⇢AB) + S2 (⇢BC) + S2 (⇢AC)  S2 (⇢A) + S2 (⇢B) + S2 (⇢C) + S2 (⇢ABC)

) I (A : B : C) � 0 , (46)
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New results 

We have also proven that the result                             

More generically, the concurrence vector, ~C
I|ÛI , of an arbitrary bipartition, say I = {i, j, ....,m, n},

can be expressed as

~C
I|ÛI = (1� PiPj · · ·Pn) ~A

= [ (1� Pi) + (Pi � PiPj) + · · ·+ (PiPj ...Pm � PiPj ...PmPn) ] ~A

= ~Ci|Ûi + Pi
~Cj|Ûj + PiPj

~C
k|Ûk + · · ·+ PiPj · · ·Pm

~Cn|Ûn . (19)

This shows that the information contained in the N elementary concurrence vectors is enough to

built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j,Ùij}. The corresponding concurrence vectors are

related by Eq.(17), which can be written as

Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads

Cij|Ùij  Ci|Ûi + Cj|Ûj (21)

(and permutations of the three terms). This triangular inequality has been shown in previous

literature, e.g. in refs [13, 14]. With the use of concurrence vectors it is a quite trivial result since

the involved vectors form a triangle (with a permutation of components in one of them). This

provides a transparent geometrical interpretation of the triangular inequality.

We can also show very easily the (stronger) inequality for the squared of the concurrences [25],

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (22)

(and permutations). To see this notice that

C2
ij|Ùij = k(1� PiPj) ~Ak

2= k(1� Pi) ~A� (1� Pj) ~Ak
2= C2

i|Ûi + C2
j|Ûj � 2 ~A†(1� Pi)(1� Pj) ~A , (23)

where the last term is negative semidefinite:

�2 ~A†(1� Pi)(1� Pj) ~A = �
1

2
~A†((1� Pi)(1� Pj))

2 ~A = �
1

2
k(1� Pi)(1� Pj) ~Ak

2
 0 . (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e. the indices i, j can

be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)

ä
~A = PJ

Ä
~C
I|ÛI �

~C
J | ÛJ
ä
, (25)

where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
IMJ |ĪMJ = C2

I|ÛI + C2
J | ÛJ � 2 ~A†(1� PI)(1� PJ) ~A ,

�2 ~A†(1� PI)(1� PJ) ~A = �
1

2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)

5
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8 Appendix A. The equality in the triangular relation

As mentioned in section 4, for a system of three qubits the triangular inequality

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (56)

becomes an equality i↵ either Ci|Ûi = 0 or Cj|Ûj = 0. This interesting result was proven in ref. [26].

Here we extend it to any tripartite system or any tripartition, independently of the dimensions of

the involved Hilbert spaces.

From Eqs.(23, 24) the equality in the relation (56) is equivalent to the condition

(1� Pi)(1� Pj) ~A = 0 , (57)

where ~A is the vector of the coe�cients of the state | i ⌦ | i 2 H ⌦H, see Eq. (12). Taking into

account that for any bipartition I|ÛI the concurrence reads C2
I|ÛI = k(1�Pi) ~Ak

2, our goal is to prove

that Eq.(57) requires (1� Pi) ~A = 0 or (1� Pj) ~A = 0.

8.1 3 qubits and 3 qutrits

Let us first consider the case of three qubits, so that

Aijk; i0j0k0 = (aijk) (ai0j0k0) (58)

with all indices taking two possible values, 0 and 1. Thus, in this case Eq.(57) represents (23)2

quadratic equations in the aijk variables. Actually, most of them are trivial, i.e. the l.h.s. of (57) is

identically zero. For the non-trivial ones has always the form ±q0, ±q1 or ±q2, with

q0 = a010a100 � a000a110 ,

q1 = a011a101 � a001a111 , (59)

q2 = a011a100 + a010a101 � a001a110 � a000a111

(notice that q1 = q0|aij0 !aij1). Consequently, Eq.(57) is equivalent to

{q0, q1, q2} = {0, 0, 0} . (60)

By a careful (and lengthy) inspection it is possible to check that the only consistent possibility to

fulfill Eq.(60) is indeed that either (1�Pi) ~A = 0 or (1�Pj) ~A = 0. However, a more expeditious way

to show this is the following. Using Singular, a computer algebra system for polynomial computations

[40] it is easy to prove that

k(1� P1) ~Ak
2
k(1� P2) ~Ak

2= s0q0 + s1q1 + s2q2 (61)

for some -sextic- polynomials {s0, s1, s2} on the variables aijk, a⇤ijk. (The explicit form of s0, s1, s2 is

quite longish and of no particular interest, so we omit it.). Thus, indeed, Eq.(57) requires (1�Pi) ~A =

0 or (1� Pj) ~A = 0 and the statement is proven for three qubits.

A similar computation shows that the same statement holds for a system of three qutrits, i.e.

when the indices of ~A in Eq.(58) take the values 0, 1, 2. In this case, the calculation is more involved:

Eq.(57) represents (33)2 quadratic equations, 54 of which are non-equivalent. The complexity of

Eq.(57) grows geometrically with the dimension of the Hilbert spaces of the three subsystems.

However, the result for three qutrits is all we need to recursively extend statement to any dimension,

as shown below.

12

holds for any dimension of the three Hilbert spaces of the 
tripartition, not just for three qubits.                           

2 
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(a), (b) and (c) of a bona fide GME measure.

POLYGAMY INEQUALITIES AND THEIR
GEOMETRIC IMPLICATIONS

Let HX denote a d-dimensional vector space associ-
ated with the system X. For a bipartite pure state
| iAB in vector space HA ⌦ HB , the concurrence is
given by [18–20], C(| iAB) =

p
2 [1� Tr(⇢2A)], where

⇢A = TrB(| iABh |) is the reduced density matrix by
tracing over the subsystem B. Let T (⇢) denote the lin-
ear entropy of state ⇢, T (⇢) = 1 � Tr(⇢2) [21]. For a
bipartite state ⇢AB , one has [22],

|T (⇢A)� T (⇢B)|  T (⇢AB)  T (⇢A) + T (⇢B). (1)

In the following, we consider general N -qudit sys-
tems with subsystems A1, ..., AN . For simplicity we de-
note the concurrence between the subsystem Ai and
the rest subsystems of a pure state | i 2 HA1 ⌦
... ⌦ HAN as Ci|bi(| i) := CAi|A1...Ai�1Ai+1...AN

(| i),
where bi = 1 · · · (i � 1)(i + 1) · · ·N stands for subsystem
A1...Ai�1Ai+1...AN , i.e., î stands for i being omitted in
the subindices.
Theorem 1. For any N -partite pure state | i 2

HA1 ⌦ ...⌦HAN , we have

C
2
i|bi(| i) 

NX

j 6=i

C
2
j|bj(| i), (2)

and

Ci|bi(| i) 
NX

j 6=i

Cj|bj(| i). (3)

Proof. For any N -partite pure state | i, we have

C
2
i|bi(| i) = 2

�
1� Tr(⇢2bi )

�
= 2T (⇢bi)


X

j 6=i

2T (⇢j) =
NX

j 6=i

C
2
j|bj(| i),

where the inequality is due to (1).
The inequality (3) is easily deduced by (2) sincePN
j 6=i C

2
j|bj(| i)  (

PN
j 6=i Cj|bj(| i))2. ⇤

These inequalities in Theorem 1 are valid for any N -
partite pure state | i which include the results of [23]
as special cases of N -qubit pure states. Obviously, these
polygamy inequalities guarantee that all the (squared)
one-to-rest qudit concurrences, representing the lengths
of edges, form a closed N -sided polygon. We may also
interpret them as the lengths of edges for a series of tri-
angles. We name them as the concurrence triangles.

