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What are you even talking about?
We consider possible modifications of the Higgs-Vector bosons vertex 
from its Standard Model form

1 Introduction

T he decay of the Higgs boson provides an ideal laboratory for a systematic study of weak
gauge bosons polarizations. The massive gauge bosons—whose polarizations represent quantum

states with three possible levels, that is, qutrits—act as their own polarimeters and the full polarization
density matrix can be reconstructed, within the inherent uncertainties of the procedure, from the
angular distribution of the final leptons in what has been dubbed quantum tomography.

This opportunity has been explored in a series of papers [1–4] in which the polarization density
matrix of the bipartite system formed by the two gauge bosons has been computed, and observables
quantifying the entanglement [5] and the violation of the Bell inequalities [6] were analyzed.

In this work we utilize the polarization density matrix of the processes H ! WW ⇤ and H ! ZZ⇤

(where W ⇤ and Z⇤ denote off-shell states) to study the effect of possible anomalous couplings between
the Higgs boson and the weak gauge bosons. The study of anomalous couplings is an important area
of research in particle physics because their existence would imply the presence of new particles or
interactions. Their precise measurement can then provide insights into the nature of new physics
beyond the Standard Model (SM). We are particularly interested in the CP nature of these couplings
and the related question of the parity of the Higgs boson, that is, whether it has or not a pseudo-scalar
component.

The most general Lagrangian for the processes we are interested in can be written as
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The first line in Eq. (1.1) gives the SM Lagrangian, the second introduces two possible anomalous
couplings for each of the gauge bosons V = W or Z: aV and eaV . In Eq. (1.1), g is the SU(2) coupling,
V µ⌫ are the field strength tensors and eV µ⌫ = 1

2✏
µ⌫⇢�V⇢�. All couplings in Eq. (1.1) are taken to be

real. The coupling aV stands for a departure of the fundamental interaction from that of the SM. A
non-vanishing coupling eaV signals the presence of a pseudo-scalar component in the Higgs boson and
the possibility of CP violation in the interference with the SM vertex.

Numerous works have studied the anomalous couplings in Eq. (1.1) by means of dedicated observ-
ables [7–17] and in the framework of effective field theories [18–20]—even though most of the references
only consider observables that are combinations of the final lepton momenta and energies. The struc-
ture of the helicity amplitudes for the considered processes has been investigated in [21–27] and applied
to the anomalous couplings in [28].

In this work, we introduce a new strategy that exploits the full polarization density matrix. Knowl-
edge of the density matrix gives a bird’s-eye view of the possible observables available for a given
process. Some of them, like those linked to entanglement, are untested yet. Others are already known
and utilized, like products of momenta and polarizations or the cross section—the simplest of them
all.

For the present case of the Higgs boson decays, we define three observables in terms of the entries
of the polarization density matrix to provide a new mean to constrain the anomalous couplings in
Eq. (1.1): two observables are linked to entanglement in the spin correlations, the third is related
to products of one momentum and two polarizations and it is specific to the CP-odd vertex. This
combination of observables seems as sensitive or even more to any changes in the Lagrangian as
analyses based on data from multiple cross sections and, therefore, it represents a useful tool to further
build on this more traditional approach.
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Theoretical quantum tomography
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 

Testing Bell inequalities and entanglement with di-boson final states

Luca Marzola
Laboratory of High Energy and Computational Physics, National Institute of Chemical Physics and

Biophysics, Rävala pst. 10, 10143 Tallinn, Estonia.

We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
periments. An important example is provided by the entanglement content of the quantum
state under examination. Any interaction between two quantum systems, in fact, is bound to
yield quantum correlations that entangle these systems, thereby bearing e↵ects measurable with
suitable quantum observables. Quantum correlations themselves can be subject to experimental
investigations, aiming in this case to establish the nature of the theory underlying the processes
we observe. Concerning this, John Bell showed in 1964 1 that the presence of quantum corre-
lations makes it possible to distinguish between quantum mechanics and alternative classical
theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
By evaluating the same correlations according to the rules of quantum mechanics, we find instead
that the inequality can be violated.

In the followinga we discuss some of the possibilities o↵ered by quantum tomography at
collider experiments focusing mostly on ZZ states. Given that W and Z bosons have three
polarization modes each, we can regard these objects as quantum three-level systems – qutrits,
in short – and investigate correlations in the polarization space spanned by two qutrits originated
in an interaction.

2 Qutrits

The transition amplitude leading to the production of a massive gauge boson with polarization
� 2 {+1, 0,�1} and momentum p can be written as

M(�, p) = Aµ"
µ⇤
�
(p) (1)

a
Drawing from Refs.

2,3
prepared in collaboration with M. Fabbrichesi, R. Floreanini and E. Gabrielli.
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yield quantum correlations that entangle these systems, thereby bearing e↵ects measurable with
suitable quantum observables. Quantum correlations themselves can be subject to experimental
investigations, aiming in this case to establish the nature of the theory underlying the processes
we observe. Concerning this, John Bell showed in 1964 1 that the presence of quantum corre-
lations makes it possible to distinguish between quantum mechanics and alternative classical
theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
By evaluating the same correlations according to the rules of quantum mechanics, we find instead
that the inequality can be violated.

In the followinga we discuss some of the possibilities o↵ered by quantum tomography at
collider experiments focusing mostly on ZZ states. Given that W and Z bosons have three
polarization modes each, we can regard these objects as quantum three-level systems – qutrits,
in short – and investigate correlations in the polarization space spanned by two qutrits originated
in an interaction.

2 Qutrits

The transition amplitude leading to the production of a massive gauge boson with polarization
� 2 {+1, 0,�1} and momentum p can be written as
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In order to compute the polarization density matrix from the amplitude of the underlying process
we then need an expression for the mapping P. To this end, consider the explicit form of the
wave vector of our massive gauge boson

"
µ

�
(p) = � 1p

2
|�| (�n

µ

1 + i n
µ

2 ) +
⇣
1� |�|

⌘
n
µ

3 , (6)

where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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⇢
2
�
= 1).
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
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In order to compute the polarization density matrix from the amplitude of the underlying process
we then need an expression for the mapping P. To this end, consider the explicit form of the
wave vector of our massive gauge boson

"
µ

�
(p) = � 1p

2
|�| (�n

µ

1 + i n
µ

2 ) +
⇣
1� |�|

⌘
n
µ

3 , (6)

where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
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From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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Theoretical quantum tomography
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 

Testing Bell inequalities and entanglement with di-boson final states
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
periments. An important example is provided by the entanglement content of the quantum
state under examination. Any interaction between two quantum systems, in fact, is bound to
yield quantum correlations that entangle these systems, thereby bearing e↵ects measurable with
suitable quantum observables. Quantum correlations themselves can be subject to experimental
investigations, aiming in this case to establish the nature of the theory underlying the processes
we observe. Concerning this, John Bell showed in 1964 1 that the presence of quantum corre-
lations makes it possible to distinguish between quantum mechanics and alternative classical
theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
By evaluating the same correlations according to the rules of quantum mechanics, we find instead
that the inequality can be violated.

In the followinga we discuss some of the possibilities o↵ered by quantum tomography at
collider experiments focusing mostly on ZZ states. Given that W and Z bosons have three
polarization modes each, we can regard these objects as quantum three-level systems – qutrits,
in short – and investigate correlations in the polarization space spanned by two qutrits originated
in an interaction.

2 Qutrits

The transition amplitude leading to the production of a massive gauge boson with polarization
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In order to compute the polarization density matrix from the amplitude of the underlying process
we then need an expression for the mapping P. To this end, consider the explicit form of the
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5

Pµ⌫

��0(p) =
1

3

✓
�g

µ⌫ +
p
µ
p
⌫

m
2
V

◆
���0 � i

2mV

✏
µ⌫↵�

p↵ni� (Si)��0 �
1

2
n
µ

i
n
⌫

j (Sij)��0 , (7)

where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
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gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
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3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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after the normalization of the state vector and having inserted a factor of (-1) to account for the
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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after the normalization of the state vector and having inserted a factor of (-1) to account for the
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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Theoretical quantum tomography
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have

⇢ =
Aµ⌫A†

µ0⌫0��M̄
��2

h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (9)

where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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Theoretical quantum tomography
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.
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of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
periments. An important example is provided by the entanglement content of the quantum
state under examination. Any interaction between two quantum systems, in fact, is bound to
yield quantum correlations that entangle these systems, thereby bearing e↵ects measurable with
suitable quantum observables. Quantum correlations themselves can be subject to experimental
investigations, aiming in this case to establish the nature of the theory underlying the processes
we observe. Concerning this, John Bell showed in 1964 1 that the presence of quantum corre-
lations makes it possible to distinguish between quantum mechanics and alternative classical
theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
By evaluating the same correlations according to the rules of quantum mechanics, we find instead
that the inequality can be violated.

In the followinga we discuss some of the possibilities o↵ered by quantum tomography at
collider experiments focusing mostly on ZZ states. Given that W and Z bosons have three
polarization modes each, we can regard these objects as quantum three-level systems – qutrits,
in short – and investigate correlations in the polarization space spanned by two qutrits originated
in an interaction.

2 Qutrits

The transition amplitude leading to the production of a massive gauge boson with polarization
� 2 {+1, 0,�1} and momentum p can be written as

M(�, p) = Aµ"
µ⇤
�
(p) (1)

a
Drawing from Refs.

2,3
prepared in collaboration with M. Fabbrichesi, R. Floreanini and E. Gabrielli.and the state |V µi of the boson V is consequently determined as

|V ⌫i =
X

�

M(�)"⌫
�
. (2)

To construct the corresponding (covariant) density matrix we proceed as usual, obtaining

⇢
µ⌫ = � |V µihV ⌫ |

hV µ|Vµi
(3)

after the normalization of the state vector and having inserted a factor of (-1) to account for the
signature (1, -1, -1, -1) of the Minkowski metric gµ⌫ . To obtain the polarization density matrix
we then move to polarization space by use of the mapping Pµ⌫

��0(p) = "
µ⇤
�
(p) "⌫

�0(p) :

⇢��0 = Pµ⌫

��0 ⇢µ⌫ . (4)

It follows from the orthonormality relation gµ⌫ "
µ

�
(p) "⌫

�0(p) = ����0 and Eqs. (1)-(4) that

⇢��0 =
M(�)M†(�0)P

�00 M†(�00)M(�00)
=

AµA†
⌫Pµ⌫

��0��M̄
��2 . (5)

In order to compute the polarization density matrix from the amplitude of the underlying process
we then need an expression for the mapping P. To this end, consider the explicit form of the
wave vector of our massive gauge boson

"
µ

�
(p) = � 1p

2
|�| (�n

µ

1 + i n
µ

2 ) +
⇣
1� |�|

⌘
n
µ

3 , (6)

where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
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gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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gauge bosons, V1 and V2. In this case we have

⇢ =
Aµ⌫A†

µ0⌫0��M̄
��2

h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (9)

where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr

�
⇢
2
�
= 1).
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Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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with Si, i 2 {1, 2, 3}, being the spin-1 matrix representations of the SU(2) generators. The matrices
Sij are defined as Sij = SiSj + SjSi � 4

31 �ij , with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix.
Eq. (3.6) with M = MV or M = M⇤

V
for the on-shell and off-shell boson, respectively.1

By using the expression in Eq. (3.5) we have that

⇢H =
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Pµµ
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(k1)⌦ P⌫⌫
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, (3.8)

where the expression for P⌫⌫
0
(k1,2) is given in Eq. (3.6) and |M|2 stands for the unpolarized square

amplitude of the process, that for V = W reads

|M|2 =
g2

4f2M2
V

�H , (3.9)

which in turn gives the cross section. The coefficients fa, ga, hab in Eq. (2.1) can be obtained from the
relation in Eq. (3.8) upon a projection of the spin matrices Si and their products on the Gell-Mann
basis [4]. The matrix ⇢H above satisfies the unitarity relation Tr [⇢H ] = 1.

