Constraining HWW and HZZ anomalous couplings with quantum tomography @ the LHC

Luca Marzola

luca.marzola@cern.ch

Based on: "Stringent bounds on HWW and HZZ anomalous couplings with quantum tomography at the LHC", M. Fabbrichesi, R. Floreanini, E. Gabrielli, LM. - JHEP 09 (2023) 195

What are you even talking about?

What are you even talking about?

We consider possible modifications of the Higgs-Vector bosons vertex from its Standard Model form

$$
\begin{aligned}
\mathcal{L}_{H V V}= & g M_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} M_{Z} Z_{\mu} Z^{\mu} H \\
& -\frac{g}{M_{W}}\left[\frac{a_{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{\widetilde{a}_{W}}{2} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}+\frac{a_{Z}}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{\widetilde{a}_{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

What are you even talking about?

We consider possible modifications of the Higgs-Vector bosons vertex from its Standard Model form

$$
\begin{aligned}
\mathcal{L}_{H V V}= & g M_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} M_{Z} Z_{\mu} Z^{\mu} H \\
& -\frac{g}{M_{W}}\left[\frac{a_{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{\widetilde{a}_{W}}{2} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}+\frac{a_{Z}}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{\widetilde{a}_{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

What are you even talking about?

We consider possible modifications of the Higgs-Vector bosons vertex from its Standard Model form

$$
\begin{aligned}
& \mathcal{L}_{H V V}= g M_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} M_{Z} Z_{\mu} Z^{\mu} H \\
&-\frac{g}{M_{W}}\left[\frac{a_{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{\widetilde{a}_{W}}{2} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}+\frac{a_{Z}}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{\widetilde{a}_{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

The new bit, where a_{v} and $\tilde{a}_{v}, V \in\{W, Z\}$, parametrize the deviation, $V_{\mu v}$ are field strength tensors and $\tilde{V}_{\mu v}$ their duals

What are you even talking about?

We consider possible modifications of the Higgs-Vector bosons vertex from its Standard Model form

$$
\begin{aligned}
& \mathcal{L}_{H V V}= g M_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} M_{Z} Z_{\mu} Z^{\mu} H \\
&-\frac{g}{M_{W}}\left[\frac{a_{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{\widetilde{a}_{W}}{2} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}+\frac{a_{Z}}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{\widetilde{a}_{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

The new bit, where a_{v} and $\tilde{a}_{v}, V \in\{W, Z\}$, parametrize the deviation, $V_{\mu v}$ are field strength tensors and $\tilde{V}_{\mu \nu}$ their duals
yielding the effective HVV vertex

$$
-i H \Gamma^{\mu \nu} \varepsilon_{\mu}^{*}\left(q_{1}\right) \varepsilon_{\nu}^{*}\left(q_{2}\right)=g_{V} m_{V}\left(\varepsilon_{1}^{*} \varepsilon_{2}^{*}\right) H+\frac{g H}{m_{W}}\left\{a_{V}\left[\left(\varepsilon_{1}^{*} \varepsilon_{2}^{*}\right)\left(q_{1} q_{2}\right)-\left(\varepsilon_{1}^{*} q_{2}\right)\left(\varepsilon_{2}^{*} q_{1}\right)\right]-\tilde{a}_{V}\left(\epsilon \varepsilon_{1}^{*} \varepsilon_{2}^{*} q_{1} q_{2}\right)\right\}
$$

What are you even talking about?

We consider possible modifications of the Higgs-Vector bosons vertex from its Standard Model form

$$
\mathcal{L}_{H V V}=\frac{g M_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} M_{Z} Z_{\mu} Z^{\mu} H}{-\frac{g}{M_{W}}\left[\frac{a_{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{\widetilde{a}_{W}}{2} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}+\frac{a_{Z}}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{\widetilde{a}_{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H}
$$

The new bit, where av and ãv, $V \in\{W, Z\}$, parametrize the deviation, $V_{\mu v}$ are field strength tensors and $\tilde{V}_{\mu v}$ their duals
yielding the effective HVV vertex

$$
-i H \Gamma^{\mu \nu} \varepsilon_{\mu}^{*}\left(q_{1}\right) \varepsilon_{\nu}^{*}\left(q_{2}\right)=g_{V} m_{V}\left(\varepsilon_{1}^{*} \varepsilon_{2}^{*}\right) H+\frac{g H}{m_{W}}\left\{a_{V}\left[\left(\varepsilon_{1}^{*} \varepsilon_{2}^{*}\right)\left(q_{1} q_{2}\right)-\left(\varepsilon_{1}^{*}=g / \cos q_{w}\right)\left(\varepsilon_{2}^{*} q_{1}\right)\right]-\tilde{a}_{V}\left(\epsilon \varepsilon_{1}^{*} \varepsilon_{2}^{*} q_{1} q_{2}\right)\right\}
$$

The couplings ãv are of particular interest as they account for a possible pseudoscalar component in the Higgs boson

What are you even talking about?

We consider possible modifications of the Higgs-Vector bosons vertex from its Standard Model form

$$
\begin{aligned}
\mathcal{L}_{H V V}=g M_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} M_{Z} Z_{\mu} Z^{\mu} H & -\frac{g}{M_{W}}\left[\frac{a_{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{\widetilde{a}_{W}}{2} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}+\frac{a_{Z}}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{\widetilde{a}_{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

The new bit, where av and ãv, $V \in\{W, Z\}$, parametrize the deviation, $V_{\mu v}$ are field strength tensors and $\tilde{V}_{\mu v}$ their duals
yielding the effective HVV vertex

$$
-i H \Gamma^{\mu \nu} \varepsilon_{\mu}^{*}\left(q_{1}\right) \varepsilon_{\nu}^{*}\left(q_{2}\right)=g_{V} m_{V}\left(\varepsilon_{1}^{*} \varepsilon_{2}^{*}\right) H+\frac{g H}{m_{W}}\left\{a_{V}\left[\left(\varepsilon_{1}^{*} \varepsilon_{2}^{*}\right)\left(q_{1}, q_{z}=g / \cos \theta_{w}\right)-\left(\varepsilon_{1}^{*} q_{2}\right)\left(\varepsilon_{2}^{*} q_{1}\right)\right]-\tilde{a}_{V}\left(\epsilon_{1}^{*} \varepsilon_{1}^{*} \varepsilon_{2}^{*} q_{1} q_{2}\right)\right\}
$$

The couplings ãv are of particular interest as they account for a possible pseudoscalar component in the Higgs boson

Can we use quantum tomography to constrain the anomalous couplings?

