

Quantum Observables for Collider Physics

Quantum information & CP measurement in Higgs to tau tau at future lepton colliders

[Phys.Rev.D 107 (2023) 9, 093002]

Mohammad Mahdi Altakach

In collaboration with: P. Lamba, F. Maltoni, K. Mawatari and K. Sakurai

9 Nov. 2023

Part I

Introduction

Spin

- In classical mechanics, the components of angular momentum (I_x, I_y, I_z) take continuous real numbers.
- A striking fact, found in the Stern-Gerlach experiment, is that the measurement outcome of spin component is either +1 or -1 (in the ħ/2 unit).

Alice & Bob α (spin 1/2) (l = 0) β (spin 1/2) β (spin 1/2)

- Alice and Bob receive particles *α* and *β*, respectively, and measure the spin *z*-component of their particles. Repeat the process many times.
- Alice and Bob will find their results are completely random (+1 and -1, 50-50%).
- Nevertheless, their result is 100% anti-correlated due to the angular momentum conservation. If Alice's result is +1, Bob's result is always -1 and vice versa.

Hidden variable theory

Hidden variable theory

Hidden variable theory

- Particles have definite properties regardless of the measurement.
- Alice's measurement has no influence on **Bob**'s particle.

(realism)

(locality

Quantum mechanics (QM)

 Although their outcomes are different in each decay, QM says the state of the particles are exactly the same for all decays:

 Before the measurements, particles have no definite spin. Outcomes are undetermined.

(no realism)

(non-local)

• At the moment when Alice makes her measurement, the state collapses into:

Bob's outcome is completely determined (before his measurement) and **100**% anti-correlated with **Alice**'s.

Entanglement

• The origin of this bizarre feature is **entanglement**.

general

$$\begin{aligned}
\left|\Psi\right\rangle \doteq c_{11} |++\rangle_{z} + c_{12} |+-\rangle_{z} + c_{21} |-+\rangle_{z} + c_{22} |--\rangle_{z} \\
\text{separable} \\
\left|\Psi_{\text{sep}}\right\rangle \doteq \left[c_{1}^{\alpha} |+\rangle_{z} + c_{2}^{\alpha} |-\rangle_{z}\right] \otimes \left[c_{1}^{\beta} |+\rangle_{z} + c_{2}^{\beta} |-\rangle_{z}\right] \\
\text{entangled} \\
\left|\Psi_{\text{ent}}\right\rangle \not\approx \left[c_{1}^{\alpha} |+\rangle_{z} + c_{2}^{\alpha} |-\rangle_{z}\right] \otimes \left[c_{1}^{\beta} |+\rangle_{z} + c_{2}^{\beta} |-\rangle_{z}\right] \\
\text{entangled} \\
\left|\Psi_{(0,0)}\right\rangle \doteq \frac{|+-\rangle_{z} - |-+\rangle_{z}}{\sqrt{2}} \\
\text{Bob's measurement collapses the state of } \beta \text{ to } |+\rangle_{z} \text{ or } |-\rangle_{z} \text{ but does not influence the state of } \alpha.
\end{aligned}$$

Bell inequalities

- It seems difficult to experimentally discriminate QM and general hidden variable theories.
- John Bell (1964) derived simple inequalities that can discriminate QM from any local-real hidden variable theories: Bell inequalities.

John Bell and his famous theorem in 1982 (Image

Bell inequalities

• Finally we construct:

$$R_{\text{CHSH}} \equiv \frac{1}{2} \left| \langle s_{a} s_{b} \rangle - \langle s_{a} s_{b'} \rangle + \langle s_{a'} s_{b} \rangle + \langle s_{a'} s_{b'} \rangle \right|$$

One can show in hidden variable theories that: $R_{CHSH} \leq 1$ [Clauser, Horne, Shimony, Holt, 1969].