The relation in Eq. (3.8) provides a simple way to compute the polarization density matrix of the
massive spin-1 particles starting from the amplitudes of the related production process. In the case of
V = W , we find that the non-vanishing fa elements are given as

f3 = � 1

6�H

h
1� f2

⇣
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⌘i
�H ,

f8 = � 1p
3
f3 , (3.10)
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For the helicity basis we use a representation where the eigenstates of S3 read

|+i =
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A , |�i =
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0
1

1

A , (3.7)

corresponding to the eigenvalues � = +1, 0,�1, respectively, and the symbols (Si)��0 and (Sij)��0 are the corresponding

matrix elements of the matrices Si and Sij on this basis respectively.
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Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL

X

i


Oi(aV ,eaV )�Oi(0, 0)

�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

with

Mµ⌫ = gMV ⇠V gµ⌫ � g

MW

h
aV (k⌫1k

µ

2 � gµ⌫k1 · k2) + ãV ✏
µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

M(�1,�2)M(�0
1,�

0
2)

† = Mµ⌫M
†
µ0⌫0P

µµ
0

�1�
0
1
(k1)P
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0
2
(k2) . (3.5)
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Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL
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in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results
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with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

with

Mµ⌫ = gMV ⇠V gµ⌫ � g

MW

h
aV (k⌫1k

µ

2 � gµ⌫k1 · k2) + ãV ✏
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where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain
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µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

M(�1,�2)M(�0
1,�

0
2)

† = Mµ⌫M
†
µ0⌫0P

µµ
0

�1�
0
1
(k1)P

⌫⌫
0

�2�
0
2
(k2) . (3.5)

6

f models the offshellness(?) of V*:



4

Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
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µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

M(�1,�2)M(�0
1,�

0
2)

† = Mµ⌫M
†
µ0⌫0P

µµ
0

�1�
0
1
(k1)P

⌫⌫
0

�2�
0
2
(k2) . (3.5)

6

f models the offshellness(?) of V*:



4

Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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with Si, i 2 {1, 2, 3}, being the spin-1 matrix representations of the SU(2) generators. The matrices
Sij are defined as Sij = SiSj + SjSi � 4

31 �ij , with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix.
Eq. (3.6) with M = MV or M = M⇤
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for the on-shell and off-shell boson, respectively.1
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which in turn gives the cross section. The coefficients fa, ga, hab in Eq. (2.1) can be obtained from the
relation in Eq. (3.8) upon a projection of the spin matrices Si and their products on the Gell-Mann
basis [4]. The matrix ⇢H above satisfies the unitarity relation Tr [⇢H ] = 1.
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corresponding to the eigenvalues � = +1, 0,�1, respectively, and the symbols (Si)��0 and (Sij)��0 are the corresponding

matrix elements of the matrices Si and Sij on this basis respectively.
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with ga = fa for a 2 {1, . . . , 8}, and where
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The non-vanishing hab = h̃ab/�H elements for V = W are given as
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The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as

| i = 1

|M|

h
h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)
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Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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where the expression for P⌫⌫
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|M|2 =
g2

4f2M2
V

�H , (3.9)

which in turn gives the cross section. The coefficients fa, ga, hab in Eq. (2.1) can be obtained from the
relation in Eq. (3.8) upon a projection of the spin matrices Si and their products on the Gell-Mann
basis [4]. The matrix ⇢H above satisfies the unitarity relation Tr [⇢H ] = 1.
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL
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 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.
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with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by
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where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain
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Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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with Si, i 2 {1, 2, 3}, being the spin-1 matrix representations of the SU(2) generators. The matrices
Sij are defined as Sij = SiSj + SjSi � 4
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the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
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V∈{W,Z}

…and for the density matrix we 
obtain:  

<latexit sha1_base64="EoCLq5Yd4RC3dGy8YRQ9ORfpUkU="></latexit>

⇢1⌦1 =
Mµ⌫M†
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��2

[Pµ⇢(k1)⌦ P⌫�(k2)]

where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by
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i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density

matrix ⇢ = | ih | is written as
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in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p
x2 � 1 . (3.18)

The coefficients A and B for V = W are given by
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B = �g aV MV , C = ig ãV MV (3.19)

with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as
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p
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�
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i
, (3.20)

where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL

X

i


Oi(aV ,eaV )�Oi(0, 0)

�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
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⌫?(k2,�2) , (3.3)

with
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where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain
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ξW=1, ξZ=1/(2 cosθW)

with ga = fa for a 2 {1, . . . , 8}, and where

�H =
h
1 + 2 f2

�
ea2V + a2V

� i
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⌘
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⌘
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V

i
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The non-vanishing hab = h̃ab/�H elements for V = W are given as
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.

The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as

| i = 1

|M|

h
h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)
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Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).
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which in turn gives the cross section. The coefficients fa, ga, hab in Eq. (2.1) can be obtained from the
relation in Eq. (3.8) upon a projection of the spin matrices Si and their products on the Gell-Mann
basis [4]. The matrix ⇢H above satisfies the unitarity relation Tr [⇢H ] = 1.

The relation in Eq. (3.8) provides a simple way to compute the polarization density matrix of the
massive spin-1 particles starting from the amplitudes of the related production process. In the case of
V = W , we find that the non-vanishing fa elements are given as

f3 = � 1

6�H

h
1� f2

⇣
ea2V + a2V

⌘i
�H ,

f8 = � 1p
3
f3 , (3.10)

1
For the helicity basis we use a representation where the eigenstates of S3 read

|+i =

0

@
1
0
0

1

A , |0i =

0

@
0
1
0

1

A , |�i =

0

@
0
0
1

1

A , (3.7)

corresponding to the eigenvalues � = +1, 0,�1, respectively, and the symbols (Si)��0 and (Sij)��0 are the corresponding

matrix elements of the matrices Si and Sij on this basis respectively.
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Spin-summed 
squared amplitude

where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by

| i = 1p
2 + {2

h
|V (+)V ⇤(�)i � { |V (0)V ⇤(0)i+ |V (�)V ⇤(+)i

i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density

matrix ⇢ = | ih | is written as

⇢H =
1

|M|2

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 h+h⇤

+ 0 h+h⇤
0 0 h+h⇤
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0 0 h0h⇤

� 0 0
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0 0 h�h⇤
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0 0 h�h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (3.17)

in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p
x2 � 1 . (3.18)

The coefficients A and B for V = W are given by

A = g

✓
MV + aV

k1 · k2
MV

◆

B = �g aV MV , C = ig ãV MV (3.19)

with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as

ĥ�ĥ
⇤
� =

1

9

h
1 + 3

p
3
�
f8 � 2g8 � 2h38

�
+ 9f3 � 6h88

i
,

ĥ0ĥ
⇤
� = h16 + i

�
h17 � h26

�
+ h27 ,

ĥ+ĥ
⇤
� = h44 + i

�
h45 � h54

�
+ h55 ,

ĥ0ĥ
⇤
0 =

1

9

h
1� 9

�
f3 + g3 � h33

�
+ 3

p
3
�
f8 + g8 � h38 � h83

�
+ 3h88

i
,

ĥ+ĥ
⇤
0 = h61 + i

�
h62 � h71

�
+ h72 ,

ĥ+ĥ
⇤
+ =

1

9

h
1 + 3

p
3
�
g8 � 2f8 � 2h83

�
+ 9g3 � 6h88

i
, (3.20)

where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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ĥ�ĥ
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ĥ0ĥ
⇤
0 =

1

9

h
1� 9

�
f3 + g3 � h33

�
+ 3

p
3
�
f8 + g8 � h38 � h83

�
+ 3h88

i
,

ĥ+ĥ
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL

X

i


Oi(aV ,eaV )�Oi(0, 0)

�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

with

Mµ⌫ = gMV ⇠V gµ⌫ � g

MW

h
aV (k⌫1k

µ

2 � gµ⌫k1 · k2) + ãV ✏
µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

M(�1,�2)M(�0
1,�

0
2)

† = Mµ⌫M
†
µ0⌫0P

µµ
0

�1�
0
1
(k1)P

⌫⌫
0

�2�
0
2
(k2) . (3.5)

6

f models the offshellness(?) of V*:



4

Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).

where Pµ⌫

��0(k) is equal to [37,38]

Pµ⌫

��0(p) = "µ(p,�)?"⌫(p,�0)

=
1

3

✓
�gµ⌫ +

pµp⌫

M2
V

◆
���0 � i

2MV

✏µ⌫↵�p↵n
i

�
(Si)��0 �

1

2
nµ

i
n⌫

j (Sij)��0 , (3.6)

with Si, i 2 {1, 2, 3}, being the spin-1 matrix representations of the SU(2) generators. The matrices
Sij are defined as Sij = SiSj + SjSi � 4

31 �ij , with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix.
Eq. (3.6) with M = MV or M = M⇤

V
for the on-shell and off-shell boson, respectively.1

By using the expression in Eq. (3.5) we have that

⇢H =
Mµ⌫M†

µ0⌫0

|M|2
h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (3.8)

where the expression for P⌫⌫
0
(k1,2) is given in Eq. (3.6) and |M|2 stands for the unpolarized square

amplitude of the process, that for V = W reads

|M|2 =
g2

4f2M2
V

�H , (3.9)

which in turn gives the cross section. The coefficients fa, ga, hab in Eq. (2.1) can be obtained from the
relation in Eq. (3.8) upon a projection of the spin matrices Si and their products on the Gell-Mann
basis [4]. The matrix ⇢H above satisfies the unitarity relation Tr [⇢H ] = 1.

The relation in Eq. (3.8) provides a simple way to compute the polarization density matrix of the
massive spin-1 particles starting from the amplitudes of the related production process. In the case of
V = W , we find that the non-vanishing fa elements are given as

f3 = � 1

6�H

h
1� f2

⇣
ea2V + a2V

⌘i
�H ,

f8 = � 1p
3
f3 , (3.10)

1
For the helicity basis we use a representation where the eigenstates of S3 read

|+i =

0

@
1
0
0

1

A , |0i =

0

@
0
1
0

1

A , |�i =

0

@
0
0
1

1

A , (3.7)

corresponding to the eigenvalues � = +1, 0,�1, respectively, and the symbols (Si)��0 and (Sij)��0 are the corresponding

matrix elements of the matrices Si and Sij on this basis respectively.
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So we start computing…

of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
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for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
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V∈{W,Z}

…and for the density matrix we 
obtain:  

<latexit sha1_base64="EoCLq5Yd4RC3dGy8YRQ9ORfpUkU="></latexit>

⇢1⌦1 =
Mµ⌫M†

⇢���M
��2

[Pµ⇢(k1)⌦ P⌫�(k2)]

where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by

| i = 1p
2 + {2

h
|V (+)V ⇤(�)i � { |V (0)V ⇤(0)i+ |V (�)V ⇤(+)i

i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density

matrix ⇢ = | ih | is written as
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in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p
x2 � 1 . (3.18)

The coefficients A and B for V = W are given by

A = g

✓
MV + aV

k1 · k2
MV

◆

B = �g aV MV , C = ig ãV MV (3.19)

with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as
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h
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p
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�
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i
,
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⇤
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�
+ h27 ,