Theoretical quantum tomography

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:

$$
\left|V^{\nu}\right\rangle=\sum_{\lambda} \mathcal{M}(\lambda) \varepsilon_{\lambda}^{\nu} \quad \text { Quantum state of the } V \text { boson }
$$

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:

$$
\begin{aligned}
& \quad \rho^{\mu \nu}=-\frac{\left|V^{\mu}\right\rangle\left\langle V^{\nu}\right|}{\left\langle V^{\mu} \mid V_{\mu}\right\rangle} \\
& \text { Covariant density matrix; not } \\
& \quad \text { good enough }
\end{aligned}
$$

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:

$$
\begin{aligned}
& \quad\left|V^{\mu}\right\rangle\left\langle V^{\nu}\right| \quad\left|V^{\nu}\right\rangle=\sum_{\lambda} \mathcal{M}(\lambda) \varepsilon_{\lambda}^{\nu} \quad \text { Quantum state of the } V \text { boson } \\
& \text { Covariant density matrix; not } \\
& \text { good enough } \\
& \text { S. Y. Choi, T. Lee, and H. S. Song, Phys. Rev. D, 40:2477-2480, Oct } 1989 \\
& \mathcal{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\frac{1}{3}\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m_{V}^{2}}\right) \delta_{\lambda \lambda^{\prime}}-\frac{i}{2 m_{V}} \epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{i \beta}\left(S_{i}\right)_{\lambda \lambda^{\prime}}-\frac{1}{2} n_{i}^{\mu} n_{j}^{\nu}\left(S_{i j}\right)_{\lambda \lambda^{\prime}} \\
& \text { Projector; } S_{i}(i \in\{1,2,3\}) \text { are the spin matrices and } n_{i} \\
& \text { are the linear polarizations versors boosted by -p/mv } S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j} \\
& \text { spin-2 guys }
\end{aligned}
$$

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:

$$
\begin{aligned}
& \quad\left|V^{\mu}\right\rangle\left\langle V^{\nu}\right| \quad\left|V^{\nu}\right\rangle=\sum_{\lambda} \mathcal{M}(\lambda) \varepsilon_{\lambda}^{\nu} \quad \text { Quantum state of the } V \text { boson } \\
& \text { Covariant density matrix; not } \\
& \text { good enough } \\
& \text { S. Y. Choi, T. Lee, and H. S. Song, Phys. Rev. D, 40:2477-2480, Oct } 1989 \\
& {\underset{\mathcal{P}}{\lambda \lambda^{\prime}}}_{\mu \nu}(p)=\frac{1}{3}\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m_{V}^{2}}\right) \delta_{\lambda \lambda^{\prime}}-\frac{i}{2 m_{V}} \epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{i \beta}\left(S_{i}\right)_{\lambda \lambda^{\prime}}-\frac{1}{2} n_{i}^{\mu} n_{j}^{\nu}\left(S_{i j}\right)_{\lambda \lambda^{\prime}} \\
& \text { Projector; } S_{i}(i \in\{1,2,3\}) \text { are the spin matrices and } n_{i} \\
& \text { are the linear polarizations versors boosted by -p/mv } S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j} \\
& \text { spin-2 guys }
\end{aligned}
$$

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:
$\left|V^{\mu}\right\rangle\left\langle V^{\nu}\right| \quad\left|V^{\nu}\right\rangle=\sum_{\lambda} \mathcal{M}(\lambda) \varepsilon_{\lambda}^{\nu} \quad$ Quantum state of the V boson
Covariant density matrix; not
good enough
S. Y. Choi, T. Lee, and H. S. Song, Phys. Rev. D, 40:2477-2480, Oct 1989
$\begin{aligned} & \mathcal{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\frac{1}{3}\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m_{V}^{2}}\right) \delta_{\lambda \lambda^{\prime}}-\frac{i}{2 m_{V}} \epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{i \beta}\left(S_{i}\right)_{\lambda \lambda^{\prime}}-\frac{1}{2} n_{i}^{\mu} n_{j}^{\nu}\left(S_{i j}\right)_{\lambda \lambda^{\prime}} \\ & \text { Projector; Si (}(i \in\{1,2,3\}) \text { are the spin matrices and } n_{i} \\ & \text { are the linear polarizations versors boosted by -p/mv } S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j} \\ & \text { spin-2 guys }\end{aligned}$
$\rho_{\lambda \lambda^{\prime}}=\frac{\mathcal{M}(\lambda) \mathcal{M}^{\dagger}\left(\lambda^{\prime}\right)}{\sum_{\lambda^{\prime \prime}} \mathcal{M}^{\dagger}\left(\lambda^{\prime \prime}\right) \mathcal{M}\left(\lambda^{\prime \prime}\right)}=\frac{\mathcal{A}_{\mu} \mathcal{A}_{\nu}^{\dagger} \mathcal{P}_{\lambda \lambda^{\prime}}^{\mu \nu}}{|\overline{\mathcal{M}}|^{2}}$
after doing the math: polarization/spin density matrix

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:

$$
\begin{aligned}
& \left|V^{\mu}\right\rangle\left\langle V^{\nu} \mid\right\rangle\left|V^{\nu}\right\rangle=\sum_{\lambda} \mathcal{M}(\lambda) \varepsilon_{\lambda}^{\nu} \quad \text { Quantum state of the } V \text { boson } \\
& \begin{array}{l}
\rho^{\mu \nu}=-\frac{\left|V^{\mu}\right\rangle\left\langle V^{\nu}\right|}{\left\langle V^{\mu} \mid V_{\mu}\right\rangle} \\
\begin{array}{l}
\text { Covariant density matrix; not } \\
\text { good enough }
\end{array} \\
\begin{array}{c}
\text { S. Y. Choi, T. Lee, and H. S. Song, Phys. Rev. D, 40:2477-2480, Oct } 1989 \\
\mathcal{P}_{\lambda \lambda^{\prime}}^{\mu \nu}
\end{array} \\
\hline
\end{array} \\
& \text { Projector; } S_{i}(i \in\{1,2,3\}) \text { are the spin matrices and } n_{i} \\
& \text { are the linear polarizations versors boosted by -p/mv } S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j} \\
& \text { spin-2 guys }
\end{aligned}
$$

By writing S_{i} and $S_{i j}$ in terms of Gell-Mann matrices ($T^{a}, a \in\{1, \ldots, 8\}$) and considering processes yielding two massive vector bosons:

$$
\rho_{1 \otimes 1}=\frac{1}{9}[\mathbb{1} \otimes \mathbb{1}]+\sum_{a} f_{a}\left[T^{a} \otimes \mathbb{1}\right]+\sum_{a} g_{a}\left[\mathbb{1} \otimes T^{a}\right]+\sum_{a b} h_{a b}\left[T^{a} \otimes T^{b}\right]
$$

