

Probing New Physics through Entanglement in Diboson Production

Rafael Aoude, E.M., Fabio Maltoni, Luca Mantani – arXiv:2307.09675 [hep-ph]

Eric Madge

GGI - November 8, 2023

so far in the workshop ...

top pairs

 $h
ightarrow ZZ^*, \; WW^*$

WW, ZZ, WZ

1

 Standard Model see talks by J.R.M. de Nova, J.W. Howarth and D. Gonçalves Standard Model
 See talks by A. Barr,
 T. Maurin and J. Moreno
 Standard Model see talk by A. Barr
 (also R.A. Morales)

so far in the workshop ...

top pairs

Standard Model see talks by J.R.M. de Nova, J.W. Howarth and D. Gonçalves $h
ightarrow ZZ^*, \; WW^*$

Standard Model
 see talks by A. Barr,
 T. Maurin and J. Moreno

WW, ZZ, WZ

Standard Model
 see talk by A. Barr
 (also R.A. Morales)

○ BSM ✓ see talks by L. Mantani and C. Severi BSM ✓
 see talks by A. Bernal and L. Marzola $SSM \times$ $\Rightarrow this talk!$

also: beyond QM (M. Eckstein)

- $\,\circ\,$ new physics at high scale Λ
 - $\longrightarrow~$ at low energies: EFT with SM fields only

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{d \ge 5} \sum_{n} \frac{C_n \mathcal{O}_n^{(d)}}{\Lambda^{d-4}}$$

 \implies model independent

L_{UV} Λ-L_{eft}

- $\,\circ\,$ new physics at high scale Λ
 - \longrightarrow at low energies: EFT with SM fields only

 \implies model independent

L_{UV} Λ-L_{EFT}

- $\,\circ\,$ new physics at high scale Λ
 - \rightarrow at low energies: EFT with SM fields only

 $\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{d \ge 5} \sum_{n} \frac{C_n \mathcal{O}_n^{(d)}}{\Lambda^{d-4}} \qquad \text{dim-}d \text{ operator composed}$ of SM fields (respecting SM symmetries)

 \implies model independent

L_{UV} Λ-L_{eft}

- $\,\circ\,$ new physics at high scale Λ
 - \longrightarrow at low energies: EFT with SM fields only

 \implies model independent

- new physics at high scale Λ
 - at low energies: EFT with SM fields only

model independent \implies

- $\,\circ\,$ new physics at high scale Λ
 - \rightarrow at low energies: EFT with SM fields only

 $\mathcal{L}_{\mathsf{UV}}$ |

 \implies model independent

- $\,\circ\,$ new physics at high scale Λ
 - \rightarrow at low energies: EFT with SM fields only

 \implies model independent

• Warsaw basis: (flavor universal)

[Grzadkowski, Iskrzyński, Misiak, Rosiek (JHEP 2010)]

 $\mathcal{L}_{\mathsf{UV}}$

 $\mathcal{L}_{\mathsf{EFT}}$

- 1 dim-5 operator
- 59 (non- $ensuremath{\Bar{B}}\) +$ 4 ($ensuremath{\Bar{B}}\)$ dim-6 operators
- here: 13 relevant CP-even dim-6 flavor-universal operators

Dimension-6 Operators

	Definition	95 % CL		Definition	95 % CL
	two-fermion operat	cors		bosonic operators	
$c_{\varphi u}$	$i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{u} \gamma^{\mu} u)$	[-0.17, 0.14]	c_W	$\varepsilon_{IJK}W^{I}_{\mu u}W^{J, u ho}W^{K,\mu}_{ ho}$	[-0.18, 0.22]
$c_{\varphi d}$	$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi)(\bar{d} \gamma^{\mu} d)$	[-0.07, 0.09]	$c_{arphi W}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)W_I^{\mu\nu}W_{\mu\nu}^I$	[-0.15, 0.30]
$c_{\varphi q}^{(1)}$	$i(\varphi^{\dagger}\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}\gamma^{\mu}q)$	[-0.06, 0.22]		$\begin{pmatrix} & & \\ & $	
$c^{(3)}_{\varphi q}$	$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi)(\bar{q} \gamma^{\mu} \tau^{I} q)$	[-0.21, 0.05]	$c_{\varphi B}$	$\left(\varphi^{\dagger}\varphi^{-}\frac{1}{2}\right)D_{\mu\nu}D^{\prime}$	[-0.11, 0.11]
$c_{\omega e}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{e} \gamma^{\mu} e)$	[-0.21, 0.26]	$c_{\varphi WB}$	$(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu u}W^{I}_{\mu u}$	[-0.17, 0.27]
$\frac{r^{e}}{c_{\varphi l}^{(1)}}$	$\frac{(\varphi^{\dagger} D_{\mu} \varphi)(\bar{l} \gamma^{\mu} l)}{i(\varphi^{\dagger} D_{\mu} \varphi)(\bar{l} \gamma^{\mu} l)}$	[-0.11, 0.13]	$c_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$	[-0.52, 0.43]
$\frac{c_{\varphi l}^{(3)}}{c_{\varphi l}^{(3)}}$	$i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi)(\bar{l} \gamma^{\mu} \tau^{I} l)$	[-0.21, 0.05]		four-fermion operat	or
			c_{ll}	$(ar{l}\gamma_{\mu}l)(ar{l}\gamma^{\mu}l)$	[-0.16, 0.02]

