Entanglement and Bell inequalities violation in

 $\mathrm{H} \rightarrow$ ZZ with anomalous coupling
Alexander Bernal

In collaboration with:
Pawel Caban and Jakub Rembielíński

arXiv: 2307.13496
Accepted for publication in EPJC

Firenze, 8 November 2023

ift
Instituto de
Teórísica
UAM-CSIC

- Jesús Moreno's talk [Aguilar-Saavedra, AB, Casas, Moreno (2023)]:

Entanglement and Bell inequality violation for $\rho_{Z Z}$ in the decay $H \rightarrow Z Z$ are theoretically ensured and experimentally accessible!

- Jesús Moreno's talk [Aguilar-Saavedra, AB, Casas, Moreno (2023)]:

Entanglement and Bell inequality violation for $\rho_{Z Z}$ in the decay $H \rightarrow Z Z$ are theoretically ensured and experimentally accessible!

- Can it be extended/generalised for an anomalous coupling/other processes?
- Jesús Moreno's talk [Aguilar-Saavedra, AB, Casas, Moreno (2023)]: Entanglement and Bell inequality violation for $\rho_{Z Z}$ in the decay $H \rightarrow Z Z$ are theoretically ensured and experimentally accessible!
- Can it be extended/generalised for an anomalous coupling/other processes?

Main goals

(1) Develop an analytical strategy for testing entanglement and ensuring Bell ineq. violation of $\rho_{V V}$ in $X \rightarrow V V$ considering $C P$-conserving vertices.
(2) Apply it for $\rho_{Z Z}$ in the decay chain $H \rightarrow Z Z \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$with an anomalous $C P$-conserving coupling.

Preliminaries

- Bipartite quantum system:

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad\left|\psi_{i}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text { with } \operatorname{dim} \mathcal{H}_{A(B)}=d=3 .
$$

Preliminaries

- Bipartite quantum system:

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad\left|\psi_{i}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text { with } \operatorname{dim} \mathcal{H}_{A(B)}=d=3
$$

- Expectation values of \mathcal{O} with respect to ρ :

$$
\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}\{\rho \mathcal{O}\} .
$$

Preliminaries

- Bipartite quantum system:

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad\left|\psi_{i}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text { with } \operatorname{dim} \mathcal{H}_{A(B)}=d=3
$$

- Expectation values of \mathcal{O} with respect to ρ :

$$
\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}\{\rho \mathcal{O}\} .
$$

- Logarithmic negativity (entanglement measure):

$$
E_{N}(\rho)=\log _{3}\left(\left\|\rho^{T_{B}}\right\|_{1}\right), \quad\|A\|_{1}=\operatorname{Tr}\left\{\sqrt{A^{\dagger} A}\right\}
$$

Preliminaries

- Bipartite quantum system:

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad\left|\psi_{i}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text { with } \operatorname{dim} \mathcal{H}_{A(B)}=d=3
$$

- Expectation values of \mathcal{O} with respect to ρ :

$$
\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}\{\rho \mathcal{O}\}
$$

- Logarithmic negativity (entanglement measure):

$$
E_{N}(\rho)=\log _{3}\left(\left\|\rho^{T_{B}}\right\|_{1}\right), \quad\|A\|_{1}=\operatorname{Tr}\left\{\sqrt{A^{\dagger} A}\right\}
$$

- CGLMP Bell inequality $\left(A_{1}, A_{2}\right.$ and B_{1}, B_{2} observables acting respectively on \mathcal{H}_{A} and $\left.\mathcal{H}_{B}\right)$:

$$
I_{3}\left(P\left(A_{i}=k, B_{j}=l\right)\right)=\left\langle\mathcal{O}_{B e l l}\left(U_{A_{i}}, U_{B_{j}}\right)\right\rangle_{\rho} \leq 2
$$