ĥ+ĥ
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�
+ h55 ,

ĥ0ĥ
⇤
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h
1� 9

�
f3 + g3 � h33

�
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p
3
�
f8 + g8 � h38 � h83

�
+ 3h88

i
,

ĥ+ĥ
⇤
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�
+ h72 ,

ĥ+ĥ
⇤
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1
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h
1 + 3

p
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�
g8 � 2f8 � 2h83

�
+ 9g3 � 6h88

i
, (3.20)

where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL

X

i


Oi(aV ,eaV )�Oi(0, 0)

�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

with

Mµ⌫ = gMV ⇠V gµ⌫ � g

MW

h
aV (k⌫1k

µ

2 � gµ⌫k1 · k2) + ãV ✏
µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

M(�1,�2)M(�0
1,�

0
2)

† = Mµ⌫M
†
µ0⌫0P

µµ
0

�1�
0
1
(k1)P

⌫⌫
0

�2�
0
2
(k2) . (3.5)
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ξW=1, ξZ=1/(2 cosθW)

with ga = fa for a 2 {1, . . . , 8}, and where

�H =
h
1 + 2 f2

�
ea2V + a2V

� i
m4

H � 2
h
1 + f2

⇣
1 + 2ea2V + 2a2V � 6aV

⌘

+ 2 f4
⇣
ea2V + a2V

⌘
m2

HM2
V +

"
1 + 2f6

⇣
ea2V + a2V

⌘

+ 2f2
⇣
5 + ea2V + a2V � 6aV

⌘
+ f4

⇣
1� 4ea2V + 8a2V � 12aV

⌘#
M4

V (3.11)

and
�H =

h
m4

H � 2
�
1 + f2

�
m2

HM2
V +

�
1� f2

�2
M4

V

i
. (3.12)

The non-vanishing hab = h̃ab/�H elements for V = W are given as

h̃16 = �1

2
f
n
aV m

2
H �

h �
1 + f2

�
aV � 2

i
M2

V

on
m2

H �
h
1 + f2 (1� 2aV )

i
M2

V

o
,

h̃61 = h̃16 = h̃27 = h̃72 ,

h̃17 = �1

2
f eaV

n
m2

H �
h
1 + f2 (1� 2aV )

i
M2

V

op
�H ,

h̃71 = �h̃17 = h̃26 = �h̃62 ,

h̃45 = f2 eaV
n
aV m

2
H +

h
2� (1 + f2)aV

i
M2

V

op
�H ,

h̃54 = �h̃45 ,

h̃33 =
1

4

n
m2

H �
h
1 + f2 (1� 2aV )

i
M2

V

o2
,

h̃38 = h̃83 = � 1

4
p
3
�H , (3.13)

h̃44 = h̃55 =
1

2
f2

nh
aV m

2
H + 2M2

V � (1 + f2)aV M
2
V

i2
� ea2V �H

o
,

h̃88 =
1

12

nh
1� 4 f2(ea2V + a2V )

i
m4

H � 2
h
1 + f2(1� 4ea2V � 4a2V + 6aV

�
� 4 f4(ea2V + a2V )

i
m2

HM2
V

+
h
1� 2 f2(7 + 2ea2V + 2a2V � 6aV ) + f4(1 + 8ea2V � 4a2V + 12aV )� 4f6(ea2V + 2a2V )

i
M4

V

o
.

The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as

| i = 1

|M|

h
h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)
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Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons, the vertex includes
the anomalous couplings in Eq. (1.1).

where Pµ⌫

��0(k) is equal to [37,38]

Pµ⌫

��0(p) = "µ(p,�)?"⌫(p,�0)

=
1

3

✓
�gµ⌫ +

pµp⌫

M2
V

◆
���0 � i

2MV

✏µ⌫↵�p↵n
i

�
(Si)��0 �

1

2
nµ

i
n⌫

j (Sij)��0 , (3.6)

with Si, i 2 {1, 2, 3}, being the spin-1 matrix representations of the SU(2) generators. The matrices
Sij are defined as Sij = SiSj + SjSi � 4

31 �ij , with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix.
Eq. (3.6) with M = MV or M = M⇤

V
for the on-shell and off-shell boson, respectively.1

By using the expression in Eq. (3.5) we have that

⇢H =
Mµ⌫M†

µ0⌫0

|M|2
h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (3.8)

where the expression for P⌫⌫
0
(k1,2) is given in Eq. (3.6) and |M|2 stands for the unpolarized square

amplitude of the process, that for V = W reads

|M|2 =
g2

4f2M2
V

�H , (3.9)

which in turn gives the cross section. The coefficients fa, ga, hab in Eq. (2.1) can be obtained from the
relation in Eq. (3.8) upon a projection of the spin matrices Si and their products on the Gell-Mann
basis [4]. The matrix ⇢H above satisfies the unitarity relation Tr [⇢H ] = 1.

The relation in Eq. (3.8) provides a simple way to compute the polarization density matrix of the
massive spin-1 particles starting from the amplitudes of the related production process. In the case of
V = W , we find that the non-vanishing fa elements are given as

f3 = � 1

6�H

h
1� f2

⇣
ea2V + a2V

⌘i
�H ,

f8 = � 1p
3
f3 , (3.10)

1
For the helicity basis we use a representation where the eigenstates of S3 read

|+i =

0

@
1
0
0

1

A , |0i =

0

@
0
1
0

1

A , |�i =

0

@
0
0
1

1

A , (3.7)

corresponding to the eigenvalues � = +1, 0,�1, respectively, and the symbols (Si)��0 and (Sij)��0 are the corresponding

matrix elements of the matrices Si and Sij on this basis respectively.
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Spin-summed 
squared amplitude

where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by

| i = 1p
2 + {2

h
|V (+)V ⇤(�)i � { |V (0)V ⇤(0)i+ |V (�)V ⇤(+)i

i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density

matrix ⇢ = | ih | is written as

⇢H =
1

|M|2

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 h+h⇤

+ 0 h+h⇤
0 0 h+h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 h0h⇤

+ 0 h0h⇤
0 0 h0h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 h�h⇤

+ 0 h�h⇤
0 0 h�h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (3.17)

in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p
x2 � 1 . (3.18)

The coefficients A and B for V = W are given by

A = g

✓
MV + aV

k1 · k2
MV

◆

B = �g aV MV , C = ig ãV MV (3.19)

with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as

ĥ�ĥ
⇤
� =

1

9

h
1 + 3

p
3
�
f8 � 2g8 � 2h38

�
+ 9f3 � 6h88

i
,

ĥ0ĥ
⇤
� = h16 + i

�
h17 � h26

�
+ h27 ,

ĥ+ĥ
⇤
� = h44 + i

�
h45 � h54

�
+ h55 ,

ĥ0ĥ
⇤
0 =

1

9

h
1� 9

�
f3 + g3 � h33

�
+ 3

p
3
�
f8 + g8 � h38 � h83

�
+ 3h88

i
,

ĥ+ĥ
⇤
0 = h61 + i

�
h62 � h71

�
+ h72 ,

ĥ+ĥ
⇤
+ =

1

9

h
1 + 3

p
3
�
g8 � 2f8 � 2h83

�
+ 9g3 � 6h88

i
, (3.20)

where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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ĥ+ĥ
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ĥ0ĥ
⇤
0 =

1

9

h
1� 9

�
f3 + g3 � h33

�
+ 3

p
3
�
f8 + g8 � h38 � h83

�
+ 3h88

i
,

ĥ+ĥ
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corresponding to the SM [4].
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where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
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V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when
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where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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The two vector bosons are in a 
pure state regardless of the 
anomalous-coupling values

of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL

X

i


Oi(aV ,eaV )�Oi(0, 0)

�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

with

Mµ⌫ = gMV ⇠V gµ⌫ � g

MW

h
aV (k⌫1k

µ

2 � gµ⌫k1 · k2) + ãV ✏
µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

M(�1,�2)M(�0
1,�

0
2)

† = Mµ⌫M
†
µ0⌫0P

µµ
0

�1�
0
1
(k1)P

⌫⌫
0

�2�
0
2
(k2) . (3.5)
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The pure state looks like this:

with ga = fa for a 2 {1, . . . , 8}, and where

�H =
h
1 + 2 f2

�
ea2V + a2V

� i
m4

H � 2
h
1 + f2

⇣
1 + 2ea2V + 2a2V � 6aV

⌘

+ 2 f4
⇣
ea2V + a2V

⌘
m2

HM2
V +

"
1 + 2f6

⇣
ea2V + a2V

⌘

+ 2f2
⇣
5 + ea2V + a2V � 6aV

⌘
+ f4

⇣
1� 4ea2V + 8a2V � 12aV

⌘#
M4

V (3.11)

and
�H =

h
m4

H � 2
�
1 + f2

�
m2

HM2
V +

�
1� f2

�2
M4

V

i
. (3.12)

The non-vanishing hab = h̃ab/�H elements for V = W are given as

h̃16 = �1

2
f
n
aV m

2
H �

h �
1 + f2

�
aV � 2

i
M2

V

on
m2

H �
h
1 + f2 (1� 2aV )

i
M2

V

o
,

h̃61 = h̃16 = h̃27 = h̃72 ,

h̃17 = �1

2
f eaV

n
m2

H �
h
1 + f2 (1� 2aV )

i
M2

V

op
�H ,

h̃71 = �h̃17 = h̃26 = �h̃62 ,

h̃45 = f2 eaV
n
aV m

2
H +

h
2� (1 + f2)aV

i
M2

V

op
�H ,

h̃54 = �h̃45 ,

h̃33 =
1

4

n
m2

H �
h
1 + f2 (1� 2aV )

i
M2

V

o2
,

h̃38 = h̃83 = � 1

4
p
3
�H , (3.13)

h̃44 = h̃55 =
1

2
f2

nh
aV m

2
H + 2M2

V � (1 + f2)aV M
2
V

i2
� ea2V �H

o
,

h̃88 =
1

12

nh
1� 4 f2(ea2V + a2V )

i
m4

H � 2
h
1 + f2(1� 4ea2V � 4a2V + 6aV

�
� 4 f4(ea2V + a2V )

i
m2

HM2
V

+
h
1� 2 f2(7 + 2ea2V + 2a2V � 6aV ) + f4(1 + 8ea2V � 4a2V + 12aV )� 4f6(ea2V + 2a2V )

i
M4

V

o
.

The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as

| i = 1

|M|

h
h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)
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The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as

| i = 1

|M|

h
h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)
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| ih | =

where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by

| i = 1p
2 + {2

h
|V (+)V ⇤(�)i � { |V (0)V ⇤(0)i+ |V (�)V ⇤(+)i

i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density

matrix ⇢ = | ih | is written as

⇢H =
1
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0 0 h�h⇤

� 0 0
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0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (3.17)

in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p
x2 � 1 . (3.18)

The coefficients A and B for V = W are given by

A = g

✓
MV + aV

k1 · k2
MV

◆

B = �g aV MV , C = ig ãV MV (3.19)

with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as
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, (3.20)

where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2
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the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by

| i = 1p
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i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density
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in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p
x2 � 1 . (3.18)

The coefficients A and B for V = W are given by

A = g

✓
MV + aV

k1 · k2
MV

◆

B = �g aV MV , C = ig ãV MV (3.19)

with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as
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⇤
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ĥ+ĥ
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⇤
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⇤
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, (3.20)

where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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ĥ�ĥ
⇤
� =

1

9

h
1 + 3

p
3
�
f8 � 2g8 � 2h38

�
+ 9f3 � 6h88

i
,

ĥ0ĥ
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ĥ+ĥ
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The pure state looks like this:
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The non-vanishing hab = h̃ab/�H elements for V = W are given as
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The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as

| i = 1

|M|

h
h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)
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ĥ0ĥ
⇤
� = h16 + i

�
h17 � h26

�
+ h27 ,

ĥ+ĥ
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ĥ0ĥ
⇤
0 =

1

9

h
1� 9

�
f3 + g3 � h33

�
+ 3

p
3
�
f8 + g8 � h38 � h83

�
+ 3h88

i
,

ĥ+ĥ
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with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as

ĥ�ĥ
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ĥ0ĥ
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ĥ+ĥ
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ĥ+ĥ
⇤
+ =

1

9

h
1 + 3

p
3
�
g8 � 2f8 � 2h83

�
+ 9g3 � 6h88

i
, (3.20)
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where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].