95 % CL bounds in TeV $^{-2}$ from [SMEFIT (JHEP 2021)]

 \odot universal shifts in G_f , $\sin \theta_W$ and g_Z

$c_{arphi u}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{u} \gamma^{\mu} u \right)$
$c_{\varphi d}$	$iig(arphi^\dagger \overleftrightarrow{D}_\mu arphiig)ig(ar{d}\gamma^\mu dig)$
$c_{\varphi q}^{(1)}$	$i \bigl(\varphi^\dagger \overleftrightarrow{D}_\mu \varphi \bigr) \bigl(\bar{q} \gamma^\mu q \bigr)$
$c^{(3)}_{\varphi q}$	$i (\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{q} \gamma^{\mu} \tau^{I} q)$
$c_{\varphi e}$	$i \bigl(arphi^\dagger \overleftrightarrow{D}_\mu arphi \bigr) \bigl(ar{e} \gamma^\mu e \bigr)$
$c_{\varphi l}^{(1)}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{l} \gamma^{\mu} l \right)$
(3)	$i(\iota_{0}^{\dagger} \stackrel{\leftrightarrow}{D} \sigma_{\tau}(\iota_{0}) (\overline{I}_{0} \mu_{\tau} I))$
$c_{\varphi l}$	$i(\varphi^* D_{\mu} \eta \varphi)(\iota^* \eta^* \eta^* \iota)$
$c_{\varphi l}$	$\varepsilon_{IJK} W^{I}_{\mu\nu} W^{J,\nu\rho} W^{K,\mu}_{\rho}$
$c_{\varphi l}$ c_W $c_{\varphi W}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$
$\begin{array}{c} c_{\varphi l} \\ \hline c_{W} \\ \hline c_{\varphi W} \\ \hline c_{\varphi B} \end{array}$	$\frac{\varepsilon_{IJK}W_{\mu\nu}^{I}\psi)(v\gamma + i)}{\varepsilon_{IJK}W_{\mu\nu}^{I}W_{\mu\nu}^{J,\nu\rho}W_{\rho}^{K,\mu}}$ $\frac{(\varphi^{\dagger}\varphi - \frac{v^{2}}{2})W_{I}^{\mu\nu}W_{\mu\nu}^{I}}{(\varphi^{\dagger}\varphi - \frac{v^{2}}{2})B_{\mu\nu}B^{\mu\nu}}$
$ \begin{array}{c} c_{\varphi l} \\ c_{W} \\ c_{\varphi W} \\ c_{\varphi B} \\ c_{\varphi WB} \end{array} $	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$ $\frac{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}{\left(\varphi^{\dagger}\tau_{I}\varphi\right)B^{\mu\nu}W^{I}_{\mu\nu}}$
$\begin{array}{c} c_{\varphi l} \\ \hline c_{W} \\ \hline c_{\varphi W} \\ \hline c_{\varphi B} \\ \hline c_{\varphi WB} \\ \hline c_{\varphi D} \end{array}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$ $\frac{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}{\left(\varphi^{\dagger}\tau_{I}\varphi\right)B^{\mu\nu}W^{I}_{\mu\nu}}$ $\frac{\left(\varphi^{\dagger}\tau_{I}\varphi\right)}{\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\dagger}\left(\varphi^{\dagger}D_{\mu}\varphi\right)}$

 \bigcirc universal shifts in G_f , $\sin \theta_W$ and g_Z

$c_{arphi u}$	$i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u} \gamma^{\mu} u)$
$c_{\varphi d}$	$i \bigl(\varphi^\dagger \overleftrightarrow{D}_\mu \varphi \bigr) \bigl(\bar{d} \gamma^\mu d \bigr)$
$c_{\varphi q}^{(1)}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{q} \gamma^{\mu} q)$
$c_{\varphi q}^{(3)}$	$i \left(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi \right) \left(\bar{q} \gamma^{\mu} \tau^{I} q \right)$
$c_{\varphi e}$	$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi)(\bar{e} \gamma^{\mu} e)$
$c_{\varphi l}^{(1)}$	$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi)(\bar{l} \gamma^{\mu} l)$
$c_{\varphi l}^{(3)}$	$i \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi \right) \left(\overline{l} \gamma^{\mu} \tau^{I} l \right)$
c_W	$\varepsilon_{IJK}W^I_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$
$c_{\varphi W}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)W_I^{\mu\nu}W_{\mu\nu}^I$
$c_{\varphi B}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)B_{\mu\nu}B^{\mu\nu}$
$c_{\varphi WB}$	$(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}$
$c_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$
c_{ll}	$\left(ar{l}\gamma_{\mu}l ight)\left(ar{l}\gamma^{\mu}l ight)$