Bell inequalities

• In QM, for:

$$|\Psi^{(0,0)}\rangle \doteq \frac{|+-\rangle_{z} - |-+\rangle_{z}}{\sqrt{2}}$$
violates the upper bound of hidden variable theories!
• One can show:

$$\left(\langle s_{a}s_{b}\rangle = \langle \Psi^{(0,0)} | s_{a}s_{b} | \Psi^{(0,0)}\rangle = (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})$$

$$R_{CHSH} = \frac{1}{2} \left| \langle s_{a}s_{b}\rangle - \langle s_{a}s_{b'}\rangle + \langle s_{a'}s_{b}\rangle + \langle s_{a'}s_{b'}\rangle \right|$$

$$= \frac{1}{2} \left| (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}) - (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}') + (\hat{\mathbf{a}}' \cdot \hat{\mathbf{b}}) + (\hat{\mathbf{a}}' \cdot \hat{\mathbf{b}}') \right|$$

$$= \frac{1}{\sqrt{2}} \left| (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}) - (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}') + (\hat{\mathbf{a}}' \cdot \hat{\mathbf{b}}) \right|$$

$$= \sqrt{2}$$

$$\hat{\mathbf{a}} \qquad \hat{\mathbf{b}}'$$

Part II

Spin 1/2 biparticle system

Density operator

Probability of having $|\psi_1\rangle$

• For a statistical ensemble $\{\{p_1: |\psi_1\rangle\}, \{p_2: |\psi_2\rangle\}, \{p_3: |\psi_3\rangle\}, \dots\}$, we define the **density operator/matrix**: $\begin{array}{c}
0 \le p_k \le 1 \\
\sum_k p_k = 1 \\
\langle e_a | e_b \rangle = \delta_{ab}
\end{array}$

$$\hat{\rho} \equiv \sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}| \qquad \rho_{ab} \equiv \langle e_{a} |\hat{\rho}| e_{b} \rangle$$

Density matrices satisfy the conditions:

$$\begin{cases} \hat{\rho}^{\dagger} = \hat{\rho} \\ \operatorname{Tr} \hat{\rho} = 1 \\ \hat{\rho} \text{ is positive definite, that is }^{\forall} |\varphi\rangle; \ \langle \varphi | \hat{\rho} | \varphi \rangle \geq 0. \end{cases}$$

The expectation of an observable **O** is calculated by:

$$\langle \hat{O} \rangle = \operatorname{Tr} \left[\hat{O} \hat{\rho} \right]$$

Spin 1/2 biparticle system

• The spin system of α and β particles has 4 independent bases:

$$\begin{pmatrix} |e_1\rangle, |e_2\rangle, |e_3\rangle, |e_4\rangle \end{pmatrix} = (|++\rangle, |+-\rangle, |-+\rangle, |--\rangle \end{pmatrix}$$

$$= \rho_{ab} \text{ is a 4x4 matrix (hermitian, Tr=1). It can be expanded as }$$

$$\rho = \frac{1}{4} (1 \otimes 1 + B_i \cdot \sigma_i \otimes 1 + \bar{B}_i \cdot 1 \otimes \sigma_i + C_{ij} \cdot \sigma_i \otimes \sigma_j), \quad B_i, \bar{B}_i, C_{ij} \in \mathbb{R}$$

• For the **spin** operators \hat{s}^{α} and \hat{s}^{β} :

$$\langle \hat{s}_{i}^{\alpha} \rangle = Tr[\hat{s}_{i}^{\alpha} \hat{\rho}] = B_{i} \quad \langle \hat{s}_{i}^{\beta} \rangle = Tr[\hat{s}_{i}^{\beta} \hat{\rho}] = \bar{B}_{i} \quad \langle \hat{s}_{i}^{\alpha} \hat{s}_{j}^{\beta} \rangle = Tr[\hat{s}_{i}^{\alpha} \hat{s}_{j}^{\beta} \hat{\rho}] = C_{ij}$$

Entanglement

• If the **state** is **separable** (not **entangled**):

$$\rho = \sum_{k} p_k \rho_k^{\alpha} \otimes \rho_k^{\beta}, \quad 0 \le p_k \le 1 \text{ and } \sum_{k} p_k = 1$$

• Then, a modified matrix by the partial transpose:

$$\left(\rho^{T_{\beta}} = \sum_{k} p_{k} \rho_{k}^{\alpha} \otimes [\rho_{k}^{\beta}]^{T}\right)$$

is also a physical **density matrix**, i.e. **Tr=1** and non-negative.