Diboson state from spin-0 particle decay

General scalar state [Barr, Caban, Rembieliński (2023)]

$$
\left|\psi_{V V}^{\text {scalar }}\right\rangle=g_{\mu \nu}(k, p) e_{\lambda}^{\mu}(k) e_{\sigma}^{\nu}(p)|(k, \lambda) ;(p, \sigma)\rangle
$$

where

$$
g_{\mu \nu}=\eta_{\mu \nu}+\frac{c}{k \cdot p}\left(k_{\mu} p_{\nu}+p_{\mu} k_{\nu}\right), \quad c \in \mathbb{R}
$$

$$
e(q)=\left[e_{\lambda}^{\mu}(q)\right]=\binom{\frac{\mathbf{q}^{T}}{m}}{\mathbb{1}+\frac{\mathbf{q} \otimes \mathbf{q}^{T}}{m\left(m+q_{0}\right)}} V^{T}, \quad V=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
-1 & i & 0 \\
0 & 0 & \sqrt{2} \\
1 & i & 0
\end{array}\right)
$$

Diboson state from spin-0 particle decay

General scalar state [Barr, Caban, Rembieliński (2023)]

$$
\left|\psi_{V V}^{\text {scalar }}\right\rangle=g_{\mu \nu}(k, p) e_{\lambda}^{\mu}(k) e_{\sigma}^{\nu}(p)|(k, \lambda) ;(p, \sigma)\rangle
$$

where

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}+\frac{c}{k \cdot p}\left(k_{\mu} p_{\nu}+p_{\mu} k_{\nu}\right), \quad c \in \mathbb{R} \\
e(q)=\left[e_{\lambda}^{\mu}(q)\right]=\binom{\frac{\mathbf{q}^{T}}{m}}{\mathbb{1}+\frac{\mathbf{q} \otimes \mathbf{q}^{T}}{m\left(m+q_{0}\right)}} V^{T}, \quad V=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
-1 & i & 0 \\
0 & 0 & \sqrt{2} \\
1 & i & 0
\end{array}\right) .
\end{gathered}
$$

$$
\text { For } k^{\mu}=\left(\omega_{1}, 0,0,|\mathbf{k}|\right) \text { and } p^{\nu}=\left(\omega_{2}, 0,0,-|\mathbf{k}|\right) \text { : }
$$

$$
\left|\psi_{V V}^{\text {scalar }}\right\rangle=\frac{1}{\sqrt{2+\kappa^{2}}}[|+,-\rangle-\kappa|0,0\rangle+|-,+\rangle], \quad \kappa=\beta+c(\beta-1 / \beta)
$$

$$
\beta=\frac{M^{2}-\left(m_{1}^{2}+m_{2}^{2}\right)}{2 m_{1} m_{2}} \Longrightarrow c=0 \text { corresponds to SM case }
$$

Relation to vertex structure

The amplitude for the general Lorentz invariant, CPT conserving coupling of a (pseudo)scalar and two vector bosons is [Godbole, Miller, Mühlleitner (2007)]:

$$
\begin{aligned}
\mathcal{A}_{\lambda \sigma}(k, p) \propto & {\left[v_{1} \eta_{\mu \nu}+v_{2}(k+p)_{\mu}(k+p)_{\nu}+\right.} \\
& \left.v_{3} \varepsilon_{\alpha \beta \mu \nu}(k+p)^{\alpha}(k-p)^{\beta}\right] e_{\lambda}^{\mu}(k) e_{\sigma}^{\nu}(p)
\end{aligned}
$$

Relation to vertex structure

The amplitude for the general Lorentz invariant, CPT conserving coupling of a (pseudo)scalar and two vector bosons is [Godbole, Miller, Mühlleitner (2007)]:

$$
\begin{aligned}
\mathcal{A}_{\lambda \sigma}(k, p) \propto & {\left[v_{1} \eta_{\mu \nu}+v_{2}(k+p)_{\mu}(k+p)_{\nu}+\right.} \\
& \left.v_{3} \varepsilon_{\alpha \beta \mu \nu}(k+p)^{\alpha}(k-p)^{\beta}\right] e_{\lambda}^{\mu}(k) e_{\sigma}^{\nu}(p)
\end{aligned}
$$

Comparing with the general structure of our state and using $e_{\lambda}^{\mu}(q) q_{\mu}=0$:

$$
g_{\mu \nu}=\eta_{\mu \nu}+\frac{c}{k \cdot p}\left(k_{\mu} p_{\nu}+p_{\mu} k_{\nu}\right) \Longrightarrow c=\frac{v_{2}}{v_{1}}(k \cdot p)
$$