Theoretical quantum tomography

In theory, we can compute stuff. Let $\mathcal{M}(\lambda, p)=\mathcal{A}_{\mu} \varepsilon_{\lambda}^{\mu *}(p)$ be the amplitude for the production of a massive V boson, then:

$$
\begin{aligned}
& \left|V^{\mu}\right\rangle\left\langle V^{\nu} \mid\right\rangle\left|V^{\nu}\right\rangle=\sum_{\lambda} \mathcal{M}(\lambda) \varepsilon_{\lambda}^{\nu} \quad \text { Quantum state of the } V \text { boson } \\
& \begin{array}{l}
\rho^{\mu \nu}=-\frac{\left|V^{\mu}\right\rangle\left\langle V^{\nu}\right|}{\left\langle V^{\mu} \mid V_{\mu}\right\rangle} \\
\begin{array}{l}
\text { Covariant density matrix; not } \\
\text { good enough }
\end{array} \\
\begin{array}{c}
\text { S. Y. Choi, T. Lee, and H. S. Song, Phys. Rev. D, 40:2477-2480, Oct } 1989 \\
\mathcal{P}_{\lambda \lambda^{\prime}}^{\mu \nu}
\end{array} \\
\hline
\end{array} \\
& \text { Projector; } S_{i}(i \in\{1,2,3\}) \text { are the spin matrices and } n_{i} \\
& \text { are the linear polarizations versors boosted by -p/mv } S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j} \\
& \text { spin-2 guys }
\end{aligned}
$$

By writing S_{i} and $S_{i j}$ in terms of Gell-Mann matrices ($T^{a}, a \in\{1, \ldots, 8\}$) and considering processes yielding two massive vector bosons:

$$
\rho_{1 \otimes 1}=\frac{1}{9}[\mathbb{1} \otimes \mathbb{1}]+\sum_{a}\left(f_{a}\right)\left[T^{a} \otimes \mathbb{1}\right]+\sum_{a} \underbrace{}_{\text {Information about vector and tensor polarizations }}\left[\mathbb{1} \otimes T^{a}\right]+\sum_{a b} h_{\text {spin correlations }}\left[T^{a} \otimes T^{b}\right]
$$

So we start computing...

So we start computing...

So we start computing...

So we start computing...

So we start computing...

So we start computing...

...and for the density matrix we obtain:

$$
\begin{aligned}
& \text { for the density matrix we } \\
& \text { l: } \\
& \rho_{1 \otimes 1}=\frac{M_{\mu \nu} M_{\rho \sigma}^{\dagger}}{|\overline{\mathcal{M}}|^{2}}\left[\mathcal{P}^{\mu \rho}\left(k_{1}\right) \otimes \mathcal{P}^{\nu \sigma}\left(k_{2}\right)\right]=\frac{1}{|\overline{\mathcal{M}}|^{2}}\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{+} h_{+}^{*} & 0 & h_{+} h_{0}^{*} & 0 & h_{+} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{0} h_{+}^{*} & 0 & h_{0} h_{0}^{*} & 0 & h_{0} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{-} h_{+}^{*} & 0 & h_{-} h_{0}^{*} & 0 & h_{-} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \left.\begin{array}{rlrl}
x & =m_{H}^{2} /\left(2 f M_{V}^{2}\right)-\left(f^{2}+1\right) /(2 f) \\
A & =g\left(M_{V}+a_{V} \frac{k_{1} \cdot k_{2}}{M_{V}}\right) & h_{ \pm} & =A \mp C \sqrt{x^{2}-1} \\
B & =-g a_{V} M_{V}, & C=i g \tilde{a}_{V} M_{V} & h_{0}
\end{array}\right)=-A x-B\left(x^{2}-1\right)
\end{aligned}
$$

So we start computing...

...and for the density matrix we obtain:

$$
\rho_{1 \otimes 1}=\frac{M_{\mu \nu} M_{\rho \sigma}^{\dagger}}{|\overline{\mathcal{M}}|^{2}}\left[\mathcal{P}^{\mu \rho}\left(k_{1}\right) \otimes \mathcal{P}^{\nu \sigma}\left(k_{2}\right)\right]=\frac{1}{|\overline{\mathcal{M}}|^{2}}
$$

The two vector bosons are in a

$$
\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{+} h_{+}^{*} & 0 & h_{+} h_{0}^{*} & 0 & h_{+} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{0} h_{+}^{*} & 0 & h_{0} h_{0}^{*} & 0 & h_{0} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{-} h_{+}^{*} & 0 & h_{-} h_{0}^{*} & 0 & h_{-} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$ pure state regardless of the anomalous-coupling values

$$
\begin{aligned}
x & =m_{H}^{2} /\left(2 f M_{V}^{2}\right)-\left(f^{2}+1\right) /(2 f) & h_{ \pm} & =A \mp C \sqrt{x^{2}-1} \\
A & =g\left(M_{V}+a_{V} \frac{k_{1} \cdot k_{2}}{M_{V}}\right) & h_{0} & =-A x-B\left(x^{2}-\right. \\
B & =-g a_{V} M_{V}, \quad C=i g \tilde{a}_{V} M_{V} & &
\end{aligned}
$$

The pure state looks like this:

The pure state looks like this:

$$
|\Psi\rangle=\frac{1}{|\overline{\mathcal{M}}|}\left[h_{+}\left|V(+) V^{*}(-)\right\rangle+h_{0}\left|V(0) V^{*}(0)\right\rangle+h_{-}\left|V(-) V^{*}(+)\right\rangle\right]
$$

The pure state looks like this:

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{|\overline{\mathcal{M}}|}\left[h_{+}\left|V(+) V^{*}(-)\right\rangle+h_{0}\left|V(0) V^{*}(0)\right\rangle+h_{-}\left|V(-) V^{*}(+)\right\rangle\right] \\
|\Psi\rangle\langle\Psi|=\frac{1}{|\overline{\mathcal{M}}|^{2}}\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{+} h_{+}^{*} & 0 & h_{+} h_{0}^{*} & 0 & h_{+} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{0} h_{+}^{*} & 0 & h_{0} h_{0}^{*} & 0 & h_{0} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{-} h_{+}^{*} & 0 & h_{-} h_{0}^{*} & 0 & 0 & h_{-} h_{-}^{*} & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

The pure state looks like this:

The pure state looks like this:

In terms of the coefficients of Kronecker products of Gell-Mann matrices:

$$
\begin{aligned}
& \hat{h}_{-} \hat{h}_{-}^{*}=\frac{1}{9}\left[1+3 \sqrt{3}\left(f_{8}-2 g_{8}-2 h_{38}\right)+9 f_{3}-6 h_{88}\right] \\
& \hat{h}_{0} \hat{h}_{-}^{*}=h_{16}+i\left(h_{17}-h_{26}\right)+h_{27} \\
& \hat{h}_{0} \hat{h}_{0}^{*}=\frac{1}{9}\left[1-9\left(f_{3}+g_{3}-h_{33}\right)+3 \sqrt{3}\left(f_{8}+g_{8}-h_{38}-h_{83}\right)+3 h_{88}\right] \\
& \hat{h}_{+} \hat{h}_{-}^{*}=h_{44}+i\left(h_{45}-h_{54}\right)+h_{55} \\
& \hat{h}_{+} \hat{h}_{0}^{*}=h_{61}+i\left(h_{62}-h_{71}\right)+h_{72} \\
& \hat{h}_{+} \hat{h}_{+}^{*}=\frac{1}{9}\left[1+3 \sqrt{3}\left(g_{8}-2 f_{8}-2 h_{83}\right)+9 g_{3}-6 h_{88}\right]
\end{aligned}
$$

where we defined $\hat{h}_{\lambda} \equiv h_{\lambda} /|\overline{\mathcal{M}}|, \lambda \in\{+, 0,-\}$

The pure state looks like this:

In terms of the coefficients of Kronecker products of Gell-Mann matrices:

$$
\begin{aligned}
& \hat{h}_{-} \hat{h}_{-}^{*}=\frac{1}{9}\left[1+3 \sqrt{3}\left(f_{8}-2 g_{8}-2 h_{38}\right)+9 f_{3}-6 h_{88}\right] \\
& \hat{h}_{0} \hat{h}_{-}^{*}=h_{16}+i\left(h_{17}-h_{26}\right)+h_{27} \\
& \hat{h}_{0} \hat{h}_{0}^{*}=\frac{1}{9}\left[1-9\left(f_{3}+g_{3}-h_{33}\right)+3 \sqrt{3}\left(f_{8}+g_{8}-h_{38}-h_{83}\right)+3 h_{88}\right] \\
& \hat{h}_{+} \hat{h}_{-}^{*}=h_{44}+i\left(h_{45}-h_{54}\right)+h_{55} \\
& \hat{h}_{+} \hat{h}_{0}^{*}=h_{61}+i\left(h_{62}-h_{71}\right)+h_{72} \\
& \hat{h}_{+} \hat{h}_{+}^{*}=\frac{1}{9}\left[1+3 \sqrt{3}\left(g_{8}-2 f_{8}-2 h_{83}\right)+9 g_{3}-6 h_{88}\right]
\end{aligned}
$$

where we defined $\hat{h}_{\lambda} \equiv h_{\lambda} /|\overline{\mathcal{M}}|, \lambda \in\{+, 0,-\}$

The pure state looks like this:

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{|\overline{\mathcal{M}}|}\left[h_{+}\left|V(+) V^{*}(-)\right\rangle+h_{0}\left|V(0) V^{*}(0)\right\rangle+h_{-}\left|V(-) V^{*}(+)\right\rangle\right] \\
|\Psi\rangle\langle\Psi|=\frac{1}{|\overline{\mathcal{M}}|^{2}}\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{+} h_{+}^{*} & 0 & h_{+} h_{0}^{*} & 0 & h_{+} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{0} h_{+}^{*} & 0 & h_{0} h_{0}^{*} & 0 & h_{0} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{-} h_{+}^{*} & 0 & h_{-} h_{0}^{*} & 0 & h_{-} h_{-}^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered} \begin{aligned}
& h_{ \pm}=A \mp C \sqrt{x^{2}-1} \\
& h_{0}=-A x-B\left(x^{2}-1\right) \\
& x=m_{H}^{2} /\left(2 f M_{V}^{2}\right)-\left(f^{2}+1\right) /(2 f) \\
& A=g\left(M_{V}+a_{V} \frac{k_{1} \cdot k_{2}}{M_{V}}\right) \\
& B=-g a_{V} M_{V}, \quad C=i g \tilde{a}_{V} M_{V} \\
& \hline
\end{aligned}
$$

In terms of the coefficients of Kronecker products of Gell-Mann matrices:

$$
\begin{aligned}
& \hat{h}_{-} \hat{h}_{-}^{*}=\frac{1}{9}\left[1+3 \sqrt{3}\left(f_{8}-2 g_{8}-2 h_{38}\right)+9 f_{3}-6 h_{88}\right] \\
& \hat{h}_{0} \hat{h}_{-}^{*}=h_{16}+i\left(h_{17}-h_{26}\right)+h_{27} \\
& \hat{h}_{0} \hat{h}_{0}^{*}=\frac{1}{9}\left[1-9\left(f_{3}+g_{3}-h_{33}\right)+3 \sqrt{3}\left(f_{8}+g_{8}-h_{38}-h_{83}\right)+3 h_{88}\right] \\
& \hat{h}_{+} \hat{h}_{-}^{*}=h_{44}+i\left(h_{45}-h_{54}\right)+h_{55} \\
& \hat{h}_{+} \hat{h}_{0}^{*}=h_{61}+i\left(h_{62}-h_{71}\right)+h_{72} \\
& \hat{h}_{+} \hat{h}_{+}^{*}=\frac{1}{9}\left[1+3 \sqrt{3}\left(g_{8}-2 f_{8}-2 h_{83}\right)+9 g_{3}-6 h_{88}\right]
\end{aligned}
$$

The experimentalist's corner:

The coefficients of Gell-Mann matrices (or their spherical friends) can be reconstructed experimentally from the decay products of the massive vector bosons.

[^0]where we defined $\hat{h}_{\lambda} \equiv h_{\lambda} /|\overline{\mathcal{M}}|, \lambda \in\{+, 0,-\}$

Quantum observables

All observables are quantum, though some (3) more than others:

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement \mathcal{B} ent:

$$
\mathscr{E}_{e n t}=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\operatorname{Tr}\left[\rho_{B} \log \rho_{B}\right] \quad 0 \leq \mathscr{E}[\rho] \leq \ln 3
$$

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement Bent:

$$
\begin{aligned}
\mathscr{E}_{\text {ent }}= & \left.\left.-\operatorname{Tr}\left[\varrho_{A}\right) \log \mathscr{\varrho}_{A}\right]=-\operatorname{Tr} \mathscr{\varrho}_{B} \log \mathscr{\varrho}_{B}\right] \\
& \text { partial traces: trace on the }
\end{aligned}
$$

$$
0 \leq \mathscr{E}[\rho] \leq \ln 3
$$

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement Bent:

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement \mathcal{B} ent:

$$
\left.\left.\mathscr{E}_{\text {ent }}=-\operatorname{Tr} \underset{\varrho_{A}}{ } \log \varrho_{A}\right]=-\operatorname{Tr} \varrho_{\varrho_{B}} \log \varrho_{B}\right]
$$

polarization of either vector bosons

- for an arbitrary state, we could quantify entanglement with the concurrence:

$$
\mathcal{C}[|\Psi\rangle]=\sqrt{2\left[1-\operatorname{Tr}\left(\rho_{A(B)}^{2}\right)\right]} \quad \text { bipartite pure state }|\Psi\rangle
$$

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement \mathcal{B} ent:

$$
\left.\mathscr{E}_{\text {ent }}=-\operatorname{Tr}\left[\varrho_{A}\right) \log \varrho_{A}\right]=-\operatorname{Tr}\left[\varrho_{\bar{A}} \log \varrho_{B}\right]
$$

 polarization of either vector bosons

- for an arbitrary state, we could quantify entanglement with the concurrence:

P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64 (Sep, 2001) 042315.

$$
\begin{aligned}
& \mathcal{C}[|\Psi\rangle]=\sqrt{2\left[1-\operatorname{Tr}\left(\rho_{A(B)}^{2}\right)\right]} \quad \text { bipartite pure state }|\Psi\rangle \\
& \mathcal{C}[\rho]=\inf _{\left\{p_{j},\left|\Psi_{j}\right\rangle\right\}} \sum_{j} p_{j} \mathcal{C}\left[\left|\Psi_{j}\right\rangle\right] \quad \sum_{j} p_{j}=1 \quad \text { bipartite mixed state. }
\end{aligned}
$$

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement \mathcal{B} ent:

$$
\left.\mathscr{E}_{\text {ent }}=-\operatorname{Tr}\left[\varrho_{A}\right) \log \varrho_{A A}\right]=-\operatorname{Tr}\left[\varrho_{\bar{S}} \log \varrho_{B}\right]
$$

 polarization of either vector bosons

- for an arbitrary state, we could quantify entanglement with the concurrence:
P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn,

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement \mathcal{B} ent: polarization of either vector bosons

- for an arbitrary state, we could quantify entanglement with the concurrence:
P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn Phys. Rev. A 64 (Sep, 2001) 042315.

$$
\mathcal{C}[|\Psi\rangle]=\sqrt{2\left[1-\operatorname{Tr}\left(\rho_{A(B)}^{2}\right)\right]} \quad \text { bipartite pure state }|\Psi\rangle
$$

inf stands for infernal to compute

Use instead the lower bound on the concurrence

$$
\begin{aligned}
\mathscr{C}_{2}= & 2 \max \left[0,-\frac{2}{9}-12 \sum_{a} f_{a}^{2}+6 \sum_{a} g_{a}^{2}+4 \sum_{a b} h_{a b}^{2}\right. \\
& \left.-\frac{2}{9}-12 \sum_{a} g_{a}^{2}+6 \sum_{a} f_{a}^{2}+4 \sum_{a b} h_{a b}^{2}\right]
\end{aligned}
$$

Quantum observables

All observables are quantum, though some (3) more than others:

- for a pure state, we can measure entanglement with the entropy of entanglement \mathcal{B} ent: polarization of either vector bosons

- for an arbitrary state, we could quantify entanglement with the concurrence:
P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn Phys. Rev. A 64 (Sep, 2001) 042315.

$$
\mathcal{C}[|\Psi\rangle]=\sqrt{2\left[1-\operatorname{Tr}\left(\rho_{A(B)}^{2}\right)\right]} \quad \text { bipartite pure state }|\Psi\rangle
$$

inf stands for infernal to compute
 bipartite mixed state.

Use instead the lower bound on the concurrence

$$
\begin{aligned}
\mathscr{C}_{2}= & 2 \max \left[0,-\frac{2}{9}-12 \sum_{a} f_{a}^{2}+6 \sum_{a} g_{a}^{2}+4 \sum_{a b} h_{a b}^{2}\right. \\
& \left.-\frac{2}{9}-12 \sum_{a} g_{a}^{2}+6 \sum_{a} f_{a}^{2}+4 \sum_{a b} h_{a b}^{2}\right]
\end{aligned}
$$

- The third observables we use singles out the antisymmetric part of the density matrix

$$
\mathscr{C}_{o d d}=\frac{1}{2} \sum_{\substack{a, b \\ a<b}}\left|h_{a b}-h_{b a}\right|
$$

- The third observables we use singles out the antisymmetric part of the density matrix

$$
\mathscr{C}_{o d d}=\frac{1}{2} \sum_{\substack{a, b \\
a<b}}\left|h_{a b}-h_{b a}\right| \sim \begin{aligned}
& \text { Corresponds to kinematical expressions } \\
& \text { such as the triple product } \vec{k} \cdot\left(\overrightarrow{\varepsilon_{n}} \times \vec{\varepsilon}_{\vec{r}}\right)
\end{aligned}
$$

- The third observables we use singles out the antisymmetric part of the density matrix

$$
\mathscr{C}_{o d d}=\frac{1}{2} \sum_{\substack{a, b \\
a<b}}\left|h_{a b}-h_{b a}\right| \sim \quad \sim \begin{aligned}
& \text { Corresponds to kinematical expressions } \\
& \text { such as the triple product } \vec{k} \cdot\left(\overrightarrow{\varepsilon_{\vec{n}}} \times \vec{\varepsilon}_{\vec{r}}\right)
\end{aligned}
$$

Remarks:

- The computation of ρ and, therefore, of the observables uses treelevel expressions. NLO corrections to f_{a}, g_{a} and $h_{a b}$ are expected to yield $O(1 \%)$ uncertainties on the observables.
- The third observables we use singles out the antisymmetric part of the density matrix

$$
\mathscr{C}_{o d d}=\frac{1}{2} \sum_{\substack{a, b \\
a<b}}\left|h_{a b}-h_{b a}\right| \sim \quad \sim \begin{aligned}
& \text { Corresponds to kinematical expressions } \\
& \text { such as the triple product } \vec{k} \cdot\left(\overrightarrow{\varepsilon_{\vec{n}}} \times \vec{\varepsilon}_{\vec{r}}\right)
\end{aligned}
$$

Remarks:

- The computation of ρ and, therefore, of the observables uses treelevel expressions. NLO corrections to f_{a}, g_{a} and $h_{a b}$ are expected to yield $O(1 \%)$ uncertainties on the observables.
- As for the sensitivities of these observable on the anomalous couplings:
- the entropy of entanglement, at the lowest order, is linear in av and quadratic in ãv
- The third observables we use singles out the antisymmetric part of the density matrix

$$
\mathscr{C}_{\text {odd }}=\frac{1}{2} \sum_{\substack{a, b \\
a<b}}\left|h_{a b}-h_{b a}\right| \sim \sim \begin{aligned}
& \text { Corresponds to kinematical expressions } \\
& \text { such as the triple product } \vec{k} \cdot\left(\vec{\varepsilon}_{\vec{n}} \times \vec{\varepsilon}_{\vec{r}}\right)
\end{aligned}
$$

Remarks:

- The computation of ρ and, therefore, of the observables uses treelevel expressions. NLO corrections to f_{a}, g_{a} and $h_{a b}$ are expected to yield $O(1 \%)$ uncertainties on the observables.
- As for the sensitivities of these observable on the anomalous couplings:
- the entropy of entanglement, at the lowest order, is linear in av and quadratic in ãv
- C ${ }_{\text {odd }}$ is linear in \tilde{a}_{v} at the lowest order and depends on a_{v} through the combination ãvav, hence the dependence on av is suppressed
- The third observables we use singles out the antisymmetric part of the density matrix

$$
\mathscr{C}_{\text {odd }}=\frac{1}{2} \sum_{\substack{a, b \\
a<b}}\left|h_{a b}-h_{b a}\right| \sim \sim \begin{aligned}
& \text { Corresponds to kinematical expressions } \\
& \text { such as the triple product } \vec{k} \cdot\left(\vec{\varepsilon}_{\vec{n}} \times \vec{\varepsilon}_{\hat{r}}\right)
\end{aligned}
$$

Remarks:

- The computation of ρ and, therefore, of the observables uses treelevel expressions. NLO corrections to f_{a}, g_{a} and $h_{a b}$ are expected to yield $O(1 \%)$ uncertainties on the observables.
- As for the sensitivities of these observable on the anomalous couplings:
- the entropy of entanglement, at the lowest order, is linear in av and quadratic in ãv
- Codd is linear in ãv at the lowest order and depends on a_{v} through the combination ãvav, hence the dependence on av is suppressed
ideal situation for constraining the parameters: linear dependence on each anomalous coupling and cross correlations (quadratic) expected to be negligible in the considered ranges

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i}}\right]^{2} \leq 5.991
$$

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i}}\right]^{2} \leq 5.991
$$

O_{i} are the observables $\left\{\mathcal{C}_{\text {odd, }} \mathcal{E}_{e n t}\right\}$ or $\left\{\mathcal{C}_{\text {odd }}, \mathcal{G}_{2}\right\}$, depending on the purity

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i} \longleftarrow ?}\right]^{2} \leq 5.991
$$

O_{i} are the observables $\left\{\mathcal{C}_{\text {odd }}, \mathcal{C}_{\text {ent }}\right\}$ or $\left\{\mathcal{C}_{\text {odd }}, \mathcal{G}_{2}\right\}$, depending on the purity

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i} \longleftarrow ?}\right]^{2} \leq 5.991
$$

O_{i} are the observables $\left\{\mathcal{C}_{\text {odd }}, \mathcal{B}_{\text {ent }}\right\}$ or $\left\{\mathcal{C}_{\text {odd }}, \mathcal{O}_{2}\right\}$, depending on the purity

Take a step back: how do we see the processes we are interested in?
@ $\sqrt{s}=13 \mathrm{TeV}:$
$g g$ fusion mostly $\left\{\begin{array}{l}\sigma\left(p p \rightarrow H \rightarrow W^{+} \ell^{-} \bar{\nu}_{\ell}\right)=12.0 \pm 1.4 \mathrm{pb} \\ \text { ATLAS Collaboration, arरiv:2207.00338 } \\ \sigma\left(p p \rightarrow H \rightarrow Z \ell^{+} \ell^{-}\right)=1.34 \pm 0.12 \mathrm{pb} \\ \text { ATLAS Collaboration, Eur. Phys. J. C } 80 \text { (2020), no. } 10957\end{array}\right.$

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95\% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\left.\widehat{\sigma}_{i}\right) \longleftarrow ?}\right]^{2} \leq 5.991
$$

O_{i} are the observables $\left\{\mathcal{C}_{\text {odd }}, \mathcal{B}_{\text {ent }}\right\}$ or $\left\{\mathcal{C}_{\text {odd }}, \mathcal{O}_{z}\right\}$, depending on the purity

Take a step back: how do we see the processes we are interested in?

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \tilde{a}_{V}\right)-O_{i}(0,0)}{\left(\sigma_{i}\right) \leftarrow ?}\right]^{2} \leq 5.991
$$

O_{i} are the observables $\left\{\mathcal{C}_{\text {odd }}, \mathcal{B}_{\text {ent }}\right\}$ or $\left\{\mathcal{C}_{\text {odd }}, \mathcal{O}_{z}\right\}$, depending on the purity
Take a step back: how do we see the processes we are interested in?

$$
\begin{gathered}
\text { @ } \sqrt{s}=13 \mathrm{TeV}: \\
\text { gg fusion mostly }
\end{gathered}\left\{\begin{array}{l}
\sigma\left(p p \rightarrow H \rightarrow W^{+} \ell^{-} \bar{\nu}_{\ell}\right)=12.0 \pm 1.4 \mathrm{pb} \longrightarrow 10^{5} \text { events @ LHC run2 } \\
\text { ATLAS Collaboration, arXiv:2207.00338 (e, } \mu \text { final states only) } \\
\sigma\left(p p \rightarrow H \rightarrow Z \ell^{+} \ell^{-}\right)=1.34 \pm 0.12 \mathrm{pb} \longrightarrow 10^{3} \text { events @ LHC run2 } \\
\text { ATLAS Collaboration, Eur. Phys. J.C } 80(2020), \text { no. } 10957
\end{array}\right.
$$

The reconstruction of the H rest frame is needed to determine m_{H} in these searches.

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95\% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \tilde{a}_{V}\right)-O_{i}(0,0)}{\left.\overparen{\sigma}_{i}\right) \leftarrow ?}\right]^{2} \leq 5.991
$$

O_{i} are the observables $\left\{\mathcal{C}_{\text {odd }}, \mathcal{B}_{\text {ent }}\right\}$ or $\left\{\mathcal{C}_{\text {odd }}, \mathcal{O}_{z}\right\}$, depending on the purity
Take a step back: how do we see the processes we are interested in?

$$
\begin{gathered}
\text { @ } \sqrt{s}=13 \mathrm{TeV}: \\
g g \text { fusion mostly }
\end{gathered}\left\{\begin{array}{l}
\sigma\left(p p \rightarrow H \rightarrow W^{+} \ell^{-} \bar{\nu}_{\ell}\right)=12.0 \pm 1.4 \mathrm{pb} \longrightarrow 10^{5} \text { events @ LHC run2 } \\
\text { ATLAS Collaboration, arXiv:2207.00338 (e, } \mu \text { final states only }) \\
\sigma\left(p p \rightarrow H \rightarrow Z \ell^{+} \ell^{-}\right)=1.34 \pm 0.12 \mathrm{pb} \longrightarrow 10^{3} \text { events @ LHC run2 } \\
\text { ATLAS Collaboration, Eur. Phys. J.C } 80(2020) \text {, no. } 10957
\end{array}\right.
$$

The reconstruction of the H rest frame is needed to determine m_{H} in these searches. The same reconstruction is the main source of uncertainty in the determination of the ZZ^{*} or $W W^{*}$ polarizations.