- For biparticle systems, **entanglement** $\iff \rho^{T_{\beta}}$ to be non-positive. [Peres-Horodecki (1996,1997)].
- A simple sufficient condition for **entanglement** is:

 $E \equiv C_{11} + C_{22} - C_{33} > 1$ [Eur. Phys. J. C 82, 666 (2022)]

Part III

Higgs to tau tau @ lepton colliders

$$H \to \tau^+ \tau^-$$

• Generic $H\tau\tau$ interaction:

$$\mathscr{L}_{int} = -\frac{m_{\tau}}{v_{SM}} \kappa H \bar{\Psi}_{\tau} (\cos \delta + i\gamma_5 \sin \delta) \Psi_{\tau}$$

$$\rho_{mn,\bar{m}\bar{n}} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & e^{-i2\delta} & 0 \\ 0 & e^{-i2\delta} & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{SM}: (\mathbf{\kappa}, \boldsymbol{\delta}) = (1, 0)$$

$$B_i = \bar{B}_i = 0, \ C_{ij} = \begin{pmatrix} \cos 2\delta & \sin 2\delta & 0\\ -\sin 2\delta & \cos 2\delta & 0\\ 0 & 0 & -1 \end{pmatrix}, \ E = 2\cos 2\delta + 1$$

Estimation of C_{ij}

- Let's suppose a spin 1/2 particle α is at rest and spinning in the s direction.
- α decays into a measurable particle \mathbf{I}_{α} and the rest X: $\alpha \rightarrow \mathbf{I}_{\alpha} + (\mathbf{X})$
- The decay distribution is generally given by : $\frac{d\Gamma}{d\Omega} \propto 1 + x_{\alpha}(\hat{I}_{\alpha}, s)$

 $x \in [-1, 1]$ is called spin-analysing power and depends on the decay x = 1 for $\tau^{\pm} \to \pi^{\pm} \nu$

 $\rangle = -9.\langle \hat{I}_i^{\alpha} \hat{I}_i^{\beta} \rangle$

Unit direction vector of I_{α} measured at the rest frame of α

• One can show for $\alpha + \beta \rightarrow [\alpha + (\mathbf{X})] + [\beta + (\mathbf{X})]$:

measurable at colliders, but

needs to reconstruct the $\boldsymbol{\alpha}$

 (β) rest frames

Why lepton colliders?

- Background $Z/\gamma \rightarrow \tau^+ \tau^-$ is much smaller at lepton colliders
- We need to reconstruct each τ rest frame to measure \hat{I} . This is challenging at **hadron** colliders since partonic CoM energy is unknown for each event

Simulation

		ILC	FCC-ee
Event selection: $ M_{\text{recoil}} - 125 \text{ GeV} < 5 \text{ GeV}$	energy (GeV)	250	240
π^+	luminosity (ab^{-1})	3	5
$\chi e^ \tau^+$	beam resolution e^+ (%)	0.18	$0.83 imes 10^{-4}$
	beam resolution e^- (%)	0.27	$0.83 imes 10^{-4}$
	$\sigma(e^+e^- \to HZ)$ (fb)	240.1	240.3
$/$ χ^{-}	$\# ext{ of signal } (\sigma \cdot \operatorname{BR} \cdot L \cdot \epsilon)$	385	663
r_{e^+} c_z	$\# \text{ of background } (\sigma \cdot \mathrm{BR} \cdot L \cdot \epsilon)$	20	36
$\int_{x} \overline{x} (x = e, \mu, j)$	$e^+e^- \rightarrow$	$Z + (Z^*/\gamma)$	*) $\rightarrow f\bar{f} + \tau^+\tau^-$