3

1

2

3|12C 2|13C

1|23C

FIG. 1: The concurrence triangle for a tripartite system. The
lengths of the three edges corresponds to the three bipartite
concurrences.

From the inequality (3), taking into account the bipar-
tition ij|bij, we have

Cbij|ij(| i)  Ci|bi(| i) + Cj|bj(| i),
Ci|bi(| i)  Cbij|ij(| i) + Cj|bj(| i). (4)

Here, {i, j, bij} represent the three vertices of the con-
currence triangle. In fact, for N = 3, from inequal-
ity (4) one has Ck|ij(| i)  Ci|jk(| i) + Cj|ik(| i) for
i 6= j 6= k 2 {1, 2, 3}. An obvious geometric picture for
these inequalities is that the three concurrences represent
the lengths of the three edges of a concurrence triangle,
see. Fig. 1.
Set Q = 1

2

P3
i=1 Ci|bi(| i) to be the half-perimeter of

the triangle with respect to a tripartite pure state | i.
We have the following theorem, see proof in section A in
Appendix.
Theorem 2. For any tripartite pure state | i, the

area of the concurrence triangle defines a well defined
genuine tripartite entanglement measure,

F3(| i) =
h16
3
Q⇧3

i=1(Q� Ci|bi(| i))
i 1

2
,

where the factor 16
3 ensures the normalization 0 

F3(| i)  1.
Remark 1. In [16], the authors used squared concur-

rence as three edges of a triangle, and proposed the
following genuine tripartite entanglement measure for
three-qubit states,

F123 =
h16
3
Q⇧3

i=1(Q� C
2
i|jk(| i))

i 1
4
.

Unfortunately, in [17] the authors have shown that F123 is
increasing under LOCC, which means F123 is not a proper
genuine entanglement measure. In the following, we give
a genuine multipartite entanglement measure based on
the geometric mean area of concurrence triangles.

2 

2 

2 

Hence, the area of the triangle of squared concurrences is a 
sound measure of genuine entanglement (for a tripartition)
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Relation to (linear) entropy 

From an entropy-of-entanglement perspective, the concurrence 
can be identified with the Tsallis-2 (“linear”) entropy 

and in consequence the triangular inequalities (21, 22) generalize to non-disjoint subsystems as

C
IMJ |ĪMJ  C

I|ÛI + C
J | ÛJ ,

C2
IMJ |ĪMJ  C2

I|ÛI + C2
J | ÛJ . (27)

On the other hand, in ref. [26] it was shown that, if the system consists of three qubits, the

inequality (22) becomes an equality only when either Ci|Ûi or Cj|Ûj are vanishing; otherwise the “  ”

sign in (22) becomes strict inequality “ < ”. In Appendix A we show that this interesting result

holds for any tripartition, independently of the dimension of the subsystems. As a consequence,

the area of the “concurrence triangle” built up with the squared concurrences of a tripartite system

is a consistent measure of genuine entanglement. This entanglement measure was advocated in

ref. [14, 26] for systems of three qubits, but this result shows that it can be extended to arbitrary

dimension of the subsystems. Besides, the same property holds for non-disjoint tripartitions, i.e.

Eq.(27) becomes an strict equality i↵ either C
I|ÛI or C

J | ÛJ are vanishing.

Finally, using the general expression (19) one can go beyond tripartitions and derive other in-

equalities. An obvious one comes from the fact that the vectors involved in (19) form a (non-

necessarily flat) polygon, so they satisfy the polygonal inequality (i.e. the extension of the triangu-

lar inequality to polygons). Since the permutations do not modify the norm of the various vectors

involved, we conclude that

C
I|ÛI  Ci|Ûi + Cj|Ûj + · · ·+ Cm|Ùm ,

C2
I|ÛI  C2

i|Ûi + C2
j|Ûj + · · ·+ C2

m|Ùm , (28)

as well as

C
IMJM···MM |ˇ�IMJM···MM  C

I|ÛI + C
J | ÛJ + · · ·+ C

M |ıM ,

C2

IMJM···MM |ˇ�IMJM···MM
 C2

I|ÛI + C2
J | ÛJ + · · ·+ C2

M |ıM (29)

(and permutations).

A straightforward way to get new inequalities among concurrences is to consider the inequality

~A†(1� PI)(1± PJ)(1± PK) · · · (1± PM ) ~A � 0 . (30)

Since (1±P ) = (1±P )2/2, the l.h.s. of this equation is positive semidefinite, and it can be expressed

as a combination of concurrences.

5 Subadditivity and strong subadditivity

From an entropy-of-entanglement perspective, the concurrence can be identified (up to a normaliza-

tion factor) with the so-called Tsallis-2 (or “linear”) entropy [27–29]

C2
I|ÛI = 2

�
1� tr ⇢2A

�
⌘ 2 S2 (⇢A) , (31)

where we have kept the notation previously introduced. Some of the well-known properties of the

von Neumann entropy, SVN(⇢) = � tr (⇢ log ⇢), are also shared by S2(⇢) [30]. In particular, given

two subsystems, HA ⌦HB, the S2�entropy satisfies the subadditivity conditions [31, 32]:

|S2 (⇢A)� S2 (⇢B) | S2 (⇢AB)  S2 (⇢A) + S2 (⇢B) . (32)

6
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6

We can use the relat ionships between 
concurrences to obtain relations between (linear) 
entropies for generic (pure or mixed) states
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Relation to (linear) entropy 
E.g. for a tri-partition of the Hilbert space:

Triangular inequalities (for squares):

More generically, the concurrence vector, ~C
I|ÛI , of an arbitrary bipartition, say I = {i, j, ....,m, n},

can be expressed as

~C
I|ÛI = (1� PiPj · · ·Pn) ~A

= [ (1� Pi) + (Pi � PiPj) + · · ·+ (PiPj ...Pm � PiPj ...PmPn) ] ~A

= ~Ci|Ûi + Pi
~Cj|Ûj + PiPj

~C
k|Ûk + · · ·+ PiPj · · ·Pm

~Cn|Ûn . (19)

This shows that the information contained in the N elementary concurrence vectors is enough to

built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities
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Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads

Cij|Ùij  Ci|Ûi + Cj|Ûj (21)

(and permutations of the three terms). This triangular inequality has been shown in previous
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ij|Ùij = k(1� PiPj) ~Ak

2= k(1� Pi) ~A� (1� Pj) ~Ak
2= C2

i|Ûi + C2
j|Ûj � 2 ~A†(1� Pi)(1� Pj) ~A , (23)

where the last term is negative semidefinite:

�2 ~A†(1� Pi)(1� Pj) ~A = �
1

2
~A†((1� Pi)(1� Pj))

2 ~A = �
1

2
k(1� Pi)(1� Pj) ~Ak

2
 0 . (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e. the indices i, j can

be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)

ä
~A = PJ

Ä
~C
I|ÛI �

~C
J | ÛJ
ä
, (25)

where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
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�2 ~A†(1� PI)(1� PJ) ~A = �
1

2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)
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ℋ = ℋA ⊗ ℋB ⊗ ℋAB
{ | j⟩}{ | i⟩} { |k⟩} ≡ { | i j ⟩}

and in consequence the triangular inequalities (21, 22) generalize to non-disjoint subsystems as

C
IMJ |ĪMJ  C

I|ÛI + C
J | ÛJ ,

C2
IMJ |ĪMJ  C2

I|ÛI + C2
J | ÛJ . (27)

On the other hand, in ref. [26] it was shown that, if the system consists of three qubits, the

inequality (22) becomes an equality only when either Ci|Ûi or Cj|Ûj are vanishing; otherwise the “  ”

sign in (22) becomes strict inequality “ < ”. In Appendix A we show that this interesting result

holds for any tripartition, independently of the dimension of the subsystems. As a consequence,

the area of the “concurrence triangle” built up with the squared concurrences of a tripartite system

is a consistent measure of genuine entanglement. This entanglement measure was advocated in

ref. [14, 26] for systems of three qubits, but this result shows that it can be extended to arbitrary

dimension of the subsystems. Besides, the same property holds for non-disjoint tripartitions, i.e.