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95\% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i} \longleftarrow ?}\right]^{2} \leq 5.991 \quad \begin{aligned}
& O_{i} \text { are the observables }\left\{\mathcal{C}_{\text {odd, }} \text { Bent }\right\} \text { or }\left\{\mathcal{C}_{\text {odd }, ~} \mathcal{C}_{2}\right\}, \\
& \text { depending on the purity }
\end{aligned}
$$

Take a step back: how do we see the processes we are interested in?

$$
\begin{aligned}
& \text { @ } \sqrt{s}=13 \mathrm{TeV} \text { : } \\
& \text { gg fusion mostly }
\end{aligned}
$$

The reconstruction of the H rest frame is needed to determine m_{H} in these searches. The same reconstruction is the main source of uncertainty in the determination of the Z^{*} or $W W^{*}$ polarizations.
We use the error on m_{H} as a proxy for the uncertainty in our computation and determine σ_{i} via a MC simulation, obtaining the distributions of O_{i} by sampling m_{H} :

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i} \longleftarrow ?}\right]^{2} \leq 5.991 \quad \begin{aligned}
& O_{i} \text { are the observables }\left\{\text { Codd, } _ { \text { ofent } \} } \text { or } \left\{\text { Codd }_{\text {odd } \left., \mathcal{C}_{2}\right\},}\right.\right. \text { depending on the purity }
\end{aligned}
$$

Take a step back: how do we see the processes we are interested in?

The reconstruction of the H rest frame is needed to determine m_{H} in these searches. The same reconstruction is the main source of uncertainty in the determination of the ZZ^{*} or $W W^{*}$ polarizations.
We use the error on m_{H} as a proxy for the uncertainty in our computation and determine σ_{i} via a MC simulation, obtaining the distributions of O_{i} by sampling m_{H} :

- Works well for Z^{*} :

$$
m_{H}=124 \pm 0.18 \pm 0.04
$$

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i} \longleftarrow ?}\right]^{2} \leq 5.991 \quad \begin{aligned}
& O_{i} \text { are the observables }\left\{\text { Codd, } _ { \text { ofent } \} } \text { or } \left\{\text { Codd }_{\text {odd } \left., \mathcal{C}_{2}\right\},}\right.\right. \text { depending on the purity }
\end{aligned}
$$

Take a step back: how do we see the processes we are interested in?

The reconstruction of the H rest frame is needed to determine m_{H} in these searches. The same reconstruction is the main source of uncertainty in the determination of the ZZ^{*} or $W W^{*}$ polarizations.
We use the error on m_{H} as a proxy for the uncertainty in our computation and determine σ_{i} via a MC simulation, obtaining the distributions of O_{i} by sampling m_{H} :

- Works well for Z^{*} :
$m_{H}=124 \pm 0.18 \pm 0.04$
ATLAS Collaboration, Phys. Lett. B 843 (2023) 137880
- Less so for WW* due to neutrinos: 5 GeV uncertainty for fully leptonic decays

The strategy

To constrain the anomalous couplings we use a x^{2} test set for a 95% CL:

$$
\sum_{i}\left[\frac{O_{i}\left(a_{V}, \widetilde{a}_{V}\right)-O_{i}(0,0)}{\sigma_{i} \longleftarrow ?}\right]^{2} \leq 5.991 \quad \begin{aligned}
& O_{i} \text { are the observables }\left\{\text { Codd, } _ { \text { ofent } \} } \text { or } \left\{\text { Codd }_{\text {odd } \left., \mathcal{C}_{2}\right\},}\right.\right. \text { depending on the purity }
\end{aligned}
$$

Take a step back: how do we see the processes we are interested in?

The reconstruction of the H rest frame is needed to determine m_{H} in these searches. The same reconstruction is the main source of uncertainty in the determination of the Z^{*} or $W W^{*}$ polarizations.
We use the error on m_{H} as a proxy for the uncertainty in our computation and determine σ_{i} via a MC simulation, obtaining the distributions of O_{i} by sampling m_{H} :

- Works well for Z^{*} :
$m_{H}=124 \pm 0.18 \pm 0.04$
ATLAS Collaboration, Phys. Lett. B 843 (2023) 137880
- Less so for WW* due to neutrinos: 5 GeV uncertainty for fully leptonic decays CMS Collaboration, Eur. Phys. J. C 83 (2023), no. 7667
- half (hopefully) for semi-leptonic decays (s-jets identified via c-tagging of the companion jet)

Results (in theory):

To see how the method fairs we first ignore backgrounds

Results (in theory):

To see how the method fairs we first ignore backgrounds

95\% CL with $\mathcal{C}_{\text {odd, }}$, CBent
LHC run2: $\mathcal{L}_{\text {int }}=140 \mathrm{fb}^{-1}$
HiLumi: $\mathcal{L}_{\text {int }}=3 \mathrm{ab}^{-1}$
The HiLumi projections assume statistical errors dominate

Results (in theory):

To see how the method fairs we first ignore backgrounds

95\% CL with Codd, ©́ent
LHC run2: $\mathcal{L}_{\text {int }}=140 \mathrm{fb}^{-1}$
HiLumi: $\mathcal{L}_{\text {int }}=3 \mathrm{ab}^{-1}$
The HiLumi projections assume statistical errors dominate

The marginalized bounds are:

run2	HiLumi
$\left\|a_{W}\right\| \leq 0.033$	$\left\|a_{W}\right\| \leq 0.0070$
$\left\|\widetilde{a}_{W}\right\| \leq 0.031$	$\left\|\widetilde{a}_{W}\right\| \leq 0.0068$
$\left\|a_{Z}\right\| \leq 0.0019$	$\left\|a_{Z}\right\| \leq 0.00040$
$\left\|\widetilde{a}_{Z}\right\| \leq 0.0039$	$\left\|\widetilde{a}_{Z}\right\| \leq 0.00086$

Results (in theory):