- SM events (κ , δ) = (1,0) were generated with Madgraph5
- We incorporate the detector effect by smearing energies of visible particles

$$E^{true} \rightarrow E^{obs} = (1 + \sigma_E . \omega) . E^{true} \qquad \sigma_E = 0.03$$
Random number from a normal distribution

• We perform **100 pseudo-experiment** to estimate the statistical uncertainties

Solving kinematical constraints

- To determine the tau momenta, we have to reconstruct the unobserved neutrino momenta: $(p_x^{\nu}, p_y^{\nu}, p_z^{\nu}), (p_x^{\bar{\nu}}, p_y^{\bar{\nu}}, p_z^{\bar{\nu}}).$
- 6 unknowns can be constrained by 2 massshell conditions and 4 energy-momentum conservation:

$$\begin{split} m_{\tau}^{2} &= (p_{\tau^{+}})^{2} = (p_{\pi^{+}} + p_{\bar{\nu}}) \\ m_{\tau}^{2} &= (p_{\tau^{-}})^{2} = (p_{\pi^{-}} + p_{\nu}) \\ (p_{ee} - p_{Z})^{\mu} &= p_{H}^{\mu} = \left[(p_{\pi^{-}} + p_{\nu}) + (p_{\pi^{+}} + p_{\bar{\nu}}) \right]^{\mu} \end{split}$$

• With the reconstructed momenta, we define $(\hat{r}, \hat{n}, \hat{k})$ basis at the Higgs rest frame.

$$\begin{pmatrix} C_{ij} = \langle \hat{s}_i^{(\tau^-)} \hat{s}_j^{(\tau^+)} \rangle = -9.\langle \hat{I}_i^- \hat{I}_j^+ \rangle \\ (i, j = r, n, k) \end{pmatrix}$$

Results

	ILC	FCC-ee	
C_{ij}	$ \begin{pmatrix} -0.600 \pm 0.210 & 0.003 \pm 0.125 & 0.020 \pm 0.149 \\ 0.003 \pm 0.125 & -0.494 \pm 0.190 & 0.007 \pm 0.128 \\ 0.048 \pm 0.174 & 0.0007 \pm 0.156 & 0.487 \pm 0.193 \end{pmatrix} $	$ \begin{pmatrix} -0.559 \pm 0.143 & -0.010 \pm 0.095 & -0.014 \pm 0.122 \\ -0.010 \pm 0.095 & -0.494 \pm 0.139 & -0.002 \pm 0.111 \\ 0.012 \pm 0.124 & 0.020 \pm 0.105 & 0.434 \pm 0.134 \end{pmatrix} $	
E_k	-1.057 ± 0.385	-0.977 ± 0.264	
R^*_{CHSH}	0.769 ± 0.189 0.703 ± 0.134		

SM values:
$$C_{ij} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$
 $E = 3$ Entanglement $\implies E > 1$ $R_{\text{CHSH}} = \sqrt{2} \simeq 1.414$ Bell-nonlocal $\implies R_{\text{CHSH}} > 1$

Impact parameter (IP)

- We use the information of the **impact parameter** \vec{b}_{\pm} measurement of π^{\pm} to "correct" the observed energies of τ^{\pm} and Z decay products.
- We check whether the reconstructed τ momenta are consistent with the measured impact parameters.
- We construct the likelihood function and search for the most likely τ momenta.

$$E_{\alpha}(\delta_{\alpha}) = (1 + \sigma_{\alpha}^{E} \cdot \delta_{\alpha}) \cdot E_{\alpha}^{\text{obs}}$$

$$\vec{b}_{+} = |\vec{b}_{+}| \left(\sin^{-1} \Theta_{+} \cdot \vec{e}_{\tau^{+}} - \tan^{-1} \Theta_{+} \cdot \vec{e}_{\pi^{+}} \right)$$