Eq.(27) becomes an strict equality i↵ either C
I|ÛI or C

J | ÛJ are vanishing.

Finally, using the general expression (19) one can go beyond tripartitions and derive other in-

equalities. An obvious one comes from the fact that the vectors involved in (19) form a (non-

necessarily flat) polygon, so they satisfy the polygonal inequality (i.e. the extension of the triangu-

lar inequality to polygons). Since the permutations do not modify the norm of the various vectors

involved, we conclude that

C
I|ÛI  Ci|Ûi + Cj|Ûj + · · ·+ Cm|Ùm ,

C2
I|ÛI  C2

i|Ûi + C2
j|Ûj + · · ·+ C2

m|Ùm , (28)

as well as

C
IMJM···MM |ˇ�IMJM···MM  C

I|ÛI + C
J | ÛJ + · · ·+ C

M |ıM ,

C2

IMJM···MM |ˇ�IMJM···MM
 C2

I|ÛI + C2
J | ÛJ + · · ·+ C2

M |ıM (29)

(and permutations).

A straightforward way to get new inequalities among concurrences is to consider the inequality

~A†(1� PI)(1± PJ)(1± PK) · · · (1± PM ) ~A � 0 . (30)

Since (1±P ) = (1±P )2/2, the l.h.s. of this equation is positive semidefinite, and it can be expressed

as a combination of concurrences.

5 Subadditivity and strong subadditivity

From an entropy-of-entanglement perspective, the concurrence can be identified (up to a normaliza-

tion factor) with the so-called Tsallis-2 (or “linear”) entropy [27–29]

C2
I|ÛI = 2

�
1� tr ⇢2A

�
⌘ 2 S2 (⇢A) , (31)

where we have kept the notation previously introduced. Some of the well-known properties of the

von Neumann entropy, SVN(⇢) = � tr (⇢ log ⇢), are also shared by S2(⇢) [30]. In particular, given

two subsystems, HA ⌦HB, the S2�entropy satisfies the subadditivity conditions [31, 32]:

|S2 (⇢A)� S2 (⇢B) | S2 (⇢AB)  S2 (⇢A) + S2 (⇢B) . (32)
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understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)
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an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very
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Relation to (linear) entropy 
E.g. for a tri-partition of the Hilbert space:

Triangular inequalities (for squares):

More generically, the concurrence vector, ~C
I|ÛI , of an arbitrary bipartition, say I = {i, j, ....,m, n},

can be expressed as

~C
I|ÛI = (1� PiPj · · ·Pn) ~A

= [ (1� Pi) + (Pi � PiPj) + · · ·+ (PiPj ...Pm � PiPj ...PmPn) ] ~A

= ~Ci|Ûi + Pi
~Cj|Ûj + PiPj

~C
k|Ûk + · · ·+ PiPj · · ·Pm

~Cn|Ûn . (19)

This shows that the information contained in the N elementary concurrence vectors is enough to

built any other concurrence vector, and thus the corresponding concurrence, C2
I|ÛI = k~C

I|ÛIk
2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j,Ùij}. The corresponding concurrence vectors are

related by Eq.(17), which can be written as

Pj
~Cij|Ùij =

~Ci|Ûi �
~Cj|Ûj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality. Since kPi
~Cij|Ùijk=

k~Cij|Ùijk= Cij|Ùij , the inequality reads

Cij|Ùij  Ci|Ûi + Cj|Ûj (21)

(and permutations of the three terms). This triangular inequality has been shown in previous
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the involved vectors form a triangle (with a permutation of components in one of them). This
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We can also show very easily the (stronger) inequality for the squared of the concurrences [25],

C2
ij|Ùij  C2

i|Ûi + C2
j|Ûj (22)

(and permutations). To see this notice that

C2
ij|Ùij = k(1� PiPj) ~Ak

2= k(1� Pi) ~A� (1� Pj) ~Ak
2= C2

i|Ûi + C2
j|Ûj � 2 ~A†(1� Pi)(1� Pj) ~A , (23)

where the last term is negative semidefinite:

�2 ~A†(1� Pi)(1� Pj) ~A = �
1

2
~A†((1� Pi)(1� Pj))

2 ~A = �
1

2
k(1� Pi)(1� Pj) ~Ak

2
 0 . (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e. the indices i, j can

be replaced by collective indices I, J when I \ J = ;. If I \ J 6= ; we simply note that

~C
IMJ |ĪMJ = (1� PIPJ) ~A = PJ

Ä
(1� PI)� (1� PJ)

ä
~A = PJ

Ä
~C
I|ÛI �

~C
J | ÛJ
ä
, (25)

where I M J = I [ J \ I \ J is the set of indices in either I or J , but not in both. Hence, analogous

expressions to Eqs.(23, 24) can be obtained,

C2
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J | ÛJ � 2 ~A†(1� PI)(1� PJ) ~A ,

�2 ~A†(1� PI)(1� PJ) ~A = �
1

2
k(1� PI)(1� PJ) ~Ak

2
 0 , (26)
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ℋ = ℋA ⊗ ℋB ⊗ ℋAB
{ | j⟩}{ | i⟩} { |k⟩} ≡ { | i j ⟩}

and in consequence the triangular inequalities (21, 22) generalize to non-disjoint subsystems as

C
IMJ |ĪMJ  C

I|ÛI + C
J | ÛJ ,

C2
IMJ |ĪMJ  C2

I|ÛI + C2
J | ÛJ . (27)

On the other hand, in ref. [26] it was shown that, if the system consists of three qubits, the

inequality (22) becomes an equality only when either Ci|Ûi or Cj|Ûj are vanishing; otherwise the “  ”

sign in (22) becomes strict inequality “ < ”. In Appendix A we show that this interesting result

holds for any tripartition, independently of the dimension of the subsystems. As a consequence,

the area of the “concurrence triangle” built up with the squared concurrences of a tripartite system

is a consistent measure of genuine entanglement. This entanglement measure was advocated in

ref. [14, 26] for systems of three qubits, but this result shows that it can be extended to arbitrary

dimension of the subsystems. Besides, the same property holds for non-disjoint tripartitions, i.e.

Eq.(27) becomes an strict equality i↵ either C
I|ÛI or C

J | ÛJ are vanishing.

Finally, using the general expression (19) one can go beyond tripartitions and derive other in-

equalities. An obvious one comes from the fact that the vectors involved in (19) form a (non-

necessarily flat) polygon, so they satisfy the polygonal inequality (i.e. the extension of the triangu-

lar inequality to polygons). Since the permutations do not modify the norm of the various vectors

involved, we conclude that

C
I|ÛI  Ci|Ûi + Cj|Ûj + · · ·+ Cm|Ùm ,

C2
I|ÛI  C2

i|Ûi + C2
j|Ûj + · · ·+ C2

m|Ùm , (28)

as well as

C
IMJM···MM |ˇ�IMJM···MM  C

I|ÛI + C
J | ÛJ + · · ·+ C

M |ıM ,

C2

IMJM···MM |ˇ�IMJM···MM
 C2

I|ÛI + C2
J | ÛJ + · · ·+ C2

M |ıM (29)

(and permutations).