 \odot universal shifts in G_f , $\sin heta_W$ and g_Z

$c_{arphi u}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{u} \gamma^{\mu} u \right)$
$c_{\varphi d}$	$iig(arphi^\dagger \overleftrightarrow{D}_\mu arphiig)ig(ar{d}\gamma^\mu dig)$
$c^{(1)}_{\varphi q}$	$i ig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar q \gamma^\mu q ig)$
$c^{(3)}_{\varphi q}$	$i (\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{q} \gamma^{\mu} \tau^{I} q)$
$c_{\varphi e}$	$i \bigl(arphi^\dagger \overleftrightarrow{D}_\mu arphi \bigr) \bigl(ar{e} \gamma^\mu e \bigr)$
$c_{\varphi l}^{(1)}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{l} \gamma^{\mu} l \right)$
(3)	$i(\iota_{0}^{\dagger} \stackrel{\leftrightarrow}{D} \sigma_{\iota_{0}})(\overline{l}_{0} \overset{\mu}{} \sigma^{I} l)$
$c_{arphi l}$	$i(\varphi^* D_{\mu} \eta \varphi)(\iota^* \eta^* \eta^* \iota)$
$c_{\varphi l}$	$\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$
$c_{\varphi l}$ c_W $c_{\varphi W}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$
$ \begin{array}{c} c_{\varphi l} \\ c_{W} \\ \hline c_{\varphi W} \\ \hline c_{\varphi B} \end{array} $	$\frac{\varepsilon_{IJK}W_{\mu\nu}^{I}\psi)(v\gamma + t)}{\varepsilon_{IJK}W_{\mu\nu}^{I}W_{\mu\nu}^{J,\nu\rho}W_{\rho}^{K,\mu}}$ $\frac{(\varphi^{\dagger}\varphi - \frac{v^{2}}{2})W_{I}^{\mu\nu}W_{\mu\nu}^{I}}{(\varphi^{\dagger}\varphi - \frac{v^{2}}{2})B_{\mu\nu}B^{\mu\nu}}$
$ \begin{array}{c} c_{\varphi l} \\ c_{W} \\ c_{\varphi W} \\ c_{\varphi B} \\ c_{\varphi WB} \end{array} $	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$ $\frac{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}{\left(\varphi^{\dagger}\tau_{I}\varphi\right)B^{\mu\nu}W^{I}_{\mu\nu}}$
$\begin{array}{c} c_{\varphi l} \\ \hline c_{W} \\ \hline c_{\varphi W} \\ \hline c_{\varphi B} \\ \hline c_{\varphi WB} \\ \hline c_{\varphi D} \end{array}$	$\frac{\epsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$ $\frac{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}{\left(\varphi^{\dagger}\tau_{I}\varphi\right)B^{\mu\nu}W^{I}_{\mu\nu}}$ $\frac{\left(\varphi^{\dagger}\tau_{I}\varphi\right)}{\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\dagger}\left(\varphi^{\dagger}D_{\mu}\varphi\right)}$

 \odot universal shifts in G_f , $\sin heta_W$ and g_Z

 $\,\circ\,$ direct modification of quark couplings to Z

$c_{\varphi u}$	$i (\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u} \gamma^{\mu} u)$
$c_{\varphi d}$	$i (\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{d} \gamma^{\mu} d)$
$c_{\varphi q}^{(1)}$	$i \left(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} q \right)$
$c^{(3)}_{arphi q}$	$i \bigl(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi \bigr) \bigl(\bar{q} \gamma^{\mu} \tau^{I} q \bigr)$
$c_{\varphi e}$	$i (\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{e} \gamma^{\mu} e)$
$c_{\varphi l}^{(1)}$	$i \bigl(\varphi^\dagger \overset{\leftrightarrow}{D}_\mu \varphi \bigr) \bigl(\bar{l} \gamma^\mu l \bigr)$
$c^{(3)}_{arphi l}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi \right) \left(\bar{l} \gamma^{\mu} \tau^{I} l \right)$
c_W	$\varepsilon_{IJK}W^I_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$
$c_{\varphi W}$	$\left(\varphi^{\dagger} \varphi - rac{v^2}{2} ight) W^{\mu u}_I W^I_{\mu u}$
$c_{\varphi B}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)B_{\mu\nu}B^{\mu\nu}$
$c_{\varphi WB}$	$(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}$
$c_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$
c_{ll}	$\left(ar{l}\gamma_{\mu}l ight)\left(ar{l}\gamma^{\mu}l ight)$

 \odot universal shifts in G_f , $\sin heta_W$ and g_Z

- $\,\circ\,$ direct modification of quark couplings to Z
- \odot direct modification of (LH) quark couplings to W

$c_{arphi u}$	$i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u} \gamma^{\mu} u)$
$c_{\varphi d}$	$i \bigl(\varphi^\dagger \overleftrightarrow{D}_\mu \varphi \bigr) \bigl(\bar{d} \gamma^\mu d \bigr)$
$c_{\varphi q}^{(1)}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} q \right)$
$c^{(3)}_{\varphi q}$	$i (\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{q} \gamma^{\mu} \tau^{I} q)$
$c_{\varphi e}$	$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi)(\bar{e} \gamma^{\mu} e)$
$c_{\varphi l}^{(1)}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{l} \gamma^{\mu} l)$
$c_{\varphi l}^{(3)}$	$i (\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{l} \gamma^{\mu} \tau^{I} l)$
c_W	$\varepsilon_{IJK}W^I_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$
$c_{\varphi W}$	$\left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) W^{\mu \nu}_{I} W^{I}_{\mu \nu}$
$c_{\varphi B}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)B_{\mu\nu}B^{\mu\nu}$
$c_{\varphi WB}$	$(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}$
$c_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$
c_{ll}	$\left(ar{l}\gamma_{\mu}l ight)\left(ar{l}\gamma^{\mu}l ight)$