Relation to vertex structure

The amplitude for the general Lorentz invariant, CPT conserving coupling of a (pseudo)scalar and two vector bosons is [Godbole, Miller, Mühlleitner (2007)]:

$$
\begin{aligned}
\mathcal{A}_{\lambda \sigma}(k, p) \propto & {\left[v_{1} \eta_{\mu \nu}+v_{2}(k+p)_{\mu}(k+p)_{\nu}+\right.} \\
& \left.v_{3} \varepsilon_{\alpha \beta \mu \nu}(k+p)^{\alpha}(k-p)^{\beta}\right] e_{\lambda}^{\mu}(k) e_{\sigma}^{\nu}(p)
\end{aligned}
$$

Comparing with the general structure of our state and using $e_{\lambda}^{\mu}(q) q_{\mu}=0$:

$$
g_{\mu \nu}=\eta_{\mu \nu}+\frac{c}{k \cdot p}\left(k_{\mu} p_{\nu}+p_{\mu} k_{\nu}\right) \Longrightarrow c=\frac{v_{2}}{v_{1}}(k \cdot p)
$$

Physical interpretation of the parameter c !

Relation to vertex structure

The amplitude for the general Lorentz invariant, CPT conserving coupling of a (pseudo)scalar and two vector bosons is [Godbole, Miller, Mühlleitner (2007)]:

$$
\begin{aligned}
\mathcal{A}_{\lambda \sigma}(k, p) \propto & {\left[v_{1} \eta_{\mu \nu}+v_{2}(k+p)_{\mu}(k+p)_{\nu}+\right.} \\
& \left.v_{3} \varepsilon_{\alpha \beta \mu \nu}(k+p)^{\alpha}(k-p)^{\beta}\right] e_{\lambda}^{\mu}(k) e_{\sigma}^{\nu}(p)
\end{aligned}
$$

Comparing with the general structure of our state and using $e_{\lambda}^{\mu}(q) q_{\mu}=0$:

$$
g_{\mu \nu}=\eta_{\mu \nu}+\frac{c}{k \cdot p}\left(k_{\mu} p_{\nu}+p_{\mu} k_{\nu}\right) \Longrightarrow c=\frac{v_{2}}{v_{1}}(k \cdot p)
$$

Physical interpretation of the parameter c !

(From now on we consider $v_{3}=0$, i.e. only $C P$-conserving couplings.)

Ensemble of events

For an ensemble of events, we need to average over possible configurations:

$$
\rho_{V V}(c)=\int d m_{1} d m_{2} \mathcal{P}_{c}\left(m_{1}, m_{2}\right) \rho\left(m_{1}, m_{2}, c\right), \quad \rho=\left|\psi_{V V}^{\text {scalar }}\right\rangle\left\langle\psi_{V V}^{\text {scalar }}\right|
$$

Ensemble of events

For an ensemble of events, we need to average over possible configurations:

$$
\rho_{V V}(c)=\int d m_{1} d m_{2} \mathcal{P}_{c}\left(m_{1}, m_{2}\right) \rho\left(m_{1}, m_{2}, c\right), \quad \rho=\left|\psi_{V V}^{\text {scalar }}\right\rangle\left\langle\psi_{V V}^{\text {scalar }}\right|
$$

How to obtain $\mathcal{P}_{c}\left(m_{1}, m_{2}\right)$?

Ensemble of events

For an ensemble of events, we need to average over possible configurations:

$$
\rho_{V V}(c)=\int d m_{1} d m_{2} \mathcal{P}_{c}\left(m_{1}, m_{2}\right) \rho\left(m_{1}, m_{2}, c\right), \quad \rho=\left|\psi_{V V}^{\text {scalar }}\right\rangle\left\langle\psi_{V V}^{\text {scalar }}\right|
$$

How to obtain $\mathcal{P}_{c}\left(m_{1}, m_{2}\right)$?