A straightforward way to get new inequalities among concurrences is to consider the inequality

~A†(1� PI)(1± PJ)(1± PK) · · · (1± PM ) ~A � 0 . (30)

Since (1±P ) = (1±P )2/2, the l.h.s. of this equation is positive semidefinite, and it can be expressed

as a combination of concurrences.

5 Subadditivity and strong subadditivity

From an entropy-of-entanglement perspective, the concurrence can be identified (up to a normaliza-

tion factor) with the so-called Tsallis-2 (or “linear”) entropy [27–29]

C2
I|ÛI = 2

�
1� tr ⇢2A

�
⌘ 2 S2 (⇢A) , (31)

where we have kept the notation previously introduced. Some of the well-known properties of the

von Neumann entropy, SVN(⇢) = � tr (⇢ log ⇢), are also shared by S2(⇢) [30]. In particular, given

two subsystems, HA ⌦HB, the S2�entropy satisfies the subadditivity conditions [31, 32]:

|S2 (⇢A)� S2 (⇢B) | S2 (⇢AB)  S2 (⇢A) + S2 (⇢B) . (32)
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i j|i j
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understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =
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Relation to (linear) entropy 

and in consequence the triangular inequalities (21, 22) generalize to non-disjoint subsystems as

C
IMJ |ĪMJ  C

I|ÛI + C
J | ÛJ ,

C2
IMJ |ĪMJ  C2

I|ÛI + C2
J | ÛJ . (27)

On the other hand, in ref. [26] it was shown that, if the system consists of three qubits, the

inequality (22) becomes an equality only when either Ci|Ûi or Cj|Ûj are vanishing; otherwise the “  ”

sign in (22) becomes strict inequality “ < ”. In Appendix A we show that this interesting result

holds for any tripartition, independently of the dimension of the subsystems. As a consequence,

the area of the “concurrence triangle” built up with the squared concurrences of a tripartite system

is a consistent measure of genuine entanglement. This entanglement measure was advocated in

ref. [14, 26] for systems of three qubits, but this result shows that it can be extended to arbitrary

dimension of the subsystems. Besides, the same property holds for non-disjoint tripartitions, i.e.

Eq.(27) becomes an strict equality i↵ either C
I|ÛI or C

J | ÛJ are vanishing.

Finally, using the general expression (19) one can go beyond tripartitions and derive other in-

equalities. An obvious one comes from the fact that the vectors involved in (19) form a (non-

necessarily flat) polygon, so they satisfy the polygonal inequality (i.e. the extension of the triangu-

lar inequality to polygons). Since the permutations do not modify the norm of the various vectors

involved, we conclude that

C
I|ÛI  Ci|Ûi + Cj|Ûj + · · ·+ Cm|Ùm ,

C2
I|ÛI  C2

i|Ûi + C2
j|Ûj + · · ·+ C2

m|Ùm , (28)

as well as

C
IMJM···MM |ˇ�IMJM···MM  C

I|ÛI + C
J | ÛJ + · · ·+ C

M |ıM ,

C2

IMJM···MM |ˇ�IMJM···MM
 C2

I|ÛI + C2
J | ÛJ + · · ·+ C2

M |ıM (29)

(and permutations).

A straightforward way to get new inequalities among concurrences is to consider the inequality

~A†(1� PI)(1± PJ)(1± PK) · · · (1± PM ) ~A � 0 . (30)

Since (1±P ) = (1±P )2/2, the l.h.s. of this equation is positive semidefinite, and it can be expressed

as a combination of concurrences.

5 Subadditivity and strong subadditivity

From an entropy-of-entanglement perspective, the concurrence can be identified (up to a normaliza-

tion factor) with the so-called Tsallis-2 (or “linear”) entropy [27–29]

C2
I|ÛI = 2

�
1� tr ⇢2A

�
⌘ 2 S2 (⇢A) , (31)

where we have kept the notation previously introduced. Some of the well-known properties of the

von Neumann entropy, SVN(⇢) = � tr (⇢ log ⇢), are also shared by S2(⇢) [30]. In particular, given

two subsystems, HA ⌦HB, the S2�entropy satisfies the subadditivity conditions [31, 32]:

|S2 (⇢A)� S2 (⇢B) | S2 (⇢AB)  S2 (⇢A) + S2 (⇢B) . (32)
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Note: Even though the relation has been obtained starting with 
a pure global state, 

|ψ⟩ ∈ ℋ = ℋA ⊗ ℋB ⊗ ℋAB
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new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.
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ρAB = trAB |ψ⟩⟨ψ |

The subadditivity relation holds for pure or mixed states since 
any !  can be obtained from a pure state by appropriately 
choosing the “environment” !
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and in consequence the triangular inequalities (21, 22) generalize to non-disjoint subsystems as

C
IMJ |ĪMJ  C

I|ÛI + C
J | ÛJ ,

C2
IMJ |ĪMJ  C2

I|ÛI + C2
J | ÛJ . (27)

On the other hand, in ref. [26] it was shown that, if the system consists of three qubits, the

inequality (22) becomes an equality only when either Ci|Ûi or Cj|Ûj are vanishing; otherwise the “  ”

sign in (22) becomes strict inequality “ < ”. In Appendix A we show that this interesting result

holds for any tripartition, independently of the dimension of the subsystems. As a consequence,

the area of the “concurrence triangle” built up with the squared concurrences of a tripartite system

is a consistent measure of genuine entanglement. This entanglement measure was advocated in

ref. [14, 26] for systems of three qubits, but this result shows that it can be extended to arbitrary

dimension of the subsystems. Besides, the same property holds for non-disjoint tripartitions, i.e.

Eq.(27) becomes an strict equality i↵ either C
I|ÛI or C

J | ÛJ are vanishing.

Finally, using the general expression (19) one can go beyond tripartitions and derive other in-

equalities. An obvious one comes from the fact that the vectors involved in (19) form a (non-

necessarily flat) polygon, so they satisfy the polygonal inequality (i.e. the extension of the triangu-

lar inequality to polygons). Since the permutations do not modify the norm of the various vectors

involved, we conclude that

C
I|ÛI  Ci|Ûi + Cj|Ûj + · · ·+ Cm|Ùm ,

C2
I|ÛI  C2

i|Ûi + C2
j|Ûj + · · ·+ C2

m|Ùm , (28)

as well as

C
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I|ÛI + C
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C2

IMJM···MM |ˇ�IMJM···MM
 C2
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J | ÛJ + · · ·+ C2

M |ıM (29)

(and permutations).

A straightforward way to get new inequalities among concurrences is to consider the inequality

~A†(1� PI)(1± PJ)(1± PK) · · · (1± PM ) ~A � 0 . (30)

Since (1±P ) = (1±P )2/2, the l.h.s. of this equation is positive semidefinite, and it can be expressed

as a combination of concurrences.

5 Subadditivity and strong subadditivity

From an entropy-of-entanglement perspective, the concurrence can be identified (up to a normaliza-

tion factor) with the so-called Tsallis-2 (or “linear”) entropy [27–29]

C2
I|ÛI = 2

�
1� tr ⇢2A

�
⌘ 2 S2 (⇢A) , (31)

where we have kept the notation previously introduced. Some of the well-known properties of the

von Neumann entropy, SVN(⇢) = � tr (⇢ log ⇢), are also shared by S2(⇢) [30]. In particular, given

two subsystems, HA ⌦HB, the S2�entropy satisfies the subadditivity conditions [31, 32]:

|S2 (⇢A)� S2 (⇢B) | S2 (⇢AB)  S2 (⇢A) + S2 (⇢B) . (32)
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Also: the equality in the subadditivity, i.e.

occurs iff

S2 (ρAB) = S2 (ρA) + S2 (ρB)

S2 (ρA) = 0 or S2 (ρB) = 0
(new)
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Relation to (linear) entropy 

You can also easily check that the strong subadditivity: 

The previous second inequality actually corresponds to the positivity of an information-theory quan-

tity known as mutual information, associated with the total amount of correlations in ⇢AB [33]

I (A : B) ⌘ S2 (⇢A) + S2 (⇢B)� S2 (⇢AB) � 0 . (33)

Now, these results stem trivially from the triangular inequalities (21, 22) by simply considering

a tripartition of the Hilbert space, H = HA ⌦HB ⌦H
ÃB

, and identifying the indices i, j with the

subsystems HA ⌦ HB. We stress that the subadditivity condition holds for an arbitrary density

matrix ⇢AB. In this context, H
ÃB

can be considered as an extension of the Hilbert space HA ⌦HB,

so that the global state becomes pure, which is always possible thanks to the purification theorem.