 \odot universal shifts in G_f , $\sin heta_W$ and g_Z

- $\,\circ\,$ direct modification of quark couplings to Z
- $\,\circ\,$ direct modification of (LH) quark couplings to W
- \odot direct modification of electron couplings to Z

 $\,\circ\,$ universal shifts in G_f , $\sin\theta_W$ and g_Z

- $\,\circ\,$ direct modification of quark couplings to Z
- \odot direct modification of (LH) quark couplings to W
- $\,\circ\,$ direct modification of electron couplings to Z
- \circ direct modification of (LH) electron couplings to W

$c_{arphi u}$	$i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u} \gamma^{\mu} u)$
$c_{\varphi d}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{d} \gamma^{\mu} d \right)$
$c_{\varphi q}^{(1)}$	$i \left(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} q \right)$
$c^{(3)}_{\varphi q}$	$i \left(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi \right) \left(\bar{q} \gamma^{\mu} \tau^{I} q \right)$
$c_{\varphi e}$	$i \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) \left(\bar{e} \gamma^{\mu} e \right)$
$c_{\varphi l}^{(1)}$	$i (\varphi^\dagger \overleftrightarrow{D}_\mu \varphi) (\overline{l} \gamma^\mu l)$
$c_{\varphi l}^{(3)}$	$i (\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{l} \gamma^{\mu} \tau^{I} l)$
c_W	$\varepsilon_{IJK} W^I_{\mu\nu} W^{J,\nu\rho} W^{K,\mu}_{\rho}$
c_W $c_{arphi W}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$
$c_W \ c_{\varphi W} \ c_{\varphi B}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}$
$\begin{array}{c} c_W \\ \hline c_{\varphi W} \\ \hline c_{\varphi B} \\ \hline c_{\varphi WB} \end{array}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}$ $\frac{(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}}{(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}}$
$\begin{array}{c} c_W \\ \hline c_{\varphi W} \\ \hline c_{\varphi B} \\ \hline c_{\varphi WB} \\ \hline c_{\varphi D} \end{array}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}$ $\frac{(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}}{(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)}$

- $\,\circ\,$ universal shifts in G_f , $\sin\theta_W$ and g_Z
- $\,\circ\,$ direct modification of quark couplings to Z
- $\,\circ\,$ direct modification of (LH) quark couplings to W
- $\,\circ\,$ direct modification of electron couplings to Z
- $\,\circ\,$ direct modification of (LH) electron couplings to W
- direct modification of triple gauge couplings

$$\begin{array}{ccc} c_{\varphi u} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{u} \gamma^{\mu} u) \\ \hline c_{\varphi d} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{d} \gamma^{\mu} d) \\ \hline c_{\varphi q}^{(1)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{q} \gamma^{\mu} q) \\ \hline c_{\varphi q}^{(3)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{q} \gamma^{\mu} \tau^{I} q) \\ \hline c_{\varphi e} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{e} \gamma^{\mu} e) \\ \hline c_{\varphi l}^{(1)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{l} \gamma^{\mu} l) \\ \hline c_{\varphi l}^{(3)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{l} \gamma^{\mu} \tau^{I} l) \\ \hline c_{\varphi W} & (\varphi^{\dagger} \varphi - \frac{v^{2}}{2}) W_{I}^{\mu \nu} W_{\mu \nu}^{J, \nu \rho} W_{\rho \nu}^{K, \mu} \\ \hline c_{\varphi W} & (\varphi^{\dagger} \varphi - \frac{v^{2}}{2}) B_{\mu \nu} B^{\mu \nu} \\ \hline c_{\varphi W} & (\varphi^{\dagger} \tau_{I} \varphi) B^{\mu \nu} W_{\mu \nu}^{I} \\ \hline c_{\varphi D} & (\varphi^{\dagger} D^{\mu} \varphi)^{\dagger} (\varphi^{\dagger} D_{\mu} \varphi) \\ \hline c_{ll} & (\bar{l} \gamma_{\mu} l) (\bar{l} \gamma^{\mu} l) \end{array}$$

- \circ universal shifts in G_f , $\sin heta_W$ and g_Z
- $\,\circ\,$ direct modification of quark couplings to Z
- \odot direct modification of (LH) quark couplings to W
- $\,\circ\,$ direct modification of electron couplings to Z
- $\,\circ\,$ direct modification of (LH) electron couplings to W
- direct modification of triple gauge couplings (including new Lorentz structures)

