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Can we use quantum tomography to constrain the anomalous
couplings?
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Ao 1 S . ——u..;—‘i . _
h-h™ = 3 1433 (fs — 25 — 2has) + 93 — Ghss] The experimentalist’s corner:
]Al()iLt = hig+1 (h17 — h26) + hoy o .
The coefficients of Gell-Mann matrices (or
R R 1 ] " "
hohy = 5 [1 —9(fs+ g5 — has) +3V3 (fs + gs — has — hss) + 3h88} their spherlcal friends) can be reconstructed
experimentally from the decay products of
hih® = haa+i (has — hsa) + hss the massive vector bosons.

hihly = he +i (he2 — h71) + hra
A. J. Barr, Phys. Lett. B 825 (2022) 136866

J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, and J.

A 1
hihy = = [1 +3V3 (g9s — 2fs — 2hss) + 993 — 6h88}
M. Moreno, Phys. Rev. D 107 (2023), no. 1 016012
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Remarks:

- The computation of p and, therefore, of the observables uses tree-
level expressions. NLO corrections to fa, ga and hap are expected to
yield O(71%) uncertainties on the observables.

« As for the sensitivities of these observable on the anomalous
couplings:

- the entropy of entanglement, at the lowest order, is linear in ay and
quadratic in av

- Coda IS linear in 4y at the lowest order and depends on ay through the
combination avav, hence the dependence on av is suppressed
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each anomalous coupling and cross correlations (qQuadratic)
expected to be negligible in the considered ranges
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@5 =13 TV * o(pp— H— W' ) =120+ 14 pb »105 events @ LHC run2
f\/g._ ) : (e, u final states only)
99 fusion mostly o(pp — H — Z0H07) =1.34+0.12 pb >108 events @ LHC run2

The reconstruction of the H rest frame is needed to determine my in these
searches. The same reconstruction is the main source of uncertainty in the

determination of the ZZ* or WW?* polarizations.

We use the error on my as a proxy for the uncertainty in our computation and
determine o; via a MC simulation, obtaining the distributions of O; by

sampling mu:

 Less so for WW* due to neutrinos: 5 GeV uncertainty for

- Works well for ZZ™:
fully leptonic decays

mpg = 124 +0.18 £0.04
« half (hopefully) for semi-leptonic decays (s-jets identified

via c-tagging of the companion jet)



Results (in theory):

To see how the method fairs we first ignore backgrounds



Results (in theory):

To see how the method fairs we first ignore backgrounds

H—- WW* H — ZZ*
0.04] .
HiLumi o004l 95% CL Wlth Godd, é)ent
run2 e
|
; j L run2
R, =N LHC run2: Lint= 140 fb-"
| | HiLumi: Lint= 3 ab-!
w& 0.00 S 0.000|
‘ | j The HiLumi projections assume
oozl w7 statistical errors dominate
-0.02) ,
-0.004]
-0.04] | :
-0.04 -0.02 0.00 0.02 0.04 -0.004 -0.002 0.000 0.002 0.004
aw az



Results (in theory):

To see how the method fairs we first ignore backgrounds

H—- WW* H — ZZ*
0.04|
HiLumi i
0.004|
‘runz I
| | run2
0021 LS 2 .
; 0.002|
: : N i
25 0.00 ! ! 'S 0.000
-0.002f  Hikumi—
-0.02,
-0.004
-0.04 ] L -
-0.04 -0.02 0.00 0.02 0.04 -0.004 -0.002 0.000 0.002 0.004
aw az

The marginalized bounds are:

law | < 0.033 law| < 0.0070
Gw| < 0.031 G| < 0.0068
laz| < 0.0019 laz| < 0.00040
G| < 0.0039 |Gz < 0.00086

95% CL with Codd, Gent

LHC run2: Lint= 140 fb-
HiLumi: Lint= 3 ab-

The HiLumi projections assume
statistical errors dominate



Results (in theory):

To see how the method fairs we first ignore backgrounds

H —» WW* H — ZZ*
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run2 U
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; j L run2
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‘ j The HiLumi projections assume
_o002l  WiLumi 777 statistical errors dominate
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aw az
The marginalized bounds are:
To be compared with limits using polarization parameters
(but not entanglement) of the Z boson in Higgstrahlung for
law] < 0.033 law | < 0.0070 Js=14 TeV and Lin=1000 fb-"
@y | < 0.031 jaw| <0.0068
laz| < 0.0019 Hlaz| < 0.00040§ az =6.88x107%, Gz =953 x107
2| < 0.0039 |[az] < 0.00086 §

g !

K. Rao, S. D. Rindani, and P. Sarmah, Nucl. Phys. B 964 (2021) 115317
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the CP nature of the Higgs boson

 For the WW™ channel, the power of the method is diminished by the
uncertainties due to the presence of neutrinos in the final state, which
prevent an accurate reconstruction of the Higgs boson rest frame

* For the ZZ* channel, already with the available LHC data, this strategy
oﬁers limits competitive with the best current bounds

(\ it could be worth to include these observables in
v routine experimental analyses
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