9

where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by

| i = 1p
2 + {2

h
|V (+)V ⇤(�)i � { |V (0)V ⇤(0)i+ |V (�)V ⇤(+)i

i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density

matrix ⇢ = | ih | is written as

⇢H =
1

|M|2

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 h+h⇤

+ 0 h+h⇤
0 0 h+h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 h0h⇤

+ 0 h0h⇤
0 0 h0h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 h�h⇤

+ 0 h�h⇤
0 0 h�h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (3.17)

in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p

x2 � 1 . (3.18)

The coefficients A and B for V = W are given by

A = g

✓
MV + aV

k1 · k2
MV

◆

B = �g aV MV , C = ig ãV MV (3.19)
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helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
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ĥ+ĥ
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with x = m2
H
/(2fM2

V
)� (f2 + 1)/(2f). The amplitudes entering the density matrix in Eq. (3.17) can

be written in terms of the fa, ga, hab coefficients in the Gell-Mann basis as

ĥ�ĥ
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ĥ0ĥ
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ĥ+ĥ
⇤
+ =

1

9

h
1 + 3

p
3
�
g8 � 2f8 � 2h83

�
+ 9g3 � 6h88

i
, (3.20)
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The pure state looks like this:
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The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as
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h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)

8
<latexit sha1_base64="Rt89TIaqgL/MJx4nfkklkdW2u/w=">AAACPXicbZDLSsNAGIUn9VbrrdVlN4NFcFUS8bYRim5cVrAXaEKZTCbt0MlMmJkIIfQ13Oqb+Bw+gDtx69ZJm4WpHhg4fOf/4Z/jx4wqbdvvVmVtfWNzq7pd29nd2z+oNw77SiQSkx4WTMihjxRhlJOeppqRYSwJinxGBv7sLs8HT0QqKvijTmPiRWjCaUgx0ga5bpCiIHO7is5vxvWW3bYXgn+NU5gWKNQdN6ymGwicRIRrzJBSI8eOtZchqSlmZF5zE0VihGdoQkbGchQR5WWLo+fwxJAAhkKaxzVc0N8bGYqUSiPfTEZIT9VqlsN/s3iaKoqVyQpXSvN5qUITl7DvCxaU2SjR4bWXUR4nmnC8vDhMGNQC5lXCgEqCNUuNQVhS82mIp0girE3hNVOns1reX9M/azuX7YuH81bntii2CprgGJwCB1yBDrgHXdADGMTgGbyAV+vN+rA+ra/laMUqdo5ASdb3DyI2rs8=</latexit>

| ih | =

where the helicity amplitudes h� are defined in Eq. (2.7).
The relative weight of the transverse components |V (+)V ⇤(�)i and |V (�)V ⇤(+)i with respect to

the longitudinal one |V (0)V ⇤(0)i is controlled by the conservation of angular momentum. In general,
only the helicity is conserved and the state in Eq. (3.14) belongs to the Jz = 0 component of either
the J = 0, 1 or 2 states or a linear combination of them. For the SM model Higgs, for which h� = h+,
the pure state in Eq. (3.14) is given by

| i = 1p
2 + {2

h
|V (+)V ⇤(�)i � { |V (0)V ⇤(0)i+ |V (�)V ⇤(+)i

i
. (3.16)

with { = 1 + (m2
H

� (1 + f)2M2
V
)/(2fM2

V
) [4]. The state in Eq. (3.16) is the singlet state when

{ = 1—which happens if the final vector bosons are produced at rest.
After making the Kronecker product in Eq. (3.8) explicit, the resulting 9 ⇥ 9 polarization density

matrix ⇢ = | ih | is written as

⇢H =
1

|M|2

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 h+h⇤

+ 0 h+h⇤
0 0 h+h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 h0h⇤

+ 0 h0h⇤
0 0 h0h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 h�h⇤

+ 0 h�h⇤
0 0 h�h⇤

� 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (3.17)

in which, in terms of the anomalous couplings in Eq. (1.1), we have

h0 = �Ax�B(x2 � 1) ,

h± = A⌥ C
p
x2 � 1 . (3.18)

The coefficients A and B for V = W are given by

A = g

✓
MV + aV

k1 · k2
MV

◆

B = �g aV MV , C = ig ãV MV (3.19)
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The experimentalist’s corner:
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ĥ0ĥ
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ĥ+ĥ
⇤
� = h44 + i

�
h45 � h54

�
+ h55 ,

ĥ0ĥ
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ĥ�ĥ
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where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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ĥ+ĥ
⇤
� = h44 + i

�
h45 � h54

�
+ h55 ,

ĥ0ĥ
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ĥ+ĥ
⇤
+ =

1

9

h
1 + 3

p
3
�
g8 � 2f8 � 2h83

�
+ 9g3 � 6h88

i
, (3.20)
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ĥ0ĥ
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The pure state looks like this:

with ga = fa for a 2 {1, . . . , 8}, and where
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"
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⇣
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⌘
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i
. (3.12)

The non-vanishing hab = h̃ab/�H elements for V = W are given as
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H �
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.

The dependence of the polarization entanglement on the mass of the virtual state is due to the con-
tribution of the longitudinal polarization. At threshold it yields a singlet state and the maximum of
entanglement. Analogous results hold in the case of the V = Z case, with the appropriate replacement
of the anomalous couplings and SM coefficient ⇠Z .

The density matrix for the Higgs decay, as embodied by the coefficients in Eqs. (3.10)–(3.13), de-
scribes a pure state, that is ⇢2

H
= ⇢H , in the SM [2, 4] and after adding the anomalous couplings as

well. This remarkable fact follows from the state being, so to speak, prepared by the formation of the
spin-0 decaying particle which turns a generic mixed state (as that produced by colliding protons) into
a pure one. This state can be written as

| i = 1

|M|

h
h+ |V (+)V ⇤(�)i+ h0 |V (0)V ⇤(0)i+ h� |V (�)V ⇤(+)i

i
, (3.14)

with
|M|2 = |h0|2 + |h+|2 + |h�|2 , (3.15)
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ĥ+ĥ
⇤
� = h44 + i

�
h45 � h54

�
+ h55 ,

ĥ0ĥ
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ĥ+ĥ
⇤
0 = h61 + i

�
h62 � h71

�
+ h72 ,

ĥ+ĥ
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where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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The experimentalist’s corner:

The coefficients of Gell-Mann matrices (or 
their spherical friends) can be reconstructed 
experimentally from the decay products of 

the massive vector bosons.

A. J. Barr, Phys. Lett. B 825 (2022) 136866 
J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, and J. 
M. Moreno, Phys. Rev. D 107 (2023), no. 1 016012

In terms of the coefficients of Kronecker products of Gell-Mann 
matrices:
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ĥ0ĥ
⇤
� = h16 + i

�
h17 � h26

�
+ h27 ,

ĥ+ĥ
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ĥ0ĥ
⇤
0 =

1

9

h
1� 9

�
f3 + g3 � h33

�
+ 3

p
3
�
f8 + g8 � h38 � h83

�
+ 3h88

i
,

ĥ+ĥ
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ĥ+ĥ
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ĥ�ĥ
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ĥ+ĥ
⇤
0 = h61 + i

�
h62 � h71

�
+ h72 ,

ĥ+ĥ
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where ĥ� ⌘ h�/|M|. Eq. (3.20) makes it possible to go from the Gell-Mann basis to that of the
helicities. In the limit of vanishing anomalous couplings, the results in Eqs.(3.10)-(3.13) go into those
corresponding to the SM [4].
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ĥ�ĥ
⇤
� =

1

9

h
1 + 3

p
3
�
f8 � 2g8 � 2h38

�
+ 9f3 � 6h88

i
,

ĥ0ĥ
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• for a pure state, we can measure entanglement with the entropy of 
entanglement Eent: 

Polarizations are more difficult to measure than momenta. The reconstruction of the polarization
density matrix from the data is challenging, in particular for the case of H ! WW ⇤ because of the
presence of the undetectable neutrinos. The main aim of this work is to show that the extra work
needed to reconstruct the gauge boson polarizations is indeed worthwhile. In order to present an
analysis as realistic as possible, we give an estimate of the main uncertainties in the bounds that we
derive for the anomalous couplings. In particular, we include the effects of statistical and systematic
errors, as well as the impact of the dominant irreducible backgrounds in the computation of these
observables. It is understood that a complete treatment of uncertainties goes beyond the purpose of
the present work and should be the focus of a dedicated analysis that can only be performed by the
experimental collaborations.

To assess how our method fares, we compare the bounds we derive with the theoretical analy-
sis presented in [28]. Comparison with experimental limits requires the inclusion of the irreducible
background. We estimate this for the ZZ⇤ channel, which achieves a higher sensitivity, and confront
our findings with the limits due to a combination of cross sections recently updated the CMS [29]
collaboration.

2 Methods

Q uantum tomography aims to fully determine the density matrix ⇢ of a quantum state. In the
case of the decay of the Higgs boson into two massive spin 1 gauge bosons, the density matrix

for the joint polarization states of the two particles is the 9 ⇥ 9 matrix of a system composed by two
qutrits. It can be decomposed on the basis formed by the eight Gell-Mann matrices T a and the unit
matrix as follows
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fa [T
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ga [1 ⌦ T a] +
X

ab
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T a ⌦ T b
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(2.1)

where the T a satisfy the orthogonality condition Tr [T aT b] = 2 �ab and the indices � and �0 track the
polarizations of the two spin 1 massive particles. Eq. (2.1) defines the coefficients fa, ga, and hab
(a, b 2 {1, . . . , 8}) which we determine in what follows.

To best constrain the anomalous couplings in the Lagrangian Eq. (1.1), we need observables that
ideally depend linearly on these quantities. Quantum tomography gives the coefficients fa, ga, and hab
of the density matrix and there is a number of observables that can be constructed with them. Some of
these observables are novel and based on the entanglement between the final states, others are linked
to correlations already studied or, directly, to the cross section of the process. We consider the three
that provide the most stringent limits to the anomalous couplings:

• When a scalar particle decays into a pair of massive gauge bosons, the qutrits describing the
polarizations of the latter form a bipartite pure state. In this case it is possible to quantify the
entanglement among the polarizations of the weak gauge bosons by computing the entropy of
entanglement, Eent, defined by

Eent = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.2)

where ⇢A and ⇢B are the reduced density matrix obtained by tracing out the subsystem B or
A, respectively. In our case, the two subsystems are the polarizations of the two massive gauge
bosons and the reduced density matrices are obtained by tracing out the polarizations of either
gauge boson. For a two-qutrit system the entropy of entanglement satisfies 0  E [⇢]  ln 3.
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of the density matrix and there is a number of observables that can be constructed with them. Some of
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needed to reconstruct the gauge boson polarizations is indeed worthwhile. In order to present an
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errors, as well as the impact of the dominant irreducible backgrounds in the computation of these
observables. It is understood that a complete treatment of uncertainties goes beyond the purpose of
the present work and should be the focus of a dedicated analysis that can only be performed by the
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gauge boson. For a two-qutrit system the entropy of entanglement satisfies 0  E [⇢]  ln 3.
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Quantum observables
All observables are quantum, though some (3) more than others:

• for a pure state, we can measure entanglement with the entropy of 
entanglement Eent: 

Polarizations are more difficult to measure than momenta. The reconstruction of the polarization
density matrix from the data is challenging, in particular for the case of H ! WW ⇤ because of the
presence of the undetectable neutrinos. The main aim of this work is to show that the extra work
needed to reconstruct the gauge boson polarizations is indeed worthwhile. In order to present an
analysis as realistic as possible, we give an estimate of the main uncertainties in the bounds that we
derive for the anomalous couplings. In particular, we include the effects of statistical and systematic
errors, as well as the impact of the dominant irreducible backgrounds in the computation of these
observables. It is understood that a complete treatment of uncertainties goes beyond the purpose of
the present work and should be the focus of a dedicated analysis that can only be performed by the
experimental collaborations.