$c_{arphi u}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{u} \gamma^{\mu} u \right)$
$c_{\varphi d}$	$iig(arphi^\dagger \overleftrightarrow{D}_\mu arphiig)ig(ar{d}\gamma^\mu dig)$
$c_{\varphi q}^{(1)}$	$i \bigl(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu \varphi \bigr) \bigl(ar{q} \gamma^\mu q \bigr)$
$c^{(3)}_{\varphi q}$	$i \left(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi \right) \left(\bar{q} \gamma^{\mu} \tau^{I} q \right)$
$c_{\varphi e}$	$i \bigl(arphi^\dagger \overleftrightarrow{D}_\mu arphi \bigr) \bigl(ar{e} \gamma^\mu e \bigr)$
$c_{\varphi l}^{(1)}$	$i \left(\varphi^\dagger \overset{\leftrightarrow}{D}_\mu \varphi ight) \left(ar{l} \gamma^\mu l ight)$
$c^{(3)}_{ol}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi)(\bar{l} \gamma^{\mu} \tau^{I} l)$
Ψ°	
<i>φ</i> ,	$MI^{I} W^{J,\nu\rho}W^{K,\mu}$
	$\varepsilon_{IJK} W^{I}_{\mu\nu} W^{J,\nu\rho} W^{K,\mu}_{\rho}$
$\begin{array}{c} \varphi \\ \hline \\ c_W \\ c_{\varphi W} \end{array}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$
$ \begin{array}{c} c_W \\ c_{\varphi W} \\ c_{\varphi B} \end{array} $	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$ $\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}$
$ \begin{array}{c} c_W\\ c_{\varphi W}\\ \hline c_{\varphi B}\\ \hline c_{\varphi WB} \end{array} $	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}$ $\frac{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}{\left(\varphi^{\dagger}\tau_{I}\varphi\right)B^{\mu\nu}W^{I}_{\mu\nu}}$
$\begin{array}{c} c_{W} \\ \hline c_{\varphi W} \\ \hline c_{\varphi B} \\ \hline c_{\varphi WB} \\ \hline c_{\varphi D} \end{array}$	$\frac{\varepsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)W^{\mu\nu}_{I}W^{I}_{\mu\nu}}}{\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)B_{\mu\nu}B^{\mu\nu}}$ $\frac{(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}}{(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)}$
$ \begin{array}{c} c_{W} \\ c_{\varphi W} \\ c_{\varphi B} \\ c_{\varphi WB} \\ c_{\varphi D} \\ c_{\mu} \end{array} $	$ \begin{aligned} \varepsilon_{IJK} W^{I}_{\mu\nu} W^{J,\nu\rho} W^{K,\mu}_{\rho} \\ (\varphi^{\dagger}\varphi - \frac{v^{2}}{2}) W^{\mu\nu}_{I} W^{I}_{\mu\nu} \\ (\varphi^{\dagger}\varphi - \frac{v^{2}}{2}) B_{\mu\nu} B^{\mu\nu} \\ (\varphi^{\dagger}\tau_{I}\varphi) B^{\mu\nu} W^{I}_{\mu\nu} \\ (\varphi^{\dagger}D^{\mu}\varphi)^{\dagger} (\varphi^{\dagger}D_{\mu}\varphi) \\ (\bar{l}\gamma_{\mu}l) (\bar{l}\gamma^{\mu}l) \end{aligned} $

- $\,\circ\,$ universal shifts in G_f , $\sin\theta_W$ and g_Z
- $\,\circ\,$ direct modification of quark couplings to Z
- \odot direct modification of (LH) quark couplings to W
- $\,\circ\,$ direct modification of electron couplings to Z
- $^{\circ}$ direct modification of (LH) electron couplings to W
- direct modification of triple gauge couplings (including new Lorentz structures)
- direct modification of Higgs couplings

- $\,\circ\,$ universal shifts in G_f , $\sin\theta_W$ and g_Z
- $\,\circ\,$ direct modification of quark couplings to Z
- \odot direct modification of (LH) quark couplings to W
- $\,\circ\,$ direct modification of electron couplings to Z
- $^{\circ}$ direct modification of (LH) electron couplings to W
- direct modification of triple gauge couplings (including new Lorentz structures)
- direct modification of Higgs couplings

4

$$\begin{array}{ccc} c_{\varphi u} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{u} \gamma^{\mu} u) \\ \hline c_{\varphi d} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{d} \gamma^{\mu} d) \\ \hline c_{\varphi q}^{(1)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{q} \gamma^{\mu} q) \\ \hline c_{\varphi q}^{(3)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{q} \gamma^{\mu} \tau^{I} q) \\ \hline c_{\varphi e} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{e} \gamma^{\mu} e) \\ \hline c_{\varphi l}^{(1)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{l} \gamma^{\mu} l) \\ \hline c_{\varphi l}^{(3)} & i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{l} \gamma^{\mu} \tau^{I} l) \\ \hline c_{\varphi l}^{(3)} & i(\varphi^{\dagger} \varphi - \frac{v^{2}}{2}) W_{I}^{\mu \nu} W_{\mu \nu}^{I} \\ \hline c_{\varphi W} & (\varphi^{\dagger} \varphi - \frac{v^{2}}{2}) B_{\mu \nu} B^{\mu \nu} \\ \hline c_{\varphi WB} & (\varphi^{\dagger} \tau_{I} \varphi) B^{\mu \nu} W_{\mu \nu}^{I} \\ \hline c_{\varphi D} & (\varphi^{\dagger} D^{\mu} \varphi)^{\dagger} (\varphi^{\dagger} D_{\mu} \varphi) \\ \hline c_{ll} & (\bar{l} \gamma_{\mu} l) (\bar{l} \gamma^{\mu} l) \end{array}$$