In addition, we observe the following interesting property. Since the triangular inequality (22)

becomes an equality i↵ either Ci|Ûi or Cj|Ûj are vanishing (see discussion in section 4 and a proof in

Appendix A), it follows that the subadditivity condition (33) is saturated i↵ the entropy of one of

the two subsystems is vanishing:

S2 (⇢A) + S2 (⇢B)� S2 (⇢AB) = 0 () S2 (⇢A) = 0 or S2 (⇢B) = 0 . (34)

Further relations concerning the Tsallis-2 entropy have been tested and, among them, special

attention has been paid to the strong subadditivity [34]. For a generic entropy, S(⇢), strong subad-

ditivity reads

S (⇢ABC) + S (⇢B)  S (⇢AB) + S (⇢BC) , i.e. I (A : B)  I (A : BC) , (35)

where the last expression indicates that correlations are non-decreasing under the extension of one of

the subsystems. It is well known that von Neumann entropy, SVN(⇢), satisfies the strong subadditiv-

ity condition [34]. In contrast, generically the Tsallis-2 entropy, S2(⇢), does not satisfy it, as it was

proven in ref. [35] by constructing several counterexamples. We can easily check this result using the

concurrence-vector approach. Consider a Hilbert space partitioned as H = HA⌦HB ⌦HC ⌦H
ĂBC

,

i.e. {i, j, k, îjk}. In terms of concurrences, condition (35) for S2(⇢) would read

C2
ijk|îjk + C2

j|Ûj � C2
ij|Ùij � C2

jk|ıjk  0 . (36)

However, the l.h.s. of this relation is exactly the quantity:

2 ~A† ((1� PiPjPk) + (1� Pj)� (1� PiPj)� (1� PjPk)) ~A

= �2 ~A†Pj(1� Pi)(1� Pk) ~A , (37)

which is not negative semidefinite, showing that strong subadditivity (36) can be violated for par-

ticular choices of the state ~A. E.g. for (1 � PiPj) ~A = 0, i.e. C2
ij|Ùij = 0, the expression (37)

becomes

2 ~A†(1� Pj)(1� Pk) ~A � 0 . (38)

This inequality is strict i↵, moreover, C2
j|Ûj , C2

k|Ûk 6= 0 (see discussion after Eq.(27) and Appendix

A), thus leading to the violation of the strong subadditivity. An example of this setup is a state

|BelliAB ⌦ |Belli
CĂBC

2 HA ⌦HB ⌦HC ⌦H
ĂBC

.

7

does not hold (in general) for the linear entropy
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becomes an equality i↵ either Ci|Ûi or Cj|Ûj are vanishing (see discussion in section 4 and a proof in

Appendix A), it follows that the subadditivity condition (33) is saturated i↵ the entropy of one of
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S2 (⇢A) + S2 (⇢B)� S2 (⇢AB) = 0 () S2 (⇢A) = 0 or S2 (⇢B) = 0 . (34)

Further relations concerning the Tsallis-2 entropy have been tested and, among them, special

attention has been paid to the strong subadditivity [34]. For a generic entropy, S(⇢), strong subad-

ditivity reads

S (⇢ABC) + S (⇢B)  S (⇢AB) + S (⇢BC) , i.e. I (A : B)  I (A : BC) , (35)

where the last expression indicates that correlations are non-decreasing under the extension of one of

the subsystems. It is well known that von Neumann entropy, SVN(⇢), satisfies the strong subadditiv-

ity condition [34]. In contrast, generically the Tsallis-2 entropy, S2(⇢), does not satisfy it, as it was

proven in ref. [35] by constructing several counterexamples. We can easily check this result using the

concurrence-vector approach. Consider a Hilbert space partitioned as H = HA⌦HB ⌦HC ⌦H
ĂBC
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i.e. {i, j, k, îjk}. In terms of concurrences, condition (35) for S2(⇢) would read

C2
ijk|îjk + C2

j|Ûj � C2
ij|Ùij � C2

jk|ıjk  0 . (36)

However, the l.h.s. of this relation is exactly the quantity:

2 ~A† ((1� PiPjPk) + (1� Pj)� (1� PiPj)� (1� PjPk)) ~A
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This inequality is strict i↵, moreover, C2
j|Ûj , C2

k|Ûk 6= 0 (see discussion after Eq.(27) and Appendix

A), thus leading to the violation of the strong subadditivity. An example of this setup is a state

|BelliAB ⌦ |Belli
CĂBC

2 HA ⌦HB ⌦HC ⌦H
ĂBC

.
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ÃB

, and identifying the indices i, j with the

subsystems HA ⌦ HB. We stress that the subadditivity condition holds for an arbitrary density

matrix ⇢AB. In this context, H
ÃB
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All relationships found for concurrences can be translated to 
relationships between linear entropies, e.g. 

On the other hand, the quantity (37) becomes obviously negative semidefinite for Pj
~A = ~A, i.e.

C2
j|Ûj = 0,

�2 ~A†(1� Pi)(1� Pk) ~A  0 , (39)

so in this case the strong subadditivity is fulfilled. Actually, this instance is equivalent to the

“ordinary” subadditivity (32) for the tripartition H = HA ⌦HC ⌦H
ÃC

.

Notice also that for C2
i|Ûi = 0 or C2

k|Ûk = 0 Eq.(37) vanishes, so the strong subadditivity holds as

an equality.

To finish this section, let us construct a modified version of the strong subadditivity which does

always hold for the Tsallis-2 entropy (31). Expanding the inequality (see Eq.(30))

~A†(1� Pi)(1+ Pj)(1� Pk) ~A � 0 (40)

we get

C2
ijk|îjk + C2

j|Ûj  C2
ij|Ùij + C2

jk|ıjk +
⇣
C2
i|Ûi + C2

k|Ûk � C2
ik|Ùik

⌘
, (41)

where the term within brackets is positive semidefinite, see Eq.(22), and represents the departure

from the strong-subadditivity condition (36). In terms of the Tsallis-2 entropy this softened version

of strong subadditivity reads

S2 (⇢ABC) + S2 (⇢B)  S2 (⇢AB) + S2 (⇢BC) +
î
S2 (⇢A) + S2 (⇢C)� S2 (⇢AC)

ó
,

where the positivity (semi)definiteness of the term in brackets is equivalent to the ordinary subad-

ditivity condition (32). In terms of mutual information this relation reads I (A : B)  I (A : BC) +

I (A : C). Since we can exchange B $ C, it can be expressed as

|I (A : B)� I (A : C)|  I (A : BC) . (42)

On the other hand, we can yet construct an alternative subadditivity using the general relation

(27). By considering a Hilbert space partitioned as H = HA ⌦HB ⌦HC ⌦H
ĂBC

, and identifying

I = {i, j}, J = {j, k}, we get

C2
ik|Ùik  C2

ij|Ùij + C2
jk|ıjk . (43)

In terms of entropies:

S2 (⇢AC)  S2 (⇢AB) + S2 (⇢BC) , (44)

which is a kind of triangular inequality for the S2�entropies. Analogously to the ordinary subad-

ditivity, the fact that relation (43) becomes an equality i↵ either Cij|Ùij or C
jk|ıjk are vanishing (see

Appendix A), it follows that

S2 (⇢AC) = S2 (⇢AB) + S2 (⇢BC) () S2 (⇢AB) = 0 or S2 (⇢BC) = 0 . (45)

Concerning the mutual information, further inequalities can also be derived. In particular, applying

Eq. (30) to the combination (1 � Pi)(1 � Pj)(1 � Pk) we obtain a non-negative condition over the

tripartite information [36]

S2 (⇢AB) + S2 (⇢BC) + S2 (⇢AC)  S2 (⇢A) + S2 (⇢B) + S2 (⇢C) + S2 (⇢ABC)

) I (A : B : C) � 0 , (46)
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Sufficient Conditions for Genuine Entanglement 

In order to assess whether a state is genuinely entangled we need 
to evaluate ! concurrences, !  and check 

that all of them are !