To assess how our method fares, we compare the bounds we derive with the theoretical analy-
sis presented in [28]. Comparison with experimental limits requires the inclusion of the irreducible
background. We estimate this for the ZZ⇤ channel, which achieves a higher sensitivity, and confront
our findings with the limits due to a combination of cross sections recently updated the CMS [29]
collaboration.

2 Methods

Q uantum tomography aims to fully determine the density matrix ⇢ of a quantum state. In the
case of the decay of the Higgs boson into two massive spin 1 gauge bosons, the density matrix

for the joint polarization states of the two particles is the 9 ⇥ 9 matrix of a system composed by two
qutrits. It can be decomposed on the basis formed by the eight Gell-Mann matrices T a and the unit
matrix as follows

⇢H =
1

9
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X
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fa [T
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X
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ga [1 ⌦ T a] +
X

ab
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where the T a satisfy the orthogonality condition Tr [T aT b] = 2 �ab and the indices � and �0 track the
polarizations of the two spin 1 massive particles. Eq. (2.1) defines the coefficients fa, ga, and hab
(a, b 2 {1, . . . , 8}) which we determine in what follows.

To best constrain the anomalous couplings in the Lagrangian Eq. (1.1), we need observables that
ideally depend linearly on these quantities. Quantum tomography gives the coefficients fa, ga, and hab
of the density matrix and there is a number of observables that can be constructed with them. Some of
these observables are novel and based on the entanglement between the final states, others are linked
to correlations already studied or, directly, to the cross section of the process. We consider the three
that provide the most stringent limits to the anomalous couplings:

• When a scalar particle decays into a pair of massive gauge bosons, the qutrits describing the
polarizations of the latter form a bipartite pure state. In this case it is possible to quantify the
entanglement among the polarizations of the weak gauge bosons by computing the entropy of
entanglement, Eent, defined by

Eent = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.2)

where ⇢A and ⇢B are the reduced density matrix obtained by tracing out the subsystem B or
A, respectively. In our case, the two subsystems are the polarizations of the two massive gauge
bosons and the reduced density matrices are obtained by tracing out the polarizations of either
gauge boson. For a two-qutrit system the entropy of entanglement satisfies 0  E [⇢]  ln 3.
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 Use instead the lower bound on the concurrence 

The first equality is true if and only if the bipartite state is separable (signalling the absence of
entanglement), the second if the bipartite state is maximally entangled;

• The second observable C2 [30] is an entanglement witness defined in terms of the coefficients in
Eq. (2.1) as
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It represents a lower bound on the concurrence [31] of the system, which quantifies the entangle-
ment of a generic bipartite system. Unfortunately, the definition of concurrence is based on an
optimization problem that makes its evaluation a very hard mathematical task—with a simple
analytic solution only when the two subsystems are two-level systems (qubits). For this reason, we
use C2 as proxy for the concurrence. Whereas the entropy of entanglement can be used to quantify
the entanglement content only of pure states, the observable C2 can be utilized for arbitrary states.
C2 is at most equal to 4/3.

• The third observable Codd singles out the asymmetric parts of the density matrix; it defined as

Codd =
1

2

X

a,b

a<b

���hab � hba
��� , (2.4)

which contains only off-diagonal terms that change sign under transposition. In the difference
symmetric terms drop out. The combinations in Eq. (2.4) provide correlations. They can be
written in terms of the kinematical variables as triple products of momenta and polarizations as,
for instance,

~k ·
⇣
~"n̂ ⇥ ~"r̂

⌘
, (2.5)

with ~k the momentum of one of the particles, ~"n̂ and ~"r̂ the projections of the polarizations along
two directions orthogonal to the momentum.

The decay of the Higgs boson shows at colliders in the processes

p p ! V1 + V2 +X ! `+`� (or `+ jj or `� jj) + Emiss
T (or `+`�) + jets , (2.6)

with missing energy Emiss
T

due to the possible presence of neutrinos in the final state. These processes
include the production of the gauge bosons through the resonant Higgs boson channel, as well as
via quark fusion, and include the consequent decays into the final leptons or quarks—plus the jets
originating from the spectator quarks.

The production of the Higgs boson is dominated at the LHC by gluon fusion. This is the mode we
study. Sub-leading, but not negligible, electroweak processes like vector boson fusion (VBF) contribute
as well. In these processes the anomalous couplings enter off-shell. Some of the new physics vertices
are enhanced by the energy and make some of these off-shell contribution more sensitive. Moreover,
they may enter twice, first in production and then in the decays. For these reasons, comparison of
bounds obtained from different processes as well as a direct comparison of our bounds to others is often
not straightforward.
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Quantum observables
All observables are quantum, though some (3) more than others:

• for a pure state, we can measure entanglement with the entropy of 
entanglement Eent: 

Polarizations are more difficult to measure than momenta. The reconstruction of the polarization
density matrix from the data is challenging, in particular for the case of H ! WW ⇤ because of the
presence of the undetectable neutrinos. The main aim of this work is to show that the extra work
needed to reconstruct the gauge boson polarizations is indeed worthwhile. In order to present an
analysis as realistic as possible, we give an estimate of the main uncertainties in the bounds that we
derive for the anomalous couplings. In particular, we include the effects of statistical and systematic
errors, as well as the impact of the dominant irreducible backgrounds in the computation of these
observables. It is understood that a complete treatment of uncertainties goes beyond the purpose of
the present work and should be the focus of a dedicated analysis that can only be performed by the
experimental collaborations.

To assess how our method fares, we compare the bounds we derive with the theoretical analy-
sis presented in [28]. Comparison with experimental limits requires the inclusion of the irreducible
background. We estimate this for the ZZ⇤ channel, which achieves a higher sensitivity, and confront
our findings with the limits due to a combination of cross sections recently updated the CMS [29]
collaboration.

2 Methods

Q uantum tomography aims to fully determine the density matrix ⇢ of a quantum state. In the
case of the decay of the Higgs boson into two massive spin 1 gauge bosons, the density matrix

for the joint polarization states of the two particles is the 9 ⇥ 9 matrix of a system composed by two
qutrits. It can be decomposed on the basis formed by the eight Gell-Mann matrices T a and the unit
matrix as follows
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where the T a satisfy the orthogonality condition Tr [T aT b] = 2 �ab and the indices � and �0 track the
polarizations of the two spin 1 massive particles. Eq. (2.1) defines the coefficients fa, ga, and hab
(a, b 2 {1, . . . , 8}) which we determine in what follows.

To best constrain the anomalous couplings in the Lagrangian Eq. (1.1), we need observables that
ideally depend linearly on these quantities. Quantum tomography gives the coefficients fa, ga, and hab
of the density matrix and there is a number of observables that can be constructed with them. Some of
these observables are novel and based on the entanglement between the final states, others are linked
to correlations already studied or, directly, to the cross section of the process. We consider the three
that provide the most stringent limits to the anomalous couplings:

• When a scalar particle decays into a pair of massive gauge bosons, the qutrits describing the
polarizations of the latter form a bipartite pure state. In this case it is possible to quantify the
entanglement among the polarizations of the weak gauge bosons by computing the entropy of
entanglement, Eent, defined by

Eent = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.2)

where ⇢A and ⇢B are the reduced density matrix obtained by tracing out the subsystem B or
A, respectively. In our case, the two subsystems are the polarizations of the two massive gauge
bosons and the reduced density matrices are obtained by tracing out the polarizations of either
gauge boson. For a two-qutrit system the entropy of entanglement satisfies 0  E [⇢]  ln 3.
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polarizations of the two spin 1 massive particles. Eq. (2.1) defines the coefficients fa, ga, and hab
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of the density matrix and there is a number of observables that can be constructed with them. Some of
these observables are novel and based on the entanglement between the final states, others are linked
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that provide the most stringent limits to the anomalous couplings:
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 Use instead the lower bound on the concurrence 

The first equality is true if and only if the bipartite state is separable (signalling the absence of
entanglement), the second if the bipartite state is maximally entangled;

• The second observable C2 [30] is an entanglement witness defined in terms of the coefficients in
Eq. (2.1) as
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It represents a lower bound on the concurrence [31] of the system, which quantifies the entangle-
ment of a generic bipartite system. Unfortunately, the definition of concurrence is based on an
optimization problem that makes its evaluation a very hard mathematical task—with a simple
analytic solution only when the two subsystems are two-level systems (qubits). For this reason, we
use C2 as proxy for the concurrence. Whereas the entropy of entanglement can be used to quantify
the entanglement content only of pure states, the observable C2 can be utilized for arbitrary states.
C2 is at most equal to 4/3.

• The third observable Codd singles out the asymmetric parts of the density matrix; it defined as
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���hab � hba
��� , (2.4)

which contains only off-diagonal terms that change sign under transposition. In the difference
symmetric terms drop out. The combinations in Eq. (2.4) provide correlations. They can be
written in terms of the kinematical variables as triple products of momenta and polarizations as,
for instance,

~k ·
⇣
~"n̂ ⇥ ~"r̂

⌘
, (2.5)

with ~k the momentum of one of the particles, ~"n̂ and ~"r̂ the projections of the polarizations along
two directions orthogonal to the momentum.

The decay of the Higgs boson shows at colliders in the processes

p p ! V1 + V2 +X ! `+`� (or `+ jj or `� jj) + Emiss
T (or `+`�) + jets , (2.6)

with missing energy Emiss
T

due to the possible presence of neutrinos in the final state. These processes
include the production of the gauge bosons through the resonant Higgs boson channel, as well as
via quark fusion, and include the consequent decays into the final leptons or quarks—plus the jets
originating from the spectator quarks.

The production of the Higgs boson is dominated at the LHC by gluon fusion. This is the mode we
study. Sub-leading, but not negligible, electroweak processes like vector boson fusion (VBF) contribute
as well. In these processes the anomalous couplings enter off-shell. Some of the new physics vertices
are enhanced by the energy and make some of these off-shell contribution more sensitive. Moreover,
they may enter twice, first in production and then in the decays. For these reasons, comparison of
bounds obtained from different processes as well as a direct comparison of our bounds to others is often
not straightforward.
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• The third observables we use singles out the antisymmetric part of 
the density matrix 

The first equality is true if and only if the bipartite state is separable (signalling the absence of
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• The second observable C2 [30] is an entanglement witness defined in terms of the coefficients in
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It represents a lower bound on the concurrence [31] of the system, which quantifies the entangle-
ment of a generic bipartite system. Unfortunately, the definition of concurrence is based on an
optimization problem that makes its evaluation a very hard mathematical task—with a simple
analytic solution only when the two subsystems are two-level systems (qubits). For this reason, we
use C2 as proxy for the concurrence. Whereas the entropy of entanglement can be used to quantify
the entanglement content only of pure states, the observable C2 can be utilized for arbitrary states.
C2 is at most equal to 4/3.
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The decay of the Higgs boson shows at colliders in the processes

p p ! V1 + V2 +X ! `+`� (or `+ jj or `� jj) + Emiss
T (or `+`�) + jets , (2.6)

with missing energy Emiss
T

due to the possible presence of neutrinos in the final state. These processes
include the production of the gauge bosons through the resonant Higgs boson channel, as well as
via quark fusion, and include the consequent decays into the final leptons or quarks—plus the jets
originating from the spectator quarks.