○ Calculation at LO, including dim-6 and (dim-6)² SMEFT corrections

$$R = \sum_{\mathsf{IS}} L_{\mathsf{IS}}(\hat{s}) \sum_{\substack{\mathsf{DOFs (excl.}\\\mathsf{FS spin})}} \mathcal{M}^* \mathcal{M}$$

 \odot Calculation at LO, including dim-6 and (dim-6)² SMEFT corrections

$$\mathcal{M} = \mathcal{M}_{\mathsf{SM}} + \sum_{n} \frac{C_n}{\Lambda^2} \mathcal{M}_n^{(\mathsf{dim-6})}$$

$$R = \sum_{\mathsf{IS}} L_{\mathsf{IS}}(\hat{s}) \sum_{\substack{\mathsf{DOFs (excl.}\\\mathsf{FS spin)}}} \mathcal{M}^* \mathcal{M}$$

 \odot Calculation at LO, including dim-6 and (dim-6)² SMEFT corrections

$$R = \sum_{\text{IS}} L_{\text{IS}}(\hat{s}) \sum_{\substack{\text{DOFs (excl.}\\\text{FS spin)}}} \mathcal{M}^* \mathcal{M} = R_{\text{SM}} + \underbrace{\sum_n \frac{C_n}{\Lambda^2} \mathcal{M}_n^{(\text{dim-6})}}_{\text{dim-6}} + \underbrace{\sum_{n,m} \frac{C_n C_m}{\Lambda^4} R_{nm}}_{\text{dim-6}}$$

• Calculation at LO, including dim-6 and (dim-6)² SMEFT corrections

$$R = \sum_{\mathsf{IS}} L_{\mathsf{IS}}(\hat{s}) \sum_{\substack{\mathsf{DOFs} \text{ (excl.}\\\mathsf{FS spin)}}} \mathcal{M}^* \mathcal{M} = R_{\mathsf{SM}} + \underbrace{\sum_n \frac{C_n}{\Lambda^2} \mathcal{M}_n^{(\mathsf{dim-6})}}_{\mathsf{dim-6}} + \underbrace{\sum_{n,m} \frac{C_n C_m}{\Lambda^4} R_{nm}}_{\mathsf{dim-6}}$$

 $\,\circ\,$ expand R-matrix to order $\mathcal{O}(\Lambda^{-4})$

$$\begin{split} \rho &= \frac{R}{\mathrm{tr}\,R} = \frac{1}{9} \left\{ \frac{R_{\mathsf{SM}}}{\tilde{A}_{\mathsf{SM}}} + \sum_{n} \frac{C_{n}}{\Lambda^{2}} \left[\frac{R_{n}}{\tilde{A}_{\mathsf{SM}}} - \frac{\tilde{A}_{n}R_{\mathsf{SM}}}{\tilde{A}_{\mathsf{SM}}^{2}} \right] \right. \\ &+ \sum_{n,m} \frac{C_{n}C_{m}}{\Lambda^{4}} \left[\frac{R_{nm}}{\tilde{A}_{\mathsf{SM}}} - \frac{\tilde{A}_{n}R_{m} + \tilde{A}_{nm}R_{\mathsf{SM}}}{\tilde{A}_{\mathsf{SM}}^{2}} + \frac{\tilde{A}_{n}\tilde{A}_{m}R_{\mathsf{SM}}}{\tilde{A}_{\mathsf{SM}}^{3}} \right] \right\} \end{split}$$

o similar: concurrence, purity, Bell violation, ...

Reminder: Concurrence

$$\begin{split} \mathcal{C}(\rho) = &\inf_{\{|\Psi\rangle\}} \biggl[\sum_{i} p_i \, \mathcal{C}(|\Psi_i\rangle) \biggr] \,, \quad \mathcal{C}(|\Psi\rangle) = \sqrt{2 \left(1 - \operatorname{tr}_A \bigl[(\operatorname{tr}_B |\Psi\rangle \langle \Psi| \,)^2 \bigr] \, \bigr)} \\ & \circ \ 0 \leq \mathcal{C}(\rho) \leq \frac{2}{\sqrt{3}}, \quad \mathcal{C}(\rho) > 0 \Longrightarrow \text{ entangled} \end{split}$$

Reminder: Concurrence

$$\begin{split} \mathcal{C}(\rho) = &\inf_{\{|\Psi\rangle\}} \left[\sum_{i} p_i \, \mathcal{C}(|\Psi_i\rangle) \right], \quad \mathcal{C}(|\Psi\rangle) = \sqrt{2 \left(1 - \operatorname{tr}_A \left[\left(\operatorname{tr}_B |\Psi\rangle \langle \Psi | \right)^2 \right] \right)} \\ > & 0 \leq \mathcal{C}(\rho) \leq \frac{2}{\sqrt{3}}, \quad \mathcal{C}(\rho) > 0 \Longrightarrow \text{ entangled} \end{split}$$