For $c=0$, it was already obtained in $H \rightarrow Z Z$ via MC methods [Aguilar-Saavedra, AB, Casas, Moreno (2023)].

ss

For arbitrary c we use the diff. cross section of the $X \rightarrow V V \rightarrow f_{1} \bar{f}_{1} f_{2} \bar{f}_{2}$ decay:

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\left(\frac{3}{4 \pi}\right)^{2} \operatorname{Tr}\left\{\rho_{V V}(c)\left(\Gamma_{1}^{T} \otimes \Gamma_{2}^{T}\right)\right\}, \quad \Gamma_{i} \text { decay matrices. }
$$

Integrating w.r.t. Ω_{i} and differentiating w.r.t. m_{i} :

$$
\frac{1}{\sigma} \frac{d \sigma}{d m_{1} d m_{2}}=\mathcal{P}_{c}\left(m_{1}, m_{2}\right)
$$

In general, the PDF is obtained via the diff. cross section of the process in hand.

Integrating w.r.t. Ω_{i} and differentiating w.r.t. m_{i} :

$$
\frac{1}{\sigma} \frac{d \sigma}{d m_{1} d m_{2}}=\mathcal{P}_{c}\left(m_{1}, m_{2}\right)
$$

In general, the PDF is obtained via the diff. cross section of the process in hand.
For $H \rightarrow Z Z \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$with anomalous couplings [Zagoskin, Korchin (2016)]:

$$
\frac{1}{\sigma} \frac{d \sigma}{d m_{1} d m_{2}}=N \frac{\lambda^{1 / 2}\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right) m_{1}^{3} m_{2}^{3}}{D\left(m_{1}\right) D\left(m_{2}\right)}\left[2+\kappa^{2}\right],
$$

with N a normalisation constant and

$$
\begin{aligned}
\lambda(x, y, z) & =x^{2}+y^{2}+z^{2}-2(x y+x z+y z), \\
D(m) & =\left(m^{2}-m_{V}^{2}\right)^{2}+\left(m_{V} \Gamma_{V}\right)^{2}
\end{aligned}
$$

Once $\mathcal{P}_{c}\left(m_{1}, m_{2}\right)$ is identified, the complete density matrix (experimentally determined via Quantum Tomography [Ashby-Pickering, Barr, Wierzchucka (2023)], [AB (2023)]) is
where a, b, d are polynomials on c with coefficients given by the integrals

$$
I(n)=\int_{0 \leq m_{1}+m_{2} \leq M} d m_{1} d m_{2} \frac{\mathcal{P}_{c}\left(m_{1}, m_{2}\right)}{2+\kappa^{2}} \beta^{n}, \quad n=-2,-1,0,1,2
$$

Once $\mathcal{P}_{c}\left(m_{1}, m_{2}\right)$ is identified, the complete density matrix (experimentally determined via Quantum Tomography [Ashby-Pickering, Barr, Wierzchucka (2023)], [AB (2023)]) is

$$
\rho_{V V}(c)=\frac{1}{2 a+b}\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \square a & 0 & --d & 0 & \boxed{a} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{-d}{} & 0 & \boxed{b} & 0 & \boxed{-d} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & -\frac{-d}{} & 0 & \boxed{a} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where a, b, d are polynomials on c with coefficients given by the integrals

$$
I(n)=\int_{0 \leq m_{1}+m_{2} \leq M} d m_{1} d m_{2} \frac{\mathcal{P}_{c}\left(m_{1}, m_{2}\right)}{2+\kappa^{2}} \beta^{n}, \quad n=-2,-1,0,1,2
$$

For $M=m_{H}, m_{V}=m_{Z}$ and $\Gamma_{V}=\Gamma_{Z}$:
\(\left.\begin{array}{lcc}a_{Z} \simeq \& 2989.76

b_{Z} \simeq \& 9431.55+12883.6 c+4983.07 c^{2}

d_{Z} \simeq \& 4819.07+2752.19 c\end{array}\right\} \Longrightarrow\)| Entanglement |
| :---: |
| (Peres-Horodecki) |

Entanglement and Bell ineq. violation

We quantise the entanglement via the logarithmic negativity:

$$
E_{N}(\rho)=\log _{3}\left(\left\|\rho^{T_{B}}\right\|_{1}\right)
$$

Entanglement and Bell ineq. violation

We quantise the entanglement via the logarithmic negativity:

$$
E_{N}(\rho)=\log _{3}\left(\left\|\rho^{T_{B}}\right\|_{1}\right)
$$

while for testing the violation of the Bell ineq. we follow two optimisation strategies:
(1) Same as in Jesús Moreno's talk.
(2) Inspired by a similar idea than in [Popescu, Rohrlich (1992)].