The production of the Higgs boson is dominated at the LHC by gluon fusion. This is the mode we
study. Sub-leading, but not negligible, electroweak processes like vector boson fusion (VBF) contribute
as well. In these processes the anomalous couplings enter off-shell. Some of the new physics vertices
are enhanced by the energy and make some of these off-shell contribution more sensitive. Moreover,
they may enter twice, first in production and then in the decays. For these reasons, comparison of
bounds obtained from different processes as well as a direct comparison of our bounds to others is often
not straightforward.
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Remarks:
• The computation of ρ and, therefore, of the observables uses tree-

level expressions. NLO corrections to fa, ga and hab are expected to 
yield O(1%) uncertainties on the observables. 
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quadratic in ãV
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study. Sub-leading, but not negligible, electroweak processes like vector boson fusion (VBF) contribute
as well. In these processes the anomalous couplings enter off-shell. Some of the new physics vertices
are enhanced by the energy and make some of these off-shell contribution more sensitive. Moreover,
they may enter twice, first in production and then in the decays. For these reasons, comparison of
bounds obtained from different processes as well as a direct comparison of our bounds to others is often
not straightforward.

4

Remarks:
• The computation of ρ and, therefore, of the observables uses tree-

level expressions. NLO corrections to fa, ga and hab are expected to 
yield O(1%) uncertainties on the observables. 

• As for the sensitivities of these observable on the anomalous 
couplings:
- the entropy of entanglement, at the lowest order, is linear in aV and 

quadratic in ãV

- 𝒞odd is linear in ãV at the lowest order and depends on aV through the 
combination ãVaV, hence the dependence on aV is suppressed
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It represents a lower bound on the concurrence [31] of the system, which quantifies the entangle-
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8

To constrain the anomalous couplings we use a χ2 test set for a 95% CL:

of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL

X

i


Oi(aV ,eaV )�Oi(0, 0)

�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

with

Mµ⌫ = gMV ⇠V gµ⌫ � g

MW

h
aV (k⌫1k

µ

2 � gµ⌫k1 · k2) + ãV ✏
µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

M(�1,�2)M(�0
1,�

0
2)

† = Mµ⌫M
†
µ0⌫0P

µµ
0

�1�
0
1
(k1)P
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0

�2�
0
2
(k2) . (3.5)
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Take a step back: how do we see the processes we are interested in?

Figure 1: Unit vectors and momenta utilized in the text to describe the decay of the Higgs boson into the weak
gauge bosons V1 and V2.

The spin 1 gauge bosons act as their own polarimeters and the momenta of the final leptons (see
Fig.1) provide a measurement of the gauge boson polarizations. The quantum tomography problem of
reconstructing the correlation coefficients hab, fa and ga from the final states of the process at hand
has been recently discussed in [3], to which we refer for more details.

In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
of the helicity amplitudes:

h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
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for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).
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in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by
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Fig.1) provide a measurement of the gauge boson polarizations. The quantum tomography problem of
reconstructing the correlation coefficients hab, fa and ga from the final states of the process at hand
has been recently discussed in [3], to which we refer for more details.

In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
of the helicity amplitudes:

h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency
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the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency

5

ATLAS Collaboration, arXiv:2207.00338 

ATLAS Collaboration, Eur. Phys. J. C 80 (2020), no. 10 957

{

Figure 1: Unit vectors and momenta utilized in the text to describe the decay of the Higgs boson into the weak
gauge bosons V1 and V2.

The spin 1 gauge bosons act as their own polarimeters and the momenta of the final leptons (see
Fig.1) provide a measurement of the gauge boson polarizations. The quantum tomography problem of
reconstructing the correlation coefficients hab, fa and ga from the final states of the process at hand
has been recently discussed in [3], to which we refer for more details.

In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
of the helicity amplitudes:

h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).
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in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
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with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass
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In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
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h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
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The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
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for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
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The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL
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�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
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with

Mµ⌫ = gMV ⇠V gµ⌫ � g

MW

h
aV (k⌫1k

µ

2 � gµ⌫k1 · k2) + ãV ✏
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where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain
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The spin 1 gauge bosons act as their own polarimeters and the momenta of the final leptons (see
Fig.1) provide a measurement of the gauge boson polarizations. The quantum tomography problem of
reconstructing the correlation coefficients hab, fa and ga from the final states of the process at hand
has been recently discussed in [3], to which we refer for more details.

In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
of the helicity amplitudes:

h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency
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The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
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for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
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in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.
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C onsider the decay
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with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by
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The spin 1 gauge bosons act as their own polarimeters and the momenta of the final leptons (see
Fig.1) provide a measurement of the gauge boson polarizations. The quantum tomography problem of
reconstructing the correlation coefficients hab, fa and ga from the final states of the process at hand
has been recently discussed in [3], to which we refer for more details.

In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
of the helicity amplitudes:

h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency
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The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
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and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
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for each of the considered decays as mH is randomly varied within its experimental uncertainty.
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the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
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in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.
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⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass
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To constrain the anomalous couplings we use a χ2 test set for a 95% CL:

of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
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for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).
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in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.
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with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by
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Oi are the observables {𝒞odd,Eent} or {𝒞odd,C2}, 
depending on the purity ?

Take a step back: how do we see the processes we are interested in?

(e, μ final states only)
105 events @ LHC run2

103 events @ LHC run2

Figure 1: Unit vectors and momenta utilized in the text to describe the decay of the Higgs boson into the weak
gauge bosons V1 and V2.

The spin 1 gauge bosons act as their own polarimeters and the momenta of the final leptons (see
Fig.1) provide a measurement of the gauge boson polarizations. The quantum tomography problem of
reconstructing the correlation coefficients hab, fa and ga from the final states of the process at hand
has been recently discussed in [3], to which we refer for more details.

In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
of the helicity amplitudes:

h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).

To constrain the values of the anomalous couplings aV and eaV we introduce a �2 test set for a 95%
CL

X

i


Oi(aV ,eaV )�Oi(0, 0)

�i

�2
 5.991 , (2.10)

in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.

3 Results

C onsider the decay

H ! V (k1,�1)V
⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

with
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µ⌫↵�k1↵k2�

i
, (3.4)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain
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depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.
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⇤(k2,�2) , (3.1)

with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
the amplitude of the Higgs boson decay (3.1) is given by
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Figure 1: Unit vectors and momenta utilized in the text to describe the decay of the Higgs boson into the weak
gauge bosons V1 and V2.

The spin 1 gauge bosons act as their own polarimeters and the momenta of the final leptons (see
Fig.1) provide a measurement of the gauge boson polarizations. The quantum tomography problem of
reconstructing the correlation coefficients hab, fa and ga from the final states of the process at hand
has been recently discussed in [3], to which we refer for more details.

In the case of the Higgs boson decay, the computation of the correlation coefficients is greatly simpli-
fied because there are only two independent entries in the density matrix that need to be determined.
All the elements of the density matrix can be written either in terms of the Gell-Mann basis or of that
of the helicity amplitudes:

h� = hV (�)V ⇤(��)|� L|Hi with � = 0, ± , (2.7)

with L the Lagrangian given in Eq. (1.1). Helicities are here defined with respect to the ẑ direction in
the rest frame of the first spin-1 particle.

2.1 Estimating the uncertainty

In order to evaluate the sensitivity of the experiments to the anomalous couplings in the observables
Eent, C2 and Codd, we first estimate the number of suitable events which are available.

The cross sections (at
p
s = 13 TeV) of the two processes we are interested in are

�(p p ! H ! W+`�⌫̄`) = 12.0± 1.4 pb [32] (2.8)

and
�(p p ! H ! Z`+`�) = 1.34± 0.12 pb [33]. (2.9)

These numbers must be multiplied by the corresponding branching ratios. Among the leptonic ones,
we only retain those into electrons and muons. In both cases we have a sufficient number of events
to compute the polarizations of the gauge bosons, of the order of 105 at the LHC run2 for the WW ⇤

process and roughly 103 for the ZZ⇤ process.
As it is often the case, the definition of better observables from the theoretical point of view goes

hand in hand with a more challenging reconstruction of the same from the data.
We take into account the problem of the irreducible uncertainties in the evaluation of the operators

for the decays of the WW ⇤ by considering the semi-leptonic decay H ! jj`⌫` (rather than the fully
leptonic one) and use the momentum from the s-jet (identified via the c-tagging of the companion
jet) to measure the polarization of one of the two W -bosons. It has been shown that the efficiency
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of the jet tagging and the decreased uncertainty in the single neutrino momentum may improve the
polarization reconstruction [34].

The uncertainty on each of the observables considered, let us call them O(aV ,eaV ), is found by the
following procedure. The main source of uncertainty comes from the determination of the polarizations
and it originates in the reconstruction of the rest frame of the decaying Higgs boson. The same
reconstruction is also necessary in the determination of the Higgs boson mass mH from the events in
which the Higgs boson decays into either ZZ⇤ or WW ⇤; we therefore can use the related reconstruction
error as a proxy for the dominant uncertainty in our computations. We propagate the uncertainty on
the value of mH to the operators by means of a Monte Carlo simulation, obtaining the related variances
�2
i

for each of the considered decays as mH is randomly varied within its experimental uncertainty.
This uncertainty includes both statistical and systematic errors.

The procedure works well for the ZZ⇤ case where it is found that mH = 124± 0.18± 0.04 [35]. For
the WW ⇤ channel, only the transverse mass can be determined, and that comes with an error (1�) of
about 5 GeV for the fully leptonic decays [36]. We make here an educated guess by taking half of this
uncertainty in the case of the semi-leptonic decays (for which the transverse mass is in addition closer
to mH).
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in which we set the uncertainties �i as discussed above. The choice of operators utilized in the test
depends on the purity of the WW ⇤ and ZZ⇤ states as clarified below.
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with V either W or Z, and V ⇤ regarded as an off-shell vector boson. Here k1 and k2 denote the
associated particle momenta and the helicities �1,2 take values �1,2 = {+1, 0,�1}.

In the following, we treat the latter as an on-shell particle characterized by a mass
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reduced by a factor 0 < f < 1 with respect to the original mass MV . From the Lagrangian in Eq. (1.1),
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• Works well for ZZ*:

ATLAS Collaboration, Phys. Lett. B 843 (2023) 137880 

• Less so for WW* due to neutrinos: 5 GeV uncertainty for 
fully leptonic decays CMS Collaboration, Eur. Phys. J. C 83 (2023), no. 7 667

• half (hopefully) for semi-leptonic decays (s-jets identified 
via c-tagging of the companion jet)

F. Fabbri, J. Howarth, and T. Maurin, arXiv:2307.13783. 
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The main theoretical uncertainty affecting the correlation coefficients in Eqs. (3.10)–(3.13) is due to
higher order corrections to the tree-level values. To estimate the size of these contributions, we take as
guidance the results in [39,40]—in which the NLO corrections have been computed—and assume that
the error induced by these missing corrections yields approximately 1% of uncertainty on the main
entanglement observables in the relevant kinematic regions.