2N−1 − 1 C2
I|I , I ∈ {i, j, k, ⋯}

≠ 0

Recall:

(a very hard problem):

understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)

2
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Sufficient Conditions for Genuine Entanglement 

In order to assess whether a state is genuinely entangled we need 
to evaluate ! concurrences, !  and check 

that all of them are !

2N−1 − 1 C2
I|I , I ∈ {i, j, k, ⋯}

≠ 0

Recall:

(a very hard problem):

Can our expression 

the density matrix, but this is not the general case. Under a permutation of the i�index, say Pi,

associated with the Hilbert space H1, ~A changes as1

Pi
~A = {(ai2j1k1...) (ai1j2k2...)} . (13)

This is simply a certain re-ordering of the components of ~A. Note that Pi are Hermitian linear

operators satisfying P 2
i = 1 and [Pi, Pj ] = 0. Let us now consider an “elementary bipartition”, i.e.

one between one of the initial parties and the rest, say H1 ⌦ (H2 ⌦H3 ⌦ · · ·). Then the concurrence

vector (11) (with I = i) reads

~Ci|Ûi = {ai1Ûi1ai2Ûi2 � ai1Ûi2ai2Ûi1} = (1� Pi) ~A . (14)

Similarly, the concurrence vector (11) associated to the bipartition H = (H1⌦H2)⌦ (H3⌦ · · ·) reads

~Cij|Ùij = {a
i1j1 ī1j1

a
i2j2 ī2j2

� a
i1j1 ī2j2

a
i2j2 ī1j1

} = (1� PiPj) ~A . (15)

These expressions are straightforwardly extended for other bipartitions. In general, for a bipartition

I|ÛI, with I = i, j, ...,m (or any other subset of indices) the concurrence vector reads

~C
I|ÛI = ~CÛI|I = (1� PI) ~A ⌘ (1� PiPj · · ·Pm) ~A . (16)

Mathematically, the elementary permutations, Pi, Pj , . . . are the generators of the group of all per-

mutations of indices, {PI}, which is a commutative ZN
2 group. Note that PI

~A = PÛI
~A since ~A is

obviously symmetric under the interchange of all indices. So, the group contains 2N�1 inequivalent

permutations, corresponding to the possible bipartitions of H. This includes the trivial bipartition

H = HA ⌦ ;, corresponding to the identity of the group. So, there are in fact 2N�1
� 1 non-trivial

permutations and bipartitions. For each one, the associated concurrence vector is given by (16).

Note also that (1� PI) are “projectors”, satisfying (1� PI)2 = 2(1� PI).

Next we will exploit the notion of concurrence vector and its latter expression (16) to derive

some direct consequences.

3 Connection between the entanglements of di↵erent bipartitions

The idea of concurrence vector allows to derive the entanglement of any of the 2N�1
� 1 di↵erent

bipartitions from the entanglement of the N elementary bipartitions. In other words, we can use

the concurrence vectors of the latter as building blocks to construct any other concurrence.

For example, the concurrence of two parts with respect to the rest, say ~Cij|Ùij , is related to the

elementary ones, ~Ci|Ûi ,
~Cj|Ûj , by

~Cij|Ùij = (1� PiPj) ~A = Pj

Ä
(1� Pi)� (1� Pj)

ä
~A = Pj

Ä
~Ci|Ûi �

~Cj|Ûj
ä
, (17)

or equivalently

~Cij|Ùij = (1� PiPj) ~A =
Ä
(1� Pi) + Pi(1� Pj)

ä
~A = ~Ci|Ûi + Pi

~Cj|Ûj . (18)

1If we view Ai1j1k1,...; i2,j2k2,... as an D⇥D matrix (analogous to the density matrix associated with | ih |), then
this permutation is equivalent to perform a partial transpose in the i�index.
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be of some help?

understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)

2

23



Sufficient Conditions for Genuine Entanglement 

Suppose the Hilbert space is 

ℋ = ℋ1 ⊗ ℋ2 ⊗ ⋯ ⊗ ℋN

with   even.N

24



Sufficient Conditions for Genuine Entanglement 

Suppose the Hilbert space is 

ℋ = ℋ1 ⊗ ℋ2 ⊗ ⋯ ⊗ ℋN

with   even.N

Consider now the vector

⃗V N = (1 − P1)(1 − P2)⋯(1 − PN−1) ⃗A

(evauable in   simple steps)N − 1

24



Sufficient Conditions for Genuine Entanglement 

Suppose the Hilbert space is 

ℋ = ℋ1 ⊗ ℋ2 ⊗ ⋯ ⊗ ℋN

with   even.N

Consider now the vector

⃗V N = (1 − P1)(1 − P2)⋯(1 − PN−1) ⃗A

(evauable in   simple steps)N − 1

which is a linear combination of all the concurrence vectors:

where I (A : B : C) = I (A : B) + I (A : C) � I (A : BC). The sign of this quantity for the von

Neumann entropy has been explored in the literature [36]. For the case of holographic theories it

has been proven to be non-positive (Monogamy of Mutual Information) [37], i.e. exactly the opposite

behavior as the one found above for the Tsallis-2 entropy. The same relation in a similar context

was obtained in refs. [38, 39].

6 Su�cient conditions for genuine entanglement

Let us now use the idea of concurrence vector and its expression (16) to derive new su�cient

conditions for genuine entanglement, which are computable in polynomial time.

For the sake of the clarity of the discussion, let us denote P1, P2, . . . PN the elementary permuta-

tions associated with the indices i, j, k, . . . , corresponding to the Hilbert spaces H1⌦H2⌦ · · ·⌦HN .

N even

Consider the vector
~VN = (1� P1)(1� P2) · · · (1� PN�1) ~A , (47)

which is a linear combination of all the concurrences:

~VN =
X

I⇢{1,2,...N�1}

(�1)#I(1� PI) ~A =
X

I⇢{1,2,...N�1}

(�1)#I ~C
I|ÛI , (48)

where #I is the cardinality of I. The subscript N indicates that the (1� PN ) factor has been left

outside the product in Eq.(47). In this way we avoid the duplication of concurrences, since (1�PI) ~A

and (1 � PÛI)
~A are equal and correspond to the same bipartition. Now suppose that there exists a

permutation P⌃ = P�1P�2 · · ·P�m with m odd, such that

(1� P⌃) ~A = 0 . (49)

In other words, suppose that the state is separable along the bipartition ⌃|Û⌃. Without loss of

generality, we can suppose �1,�2, · · ·�m  N � 1 (otherwise, consider the equivalent permutation

PÛ⌃ instead of P⌃). Then, Eq.(47) vanishes since the terms of the sum can be paired as:

~VN =
1

2

X

I⇢{1,2,...N�1}

(�1)#I ((1� PI)� (1� PIP⌃)) ~A = 0 . (50)

In consequence, if ~VN 6= 0, this is a su�cient condition to exclude any separable “odd” bipartition.