 \odot for qutrits: analytically calculable only for pure states

 \implies provide lower and upper bound: $\rho_{A/B} = \operatorname{tr}_{B/A} \rho$

$$(\mathcal{C}(\rho))^2 \ge (\mathcal{C}_{\mathsf{LB}}(\rho))^2 = 2 \max\left[\operatorname{tr} \rho^2 - \operatorname{tr} \rho_A^2, \operatorname{tr} \rho^2 - \operatorname{tr} \rho_B^2\right]$$
$$(\mathcal{C}(\rho))^2 \le (\mathcal{C}_{\mathsf{UB}}(\rho))^2 = 2 \min\left[1 - \operatorname{tr} \rho_A^2, 1 - \operatorname{tr} \rho_B^2\right]$$

Reminder: Concurrence

for pure

$$\begin{split} \mathcal{C}(\rho) = &\inf_{\{|\Psi\rangle\}} \left[\sum_{i} p_i \, \mathcal{C}(|\Psi_i\rangle) \right], \quad \mathcal{C}(|\Psi\rangle) = \sqrt{2 \left(1 - \operatorname{tr}_A \left[\left(\operatorname{tr}_B |\Psi\rangle \langle \Psi| \right)^2 \right] \right)} \\ p \ 0 \leq \mathcal{C}(\rho) \leq \frac{2}{\sqrt{3}}, \quad \mathcal{C}(\rho) > 0 \Longrightarrow \text{ entangled} \end{split}$$

- \odot for qutrits: analytically calculable only for pure states
 - \implies provide lower and upper bound: $\rho_{A/B} = \operatorname{tr}_{B/A} \rho$

$$(\mathcal{C}(\rho))^2 \ge (\mathcal{C}_{\mathsf{LB}}(\rho))^2 = 2 \max \left[\operatorname{tr} \rho^2 - \operatorname{tr} \rho_A^2, \ \operatorname{tr} \rho^2 - \operatorname{tr} \rho_B^2 \right]$$
$$(\mathcal{C}(\rho))^2 \le (\mathcal{C}_{\mathsf{UB}}(\rho))^2 = 2 \min \left[1 - \operatorname{tr} \rho_A^2, \ 1 - \operatorname{tr} \rho_B^2 \right]$$
state: $P(\rho) = \operatorname{tr} \rho^2 = 1 \implies \mathcal{C}_{\mathsf{LB}}(\rho) = \mathcal{C}(\rho) = \mathcal{C}_{\mathsf{UB}}(\rho)$

SM

- 0

 $\cos \theta$

0.40.8

0

0.40.8

- ⇒ more entanglement in central and backward HE region
- $\begin{array}{l} \circ \ \mathcal{O}_{\varphi l}^{(1)} \colon \text{modifies } Ze_L^+e_L^- \ \text{vertex} \\ \Longrightarrow \text{ less entanglement in central and} \\ \text{ backward HE region} \end{array}$
- $\bigcirc \ \mathcal{O}_{\varphi WB}: \text{ modifies triple gauge coupling} \\ \mathcal{O}_W: \text{ non-SM Lorentz structure in TGC} \\ \Longrightarrow \text{ small effect}$

- $\begin{array}{l} \circ \ \mathcal{O}_{\varphi e}: \ {\rm modifies} \ Ze_R^+e_R^- \ {\rm vertex} \\ \Longrightarrow \ {\rm more \ entanglement \ in \ central \ and} \\ {\rm backward \ HE \ region} \end{array}$
- $\begin{array}{l} \circ \ \mathcal{O}_{\varphi l}^{(1)} \colon \text{modifies } Ze_L^+e_L^- \ \text{vertex} \\ \Longrightarrow \text{ less entanglement in central and} \\ \text{ backward HE region} \end{array}$
- $\bigcirc \ \mathcal{O}_{\varphi WB}: \text{ modifies triple gauge coupling} \\ \mathcal{O}_W: \text{ non-SM Lorentz structure in TGC} \\ \Longrightarrow \text{ small effect}$

SMEFT effects in $e^+e^- \rightarrow W^+W^-$ at linear order

Central High-Energy Region $(e^+e^- \rightarrow W^+W^-)$

 $m_{WW} = 500 \, \text{GeV}, \, \cos \theta = 0$

Central High-Energy Region $(e^+e^- \rightarrow W^+W^-)$

 $m_{WW} = 500 \, \text{GeV}, \, \cos \theta = 0$

SMEFT effects in $pp \rightarrow W^+W^-$

SMEFT effects in $pp \to W^+W^-$

 $\circ \ \mathcal{O}_{\varphi u}/\mathcal{O}_{\varphi d}: \text{ modify } Z\bar{q}_R q_R \text{ vertex}$ $\Longrightarrow \text{ less entanglement at high energy}$

SMEFT effects in $pp \rightarrow W^+W^-$

 $\bigcirc \mathcal{O}_{\varphi u}/\mathcal{O}_{\varphi d}: \text{ modify } Z\bar{q}_R q_R \text{ vertex} \\ \Longrightarrow \text{ less entanglement at high energy}$