Having determined the entries in the density matrix, we now study the dependencies of the observable
introduced in the previous Section on the anomalous couplings.

- As mentioned before, the decays of the Higgs boson lead to the production of bipartite polarization
states that are pure. When neglecting the background processes we can then use the entropy of
entanglement to measure the entanglement among the polarizations of the massive gauge bosons.
Only aV enters linearly in Eent; the coupling eaV by itself only enters quadratically. We do not
write out the explicit expression of this operator because it is cumbersome (involving, as it does,
the eigenvalues necessary in the definition of the logarithm of a matrix);

- The leading dependence of the observable Codd is linear in eaV . The anomalous couplings aV only
enters in Codd multiplied by eaV and is therefore quadratically suppressed. Utilizing the coefficients
in Eqs. (3.10)–(3.13), the observable is given by

Codd =
eaV f(1 + aV f)
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Figure 3: Allowed values for the anomalous couplings aV and eaV obtained by using the observables Codd and Eent. The

hatched area use the LHC run2 data (L = 140 fb
�1

), the purple ones show the HiLumi projection (L = 3 ab
�1

). The

limits, all given at a 95% confidence level, only hold prior to the inclusion of backgrounds.

The two observables Eent and Codd seem to be ideal inasmuch as each of them depends linearly on
one of the anomalous couplings while marginalizing the other. Cross dependencies are quadratic and
very small in the range of values we consider.

The two observables depend on the mass of the off-shell gauge bosons, parametrized by fMW . We
have taken their average value by integrating over the parameter f within its limits to obtain the
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Table 1: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 3. when taken to be independent.

results shown in Fig. 3. The limits for the Hi-Lumi case are obtained by rescaling the uncertainties by
the square root of the ratio of the luminosities

p
300/14. The limits on single anomalous couplings,

presented in Tab. 1, are obtained by marginalization of the other one.
To put our result in perspective, we can compare it to the only theoretical estimate [28] which is

based, as ours, on observables derived from the polarizations (but not the entanglement). They find

aZ = 6.88⇥ 10�3 , eaZ = 9.53⇥ 10�3 (3.22)

at 1�, in the linear approximation, and for a luminosity of 1 ab�1, whereas, for HiLumi (3 ab�1), we
find (95% CL)

aZ = 4.0⇥ 10�4 , eaZ = 8.0⇥ 10�4 . (3.23)

Beside the different statistical distribution and luminosities used, our result is stronger than the former
limits obtained for the associated HZ production process. The limits in Eq. (3.23) are so stringent
to be comparable with projected bounds from future lepton colliders [41–43] based on classical spin
correlations and cross sections.

Although the use of entanglement does seem to strengthen the constrains on the anomalous couplings,
we must include the effect of the backgrounds for a more realistic estimate of its power.

3.1 Including the background

The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
plings because of a better signal-to-background ratio than the WW ⇤ case.

The irreducible background for the H ! Z`+`� signal is rather small and dominated by the elec-
troweak process pp ! ZZ/Z� ! 4`. The sum of the signal and background, being induced by different
production channels, is characterized by a mixture of different states. We introduce this mixture by
writing the density matrices for the processes as

⇢ZZ = ↵⇢H ! ZZ + (1� ↵)⇢BCKG , (3.24)

with 0  ↵  1 parametrizing the expected signal-to-background ratio S/(S+B). The density matrix
⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].

Once the background is included, we can no longer use the entropy to measure the entanglement
as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the
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The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
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⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].
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as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the

11

We compute the density matrix 
for pp → ZZ* mediated by EW 
interactions



More realistic*** results:

10

The Wjj background to H→WW* is rather large and uncertain. Focus on 
ZZ*. 

LHC run2 HiLumi

|aW |  0.033 |aW |  0.0070

|eaW |  0.031 |eaW |  0.0068

|aZ |  0.0019 |aZ |  0.00040

|eaZ |  0.0039 |eaZ |  0.00086

Table 1: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 3. when taken to be independent.

results shown in Fig. 3. The limits for the Hi-Lumi case are obtained by rescaling the uncertainties by
the square root of the ratio of the luminosities

p
300/14. The limits on single anomalous couplings,

presented in Tab. 1, are obtained by marginalization of the other one.
To put our result in perspective, we can compare it to the only theoretical estimate [28] which is

based, as ours, on observables derived from the polarizations (but not the entanglement). They find

aZ = 6.88⇥ 10�3 , eaZ = 9.53⇥ 10�3 (3.22)

at 1�, in the linear approximation, and for a luminosity of 1 ab�1, whereas, for HiLumi (3 ab�1), we
find (95% CL)

aZ = 4.0⇥ 10�4 , eaZ = 8.0⇥ 10�4 . (3.23)

Beside the different statistical distribution and luminosities used, our result is stronger than the former
limits obtained for the associated HZ production process. The limits in Eq. (3.23) are so stringent
to be comparable with projected bounds from future lepton colliders [41–43] based on classical spin
correlations and cross sections.

Although the use of entanglement does seem to strengthen the constrains on the anomalous couplings,
we must include the effect of the backgrounds for a more realistic estimate of its power.

3.1 Including the background

The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
plings because of a better signal-to-background ratio than the WW ⇤ case.

The irreducible background for the H ! Z`+`� signal is rather small and dominated by the elec-
troweak process pp ! ZZ/Z� ! 4`. The sum of the signal and background, being induced by different
production channels, is characterized by a mixture of different states. We introduce this mixture by
writing the density matrices for the processes as

⇢ZZ = ↵⇢H ! ZZ + (1� ↵)⇢BCKG , (3.24)

with 0  ↵  1 parametrizing the expected signal-to-background ratio S/(S+B). The density matrix
⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].

Once the background is included, we can no longer use the entropy to measure the entanglement
as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the

11

We compute the density matrix 
for pp → ZZ* mediated by EW 
interactions

S/(S+B)~0.8 CMS Collaboration, Eur. Phys. J. C 81 (2021), no. 6 488 



More realistic*** results:

10

The Wjj background to H→WW* is rather large and uncertain. Focus on 
ZZ*. 

LHC run2 HiLumi

|aW |  0.033 |aW |  0.0070

|eaW |  0.031 |eaW |  0.0068

|aZ |  0.0019 |aZ |  0.00040

|eaZ |  0.0039 |eaZ |  0.00086

Table 1: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 3. when taken to be independent.

results shown in Fig. 3. The limits for the Hi-Lumi case are obtained by rescaling the uncertainties by
the square root of the ratio of the luminosities

p
300/14. The limits on single anomalous couplings,

presented in Tab. 1, are obtained by marginalization of the other one.
To put our result in perspective, we can compare it to the only theoretical estimate [28] which is

based, as ours, on observables derived from the polarizations (but not the entanglement). They find

aZ = 6.88⇥ 10�3 , eaZ = 9.53⇥ 10�3 (3.22)

at 1�, in the linear approximation, and for a luminosity of 1 ab�1, whereas, for HiLumi (3 ab�1), we
find (95% CL)

aZ = 4.0⇥ 10�4 , eaZ = 8.0⇥ 10�4 . (3.23)

Beside the different statistical distribution and luminosities used, our result is stronger than the former
limits obtained for the associated HZ production process. The limits in Eq. (3.23) are so stringent
to be comparable with projected bounds from future lepton colliders [41–43] based on classical spin
correlations and cross sections.

Although the use of entanglement does seem to strengthen the constrains on the anomalous couplings,
we must include the effect of the backgrounds for a more realistic estimate of its power.

3.1 Including the background

The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
plings because of a better signal-to-background ratio than the WW ⇤ case.

The irreducible background for the H ! Z`+`� signal is rather small and dominated by the elec-
troweak process pp ! ZZ/Z� ! 4`. The sum of the signal and background, being induced by different
production channels, is characterized by a mixture of different states. We introduce this mixture by
writing the density matrices for the processes as

⇢ZZ = ↵⇢H ! ZZ + (1� ↵)⇢BCKG , (3.24)

with 0  ↵  1 parametrizing the expected signal-to-background ratio S/(S+B). The density matrix
⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].

Once the background is included, we can no longer use the entropy to measure the entanglement
as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the

11

We compute the density matrix 
for pp → ZZ* mediated by EW 
interactions

S/(S+B)~0.8 CMS Collaboration, Eur. Phys. J. C 81 (2021), no. 6 488 

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

We obtain:

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

95% CL with 𝒞odd,C2

LHC run2: Lint = 140 fb-1

HiLumi: Lint = 3 ab-1



More realistic*** results:

10

The Wjj background to H→WW* is rather large and uncertain. Focus on 
ZZ*. 

LHC run2 HiLumi

|aW |  0.033 |aW |  0.0070

|eaW |  0.031 |eaW |  0.0068

|aZ |  0.0019 |aZ |  0.00040

|eaZ |  0.0039 |eaZ |  0.00086

Table 1: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 3. when taken to be independent.

results shown in Fig. 3. The limits for the Hi-Lumi case are obtained by rescaling the uncertainties by
the square root of the ratio of the luminosities

p
300/14. The limits on single anomalous couplings,

presented in Tab. 1, are obtained by marginalization of the other one.
To put our result in perspective, we can compare it to the only theoretical estimate [28] which is

based, as ours, on observables derived from the polarizations (but not the entanglement). They find

aZ = 6.88⇥ 10�3 , eaZ = 9.53⇥ 10�3 (3.22)

at 1�, in the linear approximation, and for a luminosity of 1 ab�1, whereas, for HiLumi (3 ab�1), we
find (95% CL)

aZ = 4.0⇥ 10�4 , eaZ = 8.0⇥ 10�4 . (3.23)

Beside the different statistical distribution and luminosities used, our result is stronger than the former
limits obtained for the associated HZ production process. The limits in Eq. (3.23) are so stringent
to be comparable with projected bounds from future lepton colliders [41–43] based on classical spin
correlations and cross sections.

Although the use of entanglement does seem to strengthen the constrains on the anomalous couplings,
we must include the effect of the backgrounds for a more realistic estimate of its power.

3.1 Including the background

The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
plings because of a better signal-to-background ratio than the WW ⇤ case.

The irreducible background for the H ! Z`+`� signal is rather small and dominated by the elec-
troweak process pp ! ZZ/Z� ! 4`. The sum of the signal and background, being induced by different
production channels, is characterized by a mixture of different states. We introduce this mixture by
writing the density matrices for the processes as

⇢ZZ = ↵⇢H ! ZZ + (1� ↵)⇢BCKG , (3.24)

with 0  ↵  1 parametrizing the expected signal-to-background ratio S/(S+B). The density matrix
⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].

Once the background is included, we can no longer use the entropy to measure the entanglement
as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the

11

We compute the density matrix 
for pp → ZZ* mediated by EW 
interactions

S/(S+B)~0.8 CMS Collaboration, Eur. Phys. J. C 81 (2021), no. 6 488 

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

We obtain:

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

95% CL with 𝒞odd,C2

LHC run2: Lint = 140 fb-1

HiLumi: Lint = 3 ab-1

Worse by a factor ~1.5



More realistic*** results:

10

The Wjj background to H→WW* is rather large and uncertain. Focus on 
ZZ*. 