It is remarkable that this check of the ⇠ 2N�2 odd bipartitions is carried out by N � 1 simple

operations on ~A.

The previous condition though says nothing about the possibility of (1 � P⌃) ~A = 0 where

P⌃ = P�1P�2 · · ·P�m with m even (again we can assume �1,�2, · · ·�m  N � 1). To probe this

instance we construct the following N � 1 vectors

~W (1)
N = (1+ P1)(1� P2) · · · (1� PN�1) ~A ,

~W (2)
N = (1� P1)(1+ P2) · · · (1� PN�1) ~A ,

...

~W (N�1)
N = (1� P1)(1� P2) · · · (1+ PN�1) ~A . (51)

9
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as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)

2

⃗C Σ|Σ = (1 − PΣ) ⃗A = 0 !  (with !  odd) PΣ = Pσ1
Pσ2

⋯Pσm
m
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2

⃗C Σ|Σ = (1 − PΣ) ⃗A = 0

where I (A : B : C) = I (A : B) + I (A : C) � I (A : BC). The sign of this quantity for the von

Neumann entropy has been explored in the literature [36]. For the case of holographic theories it

has been proven to be non-positive (Monogamy of Mutual Information) [37], i.e. exactly the opposite

behavior as the one found above for the Tsallis-2 entropy. The same relation in a similar context

was obtained in refs. [38, 39].

6 Su�cient conditions for genuine entanglement

Let us now use the idea of concurrence vector and its expression (16) to derive new su�cient

conditions for genuine entanglement, which are computable in polynomial time.

For the sake of the clarity of the discussion, let us denote P1, P2, . . . PN the elementary permuta-

tions associated with the indices i, j, k, . . . , corresponding to the Hilbert spaces H1⌦H2⌦ · · ·⌦HN .

N even

Consider the vector
~VN = (1� P1)(1� P2) · · · (1� PN�1) ~A , (47)

which is a linear combination of all the concurrences:

~VN =
X

I⇢{1,2,...N�1}

(�1)#I(1� PI) ~A =
X

I⇢{1,2,...N�1}

(�1)#I ~C
I|ÛI , (48)

where #I is the cardinality of I. The subscript N indicates that the (1� PN ) factor has been left

outside the product in Eq.(47). In this way we avoid the duplication of concurrences, since (1�PI) ~A

and (1 � PÛI)
~A are equal and correspond to the same bipartition. Now suppose that there exists a

permutation P⌃ = P�1P�2 · · ·P�m with m odd, such that

(1� P⌃) ~A = 0 . (49)

In other words, suppose that the state is separable along the bipartition ⌃|Û⌃. Without loss of

generality, we can suppose �1,�2, · · ·�m  N � 1 (otherwise, consider the equivalent permutation

PÛ⌃ instead of P⌃). Then, Eq.(47) vanishes since the terms of the sum can be paired as:

~VN =
1

2

X

I⇢{1,2,...N�1}

(�1)#I ((1� PI)� (1� PIP⌃)) ~A = 0 . (50)

In consequence, if ~VN 6= 0, this is a su�cient condition to exclude any separable “odd” bipartition.

It is remarkable that this check of the ⇠ 2N�2 odd bipartitions is carried out by N � 1 simple

operations on ~A.

The previous condition though says nothing about the possibility of (1 � P⌃) ~A = 0 where

P⌃ = P�1P�2 · · ·P�m with m even (again we can assume �1,�2, · · ·�m  N � 1). To probe this

instance we construct the following N � 1 vectors

~W (1)
N = (1+ P1)(1� P2) · · · (1� PN�1) ~A ,

~W (2)
N = (1� P1)(1+ P2) · · · (1� PN�1) ~A ,

...

~W (N�1)
N = (1� P1)(1� P2) · · · (1+ PN�1) ~A . (51)

9
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m
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For a given bipartition, !  , a useful expression for the associated   
concurrence vector is  

I | I

the density matrix, but this is not the general case. Under a permutation of the i�index, say Pi,

associated with the Hilbert space H1, ~A changes as1

Pi
~A = {(ai2j1k1...) (ai1j2k2...)} . (13)

This is simply a certain re-ordering of the components of ~A. Note that Pi are Hermitian linear

operators satisfying P 2
i = 1 and [Pi, Pj ] = 0. Let us now consider an “elementary bipartition”, i.e.

one between one of the initial parties and the rest, say H1 ⌦ (H2 ⌦H3 ⌦ · · ·). Then the concurrence

vector (11) (with I = i) reads

~Ci|Ûi = {ai1Ûi1ai2Ûi2 � ai1Ûi2ai2Ûi1} = (1� Pi) ~A . (14)

Similarly, the concurrence vector (11) associated to the bipartition H = (H1⌦H2)⌦ (H3⌦ · · ·) reads

~Cij|Ùij = {a
i1j1 ī1j1

a
i2j2 ī2j2

� a
i1j1 ī2j2

a
i2j2 ī1j1

} = (1� PiPj) ~A . (15)

These expressions are straightforwardly extended for other bipartitions. In general, for a bipartition

I|ÛI, with I = i, j, ...,m (or any other subset of indices) the concurrence vector reads

~C
I|ÛI = ~CÛI|I = (1� PI) ~A ⌘ (1� PiPj · · ·Pm) ~A . (16)

Mathematically, the elementary permutations, Pi, Pj , . . . are the generators of the group of all per-

mutations of indices, {PI}, which is a commutative ZN
2 group. Note that PI

~A = PÛI
~A since ~A is

obviously symmetric under the interchange of all indices. So, the group contains 2N�1 inequivalent

permutations, corresponding to the possible bipartitions of H. This includes the trivial bipartition

H = HA ⌦ ;, corresponding to the identity of the group. So, there are in fact 2N�1
� 1 non-trivial

permutations and bipartitions. For each one, the associated concurrence vector is given by (16).

Note also that (1� PI) are “projectors”, satisfying (1� PI)2 = 2(1� PI).

Next we will exploit the notion of concurrence vector and its latter expression (16) to derive

some direct consequences.

3 Connection between the entanglements of di↵erent bipartitions

The idea of concurrence vector allows to derive the entanglement of any of the 2N�1
� 1 di↵erent

bipartitions from the entanglement of the N elementary bipartitions. In other words, we can use

the concurrence vectors of the latter as building blocks to construct any other concurrence.

For example, the concurrence of two parts with respect to the rest, say ~Cij|Ùij , is related to the

elementary ones, ~Ci|Ûi ,
~Cj|Ûj , by

~Cij|Ùij = (1� PiPj) ~A = Pj

Ä
(1� Pi)� (1� Pj)

ä
~A = Pj

Ä
~Ci|Ûi �

~Cj|Ûj
ä
, (17)

or equivalently

~Cij|Ùij = (1� PiPj) ~A =
Ä
(1� Pi) + Pi(1� Pj)

ä
~A = ~Ci|Ûi + Pi

~Cj|Ûj . (18)

1If we view Ai1j1k1,...; i2,j2k2,... as an D⇥D matrix (analogous to the density matrix associated with | ih |), then
this permutation is equivalent to perform a partial transpose in the i�index.
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� a
i1j1 ī2j2
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Ä
(1� Pi)� (1� Pj)

ä
~A = Pj

Ä
~Ci|Ûi �

~Cj|Ûj
ä
, (17)

or equivalently

~Cij|Ùij = (1� PiPj) ~A =
Ä
(1� Pi) + Pi(1� Pj)

ä
~A = ~Ci|Ûi + Pi

~Cj|Ûj . (18)

1If we view Ai1j1k1,...; i2,j2k2,... as an D⇥D matrix (analogous to the density matrix associated with | ih |), then
this permutation is equivalent to perform a partial transpose in the i�index.
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understanding of several triangular inequalities presented in the literature. Also, it allows to obtain

new inequalities and generalize results that were only proven for a system of three qubits (the

complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.