 $\bigcirc \mathcal{O}_{\varphi q}^{(3)}: \text{ modifies } W\bar{q}_L q'_L \text{ vertex}$ $\Longrightarrow \text{ more entanglement at high energy}$

- $\bigcirc \mathcal{O}_{\varphi u}/\mathcal{O}_{\varphi d}: \text{ modify } Z\bar{q}_R q_R \text{ vertex} \\ \Longrightarrow \text{ less entanglement at high energy}$
- $\bigcirc \mathcal{O}_{\varphi q}^{(3)}: \text{ modifies } W\bar{q}_L q'_L \text{ vertex} \\ \implies \text{ more entanglement at high energy}$
- $\odot \ \mathcal{O}_{\varphi W}: \ \text{additional Lorentz structures in} \\ \text{triple gauge coupling}$

- $\bigcirc \mathcal{O}_{\varphi u}/\mathcal{O}_{\varphi d}: \text{ modify } Z\bar{q}_R q_R \text{ vertex} \\ \Longrightarrow \text{ less entanglement at high energy}$
- $O_{\varphi q}^{(3)}: \text{ modifies } W \bar{q}_L q'_L \text{ vertex}$ $\implies \text{ more entanglement at high energy}$
- $\odot \ \ \, \mathcal{O}_{\varphi W}: \ \, \text{additional Lorentz structures in} \\ \ \ \, \text{triple gauge coupling}$
- $^{\circ}$ high-energy dominated by (dim-6)²

- $\bigcirc \mathcal{O}_{\varphi u}/\mathcal{O}_{\varphi d}: \text{ modify } Z\bar{q}_R q_R \text{ vertex} \\ \Longrightarrow \text{ less entanglement at high energy}$
- $O_{\varphi q}^{(3)}: \text{ modifies } W \bar{q}_L q'_L \text{ vertex}$ $\implies \text{ more entanglement at high energy}$
- $\odot \ \ \, \mathcal{O}_{\varphi W}: \ \, \text{additional Lorentz structures in} \\ \ \ \, \text{triple gauge coupling}$
- $^{\circ}$ high-energy dominated by (dim-6)²

Central High-Energy Region $(pp \rightarrow W^+W^-)$

 $m_{WW} = 500 \, \text{GeV}, \, \cos \theta = 0$

Central High-Energy Region $(pp \rightarrow W^+W^-)$

 $m_{WW} = 500 \, \text{GeV}, \, \cos \theta = 0$

 $e^+e^- \rightarrow ZZ$

 $e^+e^- \rightarrow ZZ_1$

 $e^+e^- \rightarrow ZZ$

 $e^+e^- \rightarrow ZZ$

 $e^+e^- \rightarrow ZZ$

 $e^+e^- \rightarrow ZZ$

$pp \to ZZ$

o additional effect:

summation of $\bar{u}u$ and $\bar{d}d$ initial states

 \implies entanglement reduced (compared to partonic channels)

$pp \to ZZ$

o additional effect:

summation of $\bar{u}u$ and $\bar{d}d$ initial states

 \implies entanglement reduced (compared to partonic channels)

 only small effects in low-energy collinear region

$pp \to ZZ$

o additional effect:

summation of $\bar{u}u$ and $\bar{d}d$ initial states

 \implies entanglement reduced (compared to partonic channels)

 only small effects in low-energy collinear region

entanglement in $pp \rightarrow ZZ$ not very sensitive to dim-6 effects

 $pp \to W^{\pm}Z$

 \bigcirc only one partonic channel ($u\bar{d} \rightarrow W^+Z$); pure state

 $pp \to W^{\pm}Z$

○ only one partonic channel $(u\bar{d} \rightarrow W^+Z)$; pure state ○ at *pp* collider: $\bar{d}u$ and $u\bar{d} \implies$ mixed state

 $pp \to W^{\pm}Z$

Summary

- \odot EFT effects can modify the SM entanglement patterns
 - \implies entanglement-related observables can be used to probe new physics

 $\odot~e^+e^- \to W^+W^-$, $pp \to W^+W^-$ and $pp \to WZ$ are sensitive to dim-6 modifications

 $\odot~pp \rightarrow ZZ$ and $e^+e^- \rightarrow ZZ$ are less sensitive to dim-6

(but potentially to dim-8 operators)

- \odot EFT effects can modify the SM entanglement patterns
 - \implies entanglement-related observables can be used to probe new physics

 $\odot~e^+e^- \to W^+W^-$, $pp \to W^+W^-$ and $pp \to WZ$ are sensitive to dim-6 modifications

 $\odot~pp \rightarrow ZZ$ and $e^+e^- \rightarrow ZZ$ are less sensitive to dim-6

(but potentially to dim-8 operators)

Thank you for your attention!

Probing New Physics through Entanglement in Diboson Production

Rafael Aoude, E.M., Fabio Maltoni, Luca Mantani – arXiv:2307.09675 [hep-ph]

backup slides

Weak boson production at electron colliders in the SM

Weak boson production at proton colliders in the SM I

Weak boson production at proton colliders in the SM II