LHC run2 HiLumi

|aW |  0.033 |aW |  0.0070

|eaW |  0.031 |eaW |  0.0068

|aZ |  0.0019 |aZ |  0.00040

|eaZ |  0.0039 |eaZ |  0.00086

Table 1: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 3. when taken to be independent.

results shown in Fig. 3. The limits for the Hi-Lumi case are obtained by rescaling the uncertainties by
the square root of the ratio of the luminosities

p
300/14. The limits on single anomalous couplings,

presented in Tab. 1, are obtained by marginalization of the other one.
To put our result in perspective, we can compare it to the only theoretical estimate [28] which is

based, as ours, on observables derived from the polarizations (but not the entanglement). They find

aZ = 6.88⇥ 10�3 , eaZ = 9.53⇥ 10�3 (3.22)

at 1�, in the linear approximation, and for a luminosity of 1 ab�1, whereas, for HiLumi (3 ab�1), we
find (95% CL)

aZ = 4.0⇥ 10�4 , eaZ = 8.0⇥ 10�4 . (3.23)

Beside the different statistical distribution and luminosities used, our result is stronger than the former
limits obtained for the associated HZ production process. The limits in Eq. (3.23) are so stringent
to be comparable with projected bounds from future lepton colliders [41–43] based on classical spin
correlations and cross sections.

Although the use of entanglement does seem to strengthen the constrains on the anomalous couplings,
we must include the effect of the backgrounds for a more realistic estimate of its power.

3.1 Including the background

The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
plings because of a better signal-to-background ratio than the WW ⇤ case.

The irreducible background for the H ! Z`+`� signal is rather small and dominated by the elec-
troweak process pp ! ZZ/Z� ! 4`. The sum of the signal and background, being induced by different
production channels, is characterized by a mixture of different states. We introduce this mixture by
writing the density matrices for the processes as

⇢ZZ = ↵⇢H ! ZZ + (1� ↵)⇢BCKG , (3.24)

with 0  ↵  1 parametrizing the expected signal-to-background ratio S/(S+B). The density matrix
⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].

Once the background is included, we can no longer use the entropy to measure the entanglement
as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the

11

We compute the density matrix 
for pp → ZZ* mediated by EW 
interactions

S/(S+B)~0.8 CMS Collaboration, Eur. Phys. J. C 81 (2021), no. 6 488 

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

We obtain:

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

95% CL with 𝒞odd,C2

LHC run2: Lint = 140 fb-1

HiLumi: Lint = 3 ab-1

Same as before: SM 
background is CP-

even

Worse by a factor ~1.5



More realistic*** results:

10

The Wjj background to H→WW* is rather large and uncertain. Focus on 
ZZ*. 

LHC run2 HiLumi

|aW |  0.033 |aW |  0.0070

|eaW |  0.031 |eaW |  0.0068

|aZ |  0.0019 |aZ |  0.00040

|eaZ |  0.0039 |eaZ |  0.00086

Table 1: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 3. when taken to be independent.

results shown in Fig. 3. The limits for the Hi-Lumi case are obtained by rescaling the uncertainties by
the square root of the ratio of the luminosities

p
300/14. The limits on single anomalous couplings,

presented in Tab. 1, are obtained by marginalization of the other one.
To put our result in perspective, we can compare it to the only theoretical estimate [28] which is

based, as ours, on observables derived from the polarizations (but not the entanglement). They find

aZ = 6.88⇥ 10�3 , eaZ = 9.53⇥ 10�3 (3.22)

at 1�, in the linear approximation, and for a luminosity of 1 ab�1, whereas, for HiLumi (3 ab�1), we
find (95% CL)

aZ = 4.0⇥ 10�4 , eaZ = 8.0⇥ 10�4 . (3.23)

Beside the different statistical distribution and luminosities used, our result is stronger than the former
limits obtained for the associated HZ production process. The limits in Eq. (3.23) are so stringent
to be comparable with projected bounds from future lepton colliders [41–43] based on classical spin
correlations and cross sections.

Although the use of entanglement does seem to strengthen the constrains on the anomalous couplings,
we must include the effect of the backgrounds for a more realistic estimate of its power.

3.1 Including the background

The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
plings because of a better signal-to-background ratio than the WW ⇤ case.

The irreducible background for the H ! Z`+`� signal is rather small and dominated by the elec-
troweak process pp ! ZZ/Z� ! 4`. The sum of the signal and background, being induced by different
production channels, is characterized by a mixture of different states. We introduce this mixture by
writing the density matrices for the processes as

⇢ZZ = ↵⇢H ! ZZ + (1� ↵)⇢BCKG , (3.24)

with 0  ↵  1 parametrizing the expected signal-to-background ratio S/(S+B). The density matrix
⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].

Once the background is included, we can no longer use the entropy to measure the entanglement
as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the

11

We compute the density matrix 
for pp → ZZ* mediated by EW 
interactions

S/(S+B)~0.8 CMS Collaboration, Eur. Phys. J. C 81 (2021), no. 6 488 

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

We obtain:

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

95% CL with 𝒞odd,C2

LHC run2: Lint = 140 fb-1

HiLumi: Lint = 3 ab-1

Same as before: SM 
background is CP-

even

Worse by a factor ~1.5

Figure 4: The same limits as in Fig. 3 (LHC run2 and HiLumi projections) as obtained for the ZZ⇤
channel after the

inclusion of background. The observables C2 and Codd are used in this case.

LHC run2 HiLumi

|aZ |  0.0028 |aZ |  0.00062

|eaZ |  0.0039 |eaZ |  0.00086

Table 2: 95% confidence intervals for the anomalous couplings obtained by marginalization of the two-parameter plots

in Fig. 4. when taken to be independent.

entanglement, decreasesing as the latter weakens. The observable Codd does not receive any contribution
from the backgrounds, which are CP even.

4 Outlook

W e have outlined a strategy to improve the current constraints on the anomalous couplings
of the Higgs boson to the weak gauge bosons by means of the quantum tomography of the Higgs

boson decay.
When comparing the limits found for the H ! ZZ⇤ process in presence of background processes to

those reported by the CMS collaboration one has to write them, in terms of the parameters fg2 and
fg3 introduced in [17], as

fg2 =
�2
�

|aV |2 , and fg3 =
�3
�

|eaV |2 , (4.1)

where we take all anomalous coupling to be real and �i is the cross section in which only the corre-
sponding coupling is included, � the total cross section with all couplings included. Taking the values
in Tab. 2, we have for run2 at the LHC

fZ

g2 < 7.8⇥ 10�6 , fZ

g3 < 1.5⇥ 10�5 , (4.2)

12

which can be compared to the best current experimental bounds from the CMS collaboration [29]:
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g2 < 3.4⇥ 10�3 , fV

g3 < 1.4⇥ 10�2 , (4.3)

obtained by using a combination of cross sections, including production ones, for processes where the
HZZ vertices are identified. A comparison of the limits thus found with those of the experimental
collaboration shows how well the proposed set of observables perform. In comparing, one must bear
in mind that our limits come from a single process while those with which we compare come from the
simultaneous use of more cross sections. On the other hand, our limits are mostly idealized whereas
those from the experimental collaborations come with a full estimate of the statistical and systematic
uncertainties as well as the actual backgrounds.

It goes without saying that all the limits we quote depend on the uncertainty in the analysis (about
which we have made an educated guess) and that they can become stronger or weaker depending on
how well (or badly) the actual physical analysis will turn out to be. In this respect, the main purpose of
the present analysis is to highlight the potential of the new observables in constraining the anomalous
couplings. In this light, we proved that their inclusion in routine analyses could lead to more stringent
limits from global fits, which are currently based only on cross sections.
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To put our result in perspective, we can compare it to the only theoretical estimate [28] which is

based, as ours, on observables derived from the polarizations (but not the entanglement). They find

aZ = 6.88⇥ 10�3 , eaZ = 9.53⇥ 10�3 (3.22)

at 1�, in the linear approximation, and for a luminosity of 1 ab�1, whereas, for HiLumi (3 ab�1), we
find (95% CL)

aZ = 4.0⇥ 10�4 , eaZ = 8.0⇥ 10�4 . (3.23)

Beside the different statistical distribution and luminosities used, our result is stronger than the former
limits obtained for the associated HZ production process. The limits in Eq. (3.23) are so stringent
to be comparable with projected bounds from future lepton colliders [41–43] based on classical spin
correlations and cross sections.

Although the use of entanglement does seem to strengthen the constrains on the anomalous couplings,
we must include the effect of the backgrounds for a more realistic estimate of its power.

3.1 Including the background

The estimate of the dominant W plus jets background for the H ! WW ⇤ case is currently affected by
a rather large uncertainty and its size is larger than the signal. Although we could in principle apply
our method, the computation of this background is much more involved and it will require a dedicated
simulation, which is outside the scope of the present analysis.

In the following we focus on the ZZ⇤ decay that achieves higher sensitivity to the anomalous cou-
plings because of a better signal-to-background ratio than the WW ⇤ case.

The irreducible background for the H ! Z`+`� signal is rather small and dominated by the elec-
troweak process pp ! ZZ/Z� ! 4`. The sum of the signal and background, being induced by different
production channels, is characterized by a mixture of different states. We introduce this mixture by
writing the density matrices for the processes as

⇢ZZ = ↵⇢H ! ZZ + (1� ↵)⇢BCKG , (3.24)

with 0  ↵  1 parametrizing the expected signal-to-background ratio S/(S+B). The density matrix
⇢BCKG in Eq. (3.24) is given by the electroweak pp ! ZZ process. We take ↵ = 0.8, corresponding to
a background which is about 4 times smaller than the signal, which is the case at the Higgs peak [44].

Once the background is included, we can no longer use the entropy to measure the entanglement
as the produced bipartite state is not pure. We use the observable C2 instead, which still tracks the
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which can be compared to the best current experimental bounds from the CMS collaboration [29]:

fV

g2 < 3.4⇥ 10�3 , fV

g3 < 1.4⇥ 10�2 , (4.3)

obtained by using a combination of cross sections, including production ones, for processes where the
HZZ vertices are identified. A comparison of the limits thus found with those of the experimental
collaboration shows how well the proposed set of observables perform. In comparing, one must bear
in mind that our limits come from a single process while those with which we compare come from the
simultaneous use of more cross sections. On the other hand, our limits are mostly idealized whereas
those from the experimental collaborations come with a full estimate of the statistical and systematic
uncertainties as well as the actual backgrounds.

It goes without saying that all the limits we quote depend on the uncertainty in the analysis (about
which we have made an educated guess) and that they can become stronger or weaker depending on
how well (or badly) the actual physical analysis will turn out to be. In this respect, the main purpose of
the present analysis is to highlight the potential of the new observables in constraining the anomalous
couplings. In this light, we proved that their inclusion in routine analyses could lead to more stringent
limits from global fits, which are currently based only on cross sections.
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which can be compared to the best current experimental bounds from the CMS collaboration [29]:
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obtained by using a combination of cross sections, including production ones, for processes where the
HZZ vertices are identified. A comparison of the limits thus found with those of the experimental
collaboration shows how well the proposed set of observables perform. In comparing, one must bear
in mind that our limits come from a single process while those with which we compare come from the
simultaneous use of more cross sections. On the other hand, our limits are mostly idealized whereas
those from the experimental collaborations come with a full estimate of the statistical and systematic
uncertainties as well as the actual backgrounds.

It goes without saying that all the limits we quote depend on the uncertainty in the analysis (about
which we have made an educated guess) and that they can become stronger or weaker depending on
how well (or badly) the actual physical analysis will turn out to be. In this respect, the main purpose of
the present analysis is to highlight the potential of the new observables in constraining the anomalous
couplings. In this light, we proved that their inclusion in routine analyses could lead to more stringent
limits from global fits, which are currently based only on cross sections.
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prevent an accurate reconstruction of the Higgs boson rest frame
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offers limits competitive with the best current bounds

it could be worth to include these observables in 
routine experimental analyses