$$\vec{\Delta}_{b_{+}}^{i}(\{\delta\}) \equiv \vec{b}_{+} - |\vec{b}_{+}| \left(\sin^{-1}\Theta_{+}^{i}(\{\delta\}) \cdot \vec{e}_{\tau^{+}}^{i}(\{\delta\}) - \tan^{-1}\Theta_{+}^{i}(\{\delta\}) \cdot \vec{e}_{\pi^{+}} \right)$$

$$L^{i}_{\pm}(\{\delta\}) = \frac{[\Delta^{i}_{b_{\pm}}(\{\delta\})]^{2}_{x} + [\Delta^{i}_{b_{\pm}}(\{\delta\})]^{2}_{y}}{\sigma^{2}_{b_{T}}} + \frac{[\Delta^{i}_{b_{\pm}}(\{\delta\})]^{2}_{z}}{\sigma^{2}_{b_{z}}}$$

$$L^{i}(\{\delta\}) = L^{i}_{+}(\{\delta\}) + L^{i}_{-}(\{\delta\})$$

Mohammad Mahdi Altakach

Results

	ILC	FCC-ee
C_{ij}	$ \begin{pmatrix} 0.830 \pm 0.176 & 0.020 \pm 0.146 & -0.019 \pm 0.159 \\ -0.034 \pm 0.160 & 0.981 \pm 0.1527 & -0.029 \pm 0.156 \\ -0.001 \pm 0.158 & -0.021 \pm 0.155 & -0.729 \pm 0.140 \end{pmatrix} $	$ \begin{pmatrix} 0.925 \pm 0.109 & -0.011 \pm 0.110 & 0.038 \pm 0.095 \\ -0.009 \pm 0.110 & 0.929 \pm 0.113 & 0.001 \pm 0.115 \\ -0.026 \pm 0.122 & -0.019 \pm 0.110 & -0.879 \pm 0.098 \end{pmatrix} $
E_k	2.567 ± 0.279 > 50	2.696 ± 0.215 > 50
$R_{\rm CHSH}$	1.103 ± 0.163	1.276 ± 0.094 ~ 30

SM values:
$$C_{ij} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$
 $E = 3$ Entanglement $\implies E > 1$ $R_{\text{CHSH}} = \sqrt{2} \simeq 1.414$ Bell-nonlocal $\implies R_{\text{CHSH}} > 1$

Mohammad Mahdi Altakach

CP measurement

- Under **CP**, the spin correlation matrix transforms: $C \xrightarrow{CP} C^T$
- This can be used for a model-independent test of CP violation. We define:

$$A \equiv (C_{rn} - C_{nr})^2 + (C_{nk} - C_{kn})^2 + (C_{kr} - C_{rk})^2 \ge 0$$

Observation of $A \neq 0$ immediately confirms **CP** violation

• From our simulation, we observe:

$$A = \begin{cases} 0.168 \pm 0.131 & \text{(ILC)} \\ 0.081 \pm 0.061 & \text{(FCC-ee)} \end{cases}$$

Consistent with the absence of CPV

CP measurement

• This model independent bounds can be translated to the constraint on the CP-phase δ :

• Focusing on the region near $|\delta| = 0$, we find the 1- σ bounds:

$$\delta < \begin{cases} 7.9^{\circ} & (ILC) \\ 5.4^{\circ} & (FCC-ee) \end{cases}$$

Other studies:

 $\Delta \delta \sim 11.5^{o}$ (HL-LHC) [Hagiwara, Ma, Mori 2016] $\Delta \delta \sim 4.3^{o}$ (ILC) [Jeans and G. W. Wilson 2018]

Part IV

Summary

Summary

- High energy tests of entanglement and Bell inequality has recently attracted an attention.
- We investigated feasibility of quantum property tests @ ILC and FCCee.
- Quantum tests require a precise reconstruction of the τ rest frames and IP information is crucial to achieve this.
- Spin correlation is sensitive to CP-phase and we can measure the CPphase as a byproduct of the quantum property measurement.

	Entanglement	Bell-inquality	CP-phase
FCC-ee	> 5 σ	~ 3 σ	7.9°
ILC	> 5 σ		5.4°