To see how the method fairs we first ignore backgrounds

95\% CL with $\mathcal{C}_{\text {odd, }}$ © Cent

LHC run2: $\mathcal{L}_{\text {int }}=140 \mathrm{fb}^{-1}$
HiLumi: $\mathcal{L}_{\text {int }}=3 \mathrm{ab}^{-1}$
The HiLumi projections assume statistical errors dominate

The marginalized bounds are:

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

$$
\rho_{\mathrm{ZZ}}=\alpha \rho_{\mathrm{H} \rightarrow \mathrm{ZZ}}+(1-\alpha) \rho_{\mathrm{BCKG}}
$$

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on ZZ*.

$$
\rho_{\mathrm{ZZ}}=\alpha \rho_{\mathrm{H} \rightarrow \mathrm{zZ}}+\left(1-\alpha \underset{\rho_{\mathrm{BCKG}} \longleftarrow}{ } \begin{array}{l}
\text { We compute the density matrix } \\
\text { for } \mathrm{pp} \rightarrow \mathrm{ZZ}^{*} \text { mediated by EW } \\
\text { interactions }
\end{array}\right.
$$

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

We obtain:

95\% CL with $\mathcal{C}_{\text {odd, }} \mathcal{G}_{2}$
LHC run2: $\mathcal{L}_{\text {int }}=140 \mathrm{fb}^{-1}$
HiLumi: $\mathcal{L}_{\text {int }}=3 \mathrm{ab}^{-1}$

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

We obtain:

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

We obtain:

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

We obtain:

CMS gave bounds on the quantities

$$
f_{g 2}=\frac{\sigma_{2}}{\sigma}\left|a_{V}\right|^{2} \quad f_{g 3}=\frac{\sigma_{3}}{\sigma}\left|\widetilde{a}_{V}\right|^{2}
$$

where σ_{i} are cross sections involving only the i-th anomalous coupling and σ the total cross section, finding:

$$
f_{g 2}^{V}<3.4 \times 10^{-3} \quad f_{g 3}^{V}<1.4 \times 10^{-2}
$$

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

We obtain:

CMS gave bounds on the quantities

$$
f_{g 2}=\frac{\sigma_{2}}{\sigma}\left|a_{V}\right|^{2} \quad f_{g 3}=\frac{\sigma_{3}}{\sigma}\left|\widetilde{a}_{V}\right|^{2}
$$

where σ_{i} are cross sections involving only the i-th anomalous coupling and σ the total cross section, finding:

$$
f_{g 2}^{V}<3.4 \times 10^{-3} \quad f_{g 3}^{V}<1.4 \times 10^{-2}
$$

With the results for the LHC run2 data we have:

$$
f_{g 2}^{Z}<7.8 \times 10^{-6} \quad f_{g 3}^{Z}<1.5 \times 10^{-5}
$$

More realistic*** results:

The $W_{j j}$ background to $H \rightarrow W W^{*}$ is rather large and uncertain. Focus on $Z Z^{*}$.

We obtain:

CMS gave bounds on the quantities

$$
f_{g 2}=\frac{\sigma_{2}}{\sigma}\left|a_{V}\right|^{2} \quad f_{g 3}=\frac{\sigma_{3}}{\sigma}\left|\widetilde{a}_{V}\right|^{2}
$$

where σ_{i} are cross sections involving only the i-th anomalous coupling and σ the total cross section, finding:

$$
f_{g 2}^{V}<3.4 \times 10^{-3} \quad f_{g 3}^{V}<1.4 \times 10^{-2}
$$

With the results for the LHC run2 data we have:

```
fg2
```

Not hopeless at all

Summary

Summary

- Quantum tomography provides the means to reconstruct the density matrix of a state. We applied it to study the polarizations of massive vector bosons emitted in the decay of a Higgs boson.

Summary

- Quantum tomography provides the means to reconstruct the density matrix of a state. We applied it to study the polarizations of massive vector bosons emitted in the decay of a Higgs boson.
- Anomalous couplings stemming from physics beyond the Standard model can be constrained by means of observables defined in terms of the polarization density matrix

Summary

- Quantum tomography provides the means to reconstruct the density matrix of a state. We applied it to study the polarizations of massive vector bosons emitted in the decay of a Higgs boson.
- Anomalous couplings stemming from physics beyond the Standard model can be constrained by means of observables defined in terms of the polarization density matrix
- We identified a set of three observables that provide the most stringent limits to-date: two are linked to entanglement and one to the CP nature of the Higgs boson

Summary

- Quantum tomography provides the means to reconstruct the density matrix of a state. We applied it to study the polarizations of massive vector bosons emitted in the decay of a Higgs boson.
- Anomalous couplings stemming from physics beyond the Standard model can be constrained by means of observables defined in terms of the polarization density matrix
- We identified a set of three observables that provide the most stringent limits to-date: two are linked to entanglement and one to the CP nature of the Higgs boson
- For the $W W^{*}$ channel, the power of the method is diminished by the uncertainties due to the presence of neutrinos in the final state, which prevent an accurate reconstruction of the Higgs boson rest frame

Summary

- Quantum tomography provides the means to reconstruct the density matrix of a state. We applied it to study the polarizations of massive vector bosons emitted in the decay of a Higgs boson.
- Anomalous couplings stemming from physics beyond the Standard model can be constrained by means of observables defined in terms of the polarization density matrix
- We identified a set of three observables that provide the most stringent limits to-date: two are linked to entanglement and one to the CP nature of the Higgs boson
- For the $W W^{*}$ channel, the power of the method is diminished by the uncertainties due to the presence of neutrinos in the final state, which prevent an accurate reconstruction of the Higgs boson rest frame
- For the $Z Z^{*}$ channel, already with the available LHC data, this strategy offers limits competitive with the best current bounds

Summary

- Quantum tomography provides the means to reconstruct the density matrix of a state. We applied it to study the polarizations of massive vector bosons emitted in the decay of a Higgs boson.
- Anomalous couplings stemming from physics beyond the Standard model can be constrained by means of observables defined in terms of the polarization density matrix
- We identified a set of three observables that provide the most stringent limits to-date: two are linked to entanglement and one to the CP nature of the Higgs boson
- For the $W W^{*}$ channel, the power of the method is diminished by the uncertainties due to the presence of neutrinos in the final state, which prevent an accurate reconstruction of the Higgs boson rest frame
- For the $Z Z^{*}$ channel, already with the available LHC data, this strategy offers limits competitive with the best current bounds

it could be worth to include these observables in routine experimental analyses

[^0]: A. J. Barr, Phys. Lett. B 825 (2022) 136866
 J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, and J. M. Moreno, Phys. Rev. D 107 (2023), no. 1016012