2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⌦H2 ⌦ · · ·⌦HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1,H2,H3... . Each index takes as many values

as the dimension of the corresponding Hilbert space. We are not imposing any restriction here, i.e.

each Hilbert space may have a di↵erent (finite) dimension.

Consider a bipartition H = HA⌦HÙA, and denote I the subset of indices associated with HA and
ÛI the complementary set of indices, associated with HÙA (in general we will denote collective indices

with capital letters). Suppose now that the system is in a normalized pure state

| i =
X

i,j,k...

aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2

�
1� tr ⇢2A

�
, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)

2

with  !  vector of coefficients of  ! , ⃗A ≡ |ψ⟩ ⊗ |ψ⟩ dim ⃗A = D2
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Conclusions

In a multipartite system, the notion of concurrence vector is a 
powerful tool to explore the connections between the entanglements 
associated to bipartitions.

For a given bipartition, !  , a useful expression for the associated   
concurrence vector is  

I | I

the density matrix, but this is not the general case. Under a permutation of the i�index, say Pi,

associated with the Hilbert space H1, ~A changes as1

Pi
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a
i2j2 ī1j1
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These expressions are straightforwardly extended for other bipartitions. In general, for a bipartition
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Mathematically, the elementary permutations, Pi, Pj , . . . are the generators of the group of all per-

mutations of indices, {PI}, which is a commutative ZN
2 group. Note that PI

~A = PÛI
~A since ~A is

obviously symmetric under the interchange of all indices. So, the group contains 2N�1 inequivalent

permutations, corresponding to the possible bipartitions of H. This includes the trivial bipartition

H = HA ⌦ ;, corresponding to the identity of the group. So, there are in fact 2N�1
� 1 non-trivial

permutations and bipartitions. For each one, the associated concurrence vector is given by (16).

Note also that (1� PI) are “projectors”, satisfying (1� PI)2 = 2(1� PI).

Next we will exploit the notion of concurrence vector and its latter expression (16) to derive

some direct consequences.

3 Connection between the entanglements of di↵erent bipartitions

The idea of concurrence vector allows to derive the entanglement of any of the 2N�1
� 1 di↵erent
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complete proof of the latter is given in the Appendix). In section 5 we explore the concurrence from

an entropy-of-entanglement perspective, showing that the concurrence vector framework allows to

easily prove the subadditivity condition for the Tsallis-2 entropy (directly related to the concurrence),

as well as the violation of the strong subadditivity condition. In this sense we propose a modified

version of the strong subadditivity condition which is always fulfilled, and derive other new relations.

Thanks to the purification theorem these results are completely general for multipartite states,

whether pure or mixed. In section 6 we exploit the concurrence vector approach to formulate very

simple su�cient conditions for genuine entanglement, which are computable in polynomial time.

Finally, the conclusions are presented in section 7.
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with capital letters). Suppose now that the system is in a normalized pure state

| i =
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aijk...|ii|ji|ki · · · , (2)

with density matrix ⇢ = | ih |. Then, the entanglement of this state with respect to the previous

bipartition is often quantified by the concurrence [19–24],

C2
I|ÛI = 2
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1� tr ⇢2A
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, (3)

where ⇢A is the reduced density matrix, i.e. after tracing in ÛI. (Other normalizations of C2
I|ÛI , as

well as alternative equivalent definitions, can be found in the literature.) The important point is

that the state is biseparable if and only if C2
I|ÛI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⌦HÙA. Clearly, the state (2) is separable as long as

it can be written as

| i =

 
X

I

↵I |Ii

!
⌦

Ñ
X

ÛI
�ÛI |ÛIi

é
, (4)

2

with  !  vector of coefficients of  ! , ⃗A ≡ |ψ⟩ ⊗ |ψ⟩ dim ⃗A = D2

In this way, many new relationsships between the concurrences of the 
various bipartitions of a multipartite system can be obtained
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Conclusions

The same holds for the Tsallis-2 (or “linear") entropy, e.g. a 

On the other hand, the quantity (37) becomes obviously negative semidefinite for Pj
~A = ~A, i.e.

C2
j|Ûj = 0,

�2 ~A†(1� Pi)(1� Pk) ~A  0 , (39)

so in this case the strong subadditivity is fulfilled. Actually, this instance is equivalent to the

“ordinary” subadditivity (32) for the tripartition H = HA ⌦HC ⌦H
ÃC

.

Notice also that for C2
i|Ûi = 0 or C2

k|Ûk = 0 Eq.(37) vanishes, so the strong subadditivity holds as

an equality.

To finish this section, let us construct a modified version of the strong subadditivity which does

always hold for the Tsallis-2 entropy (31). Expanding the inequality (see Eq.(30))

~A†(1� Pi)(1+ Pj)(1� Pk) ~A � 0 (40)

we get

C2
ijk|îjk + C2

j|Ûj  C2
ij|Ùij + C2

jk|ıjk +
⇣
C2
i|Ûi + C2

k|Ûk � C2
ik|Ùik

⌘
, (41)

where the term within brackets is positive semidefinite, see Eq.(22), and represents the departure

from the strong-subadditivity condition (36). In terms of the Tsallis-2 entropy this softened version

of strong subadditivity reads

S2 (⇢ABC) + S2 (⇢B)  S2 (⇢AB) + S2 (⇢BC) +
î
S2 (⇢A) + S2 (⇢C)� S2 (⇢AC)

ó
,

where the positivity (semi)definiteness of the term in brackets is equivalent to the ordinary subad-

ditivity condition (32). In terms of mutual information this relation reads I (A : B)  I (A : BC) +

I (A : C). Since we can exchange B $ C, it can be expressed as

|I (A : B)� I (A : C)|  I (A : BC) . (42)

On the other hand, we can yet construct an alternative subadditivity using the general relation

(27). By considering a Hilbert space partitioned as H = HA ⌦HB ⌦HC ⌦H
ĂBC

, and identifying

I = {i, j}, J = {j, k}, we get

C2
ik|Ùik  C2

ij|Ùij + C2
jk|ıjk . (43)

In terms of entropies:

S2 (⇢AC)  S2 (⇢AB) + S2 (⇢BC) , (44)

which is a kind of triangular inequality for the S2�entropies. Analogously to the ordinary subad-

ditivity, the fact that relation (43) becomes an equality i↵ either Cij|Ùij or C
jk|ıjk are vanishing (see

Appendix A), it follows that

S2 (⇢AC) = S2 (⇢AB) + S2 (⇢BC) () S2 (⇢AB) = 0 or S2 (⇢BC) = 0 . (45)

Concerning the mutual information, further inequalities can also be derived. In particular, applying

Eq. (30) to the combination (1 � Pi)(1 � Pj)(1 � Pk) we obtain a non-negative condition over the

tripartite information [36]

S2 (⇢AB) + S2 (⇢BC) + S2 (⇢AC)  S2 (⇢A) + S2 (⇢B) + S2 (⇢C) + S2 (⇢ABC)

) I (A : B : C) � 0 , (46)
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8

This approach is also useful to obtain sufficient conditions for 
genuine entanglement, computable in polynomial time.
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Prospects

Explore:

pure state !  mixed state⟶

linear entropy !  other quantum entropies (e.g. von Neumann)⟶

relation of the formalism with entanglement invariants

necessary-and-sufficient conditions for genuine entanglement 
(pure states)
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