Entanglement and Bell ineq. violation

We quantise the entanglement via the logarithmic negativity:

$$
E_{N}(\rho)=\log _{3}\left(\left\|\rho^{T_{B}}\right\|_{1}\right)
$$

while for testing the violation of the Bell ineq. we follow two optimisation strategies:
(1) Same as in Jesús Moreno's talk.
(2) Inspired by a similar idea than in [Popescu, Rohrlich (1992)].

Strategy 1 is modified accordingly to introduce the c dependence.

Entanglement and Bell ineq. violation

We quantise the entanglement via the logarithmic negativity:

$$
E_{N}(\rho)=\log _{3}\left(\left\|\rho^{T_{B}}\right\|_{1}\right)
$$

while for testing the violation of the Bell ineq. we follow two optimisation strategies:
(1) Same as in Jesús Moreno's talk.
(2) Inspired by a similar idea than in [Popescu, Rohrlich (1992)].

Strategy 1 is modified accordingly to introduce the c dependence. In strategy 2 we choose unitary matrices ensuring a violation of I_{3} for all values of $\kappa \Longleftrightarrow c$:

$$
\begin{array}{cc}
U_{A_{1}}=U_{V}(0), & U_{A_{2}}=U_{V}\left(\frac{\pi}{2}\right) \\
U_{B_{1}}=U_{V}\left(\frac{\pi}{4}\right), & U_{B_{2}}=U_{V}\left(-\frac{\pi}{4}\right)
\end{array}, \quad U_{V}=\left(\begin{array}{ccc}
\cos \frac{t}{2} & 0 & \sin \frac{t}{2} \\
0 & 1 & 0 \\
-\sin \frac{t}{2} & 0 & \cos \frac{t}{2}
\end{array}\right) .
$$

Allowed values for κ and c ?

The ranges for κ as a function of c are:

$$
\begin{aligned}
c \in(-\infty,-1) & \Longrightarrow \kappa \in(-\infty, 1) \\
c=-1 & \Longrightarrow \kappa \in[0,1] \\
c \in(-1,-1 / 2) & \Longrightarrow \kappa \in(2 \sqrt{-c(c+1)}, \infty) \\
c \in[-1 / 2, \infty) & \Longrightarrow \kappa \in[1, \infty)
\end{aligned}
$$

Allowed values for κ and c ?

The ranges for κ as a function of c are:

$$
\begin{aligned}
c \in(-\infty,-1) & \Longrightarrow \kappa \in(-\infty, 1) \\
c=-1 & \Longrightarrow \kappa \in[0,1] \\
c \in(-1,-1 / 2) & \Longrightarrow \kappa \in(2 \sqrt{-c(c+1)}, \infty) \\
c \in[-1 / 2, \infty) & \Longrightarrow \kappa \in[1, \infty)
\end{aligned}
$$

- Experimental bounds [CMS collaboration (2019)]:

$$
|c| \leq c_{H Z Z}^{\max } \simeq 0.23 \Longrightarrow \kappa \in[1, \infty)
$$

- Theoretical bounds (perturbative unitarity bounds) [Dahiya, Dutta, Islam (2016)]:

$$
c \in(-\infty, \infty) \Longrightarrow \text { no restriction over } \kappa
$$

Logarithmic Negativity

Figure 1: Logarithmic negativity $E_{N}(c)$ for different cuts on the off-shell mass m_{2}. Vertical dotted lines delimit the allowed range for c in $H \rightarrow Z Z$.

Bell ineq. violation

Figure 2: Maximal value of \mathcal{I}_{3} for the different optimisation strategies as a function of c. Vertical dotted lines delimit the allowed range for c in $H \rightarrow Z Z$.

Resistance to noise

Minimal mixture for which $\rho_{\text {noise }}$ stops violating Bell inequality:

$$
\rho_{\text {noise }}=\lambda \rho_{V V}(c)+(1-\lambda) \frac{1}{9} \mathbb{1}_{9}\left(\text { or } \rho_{B G}\right), \quad \lambda_{\min }=\frac{2}{\max \left\{\mathcal{I}_{3}^{(1)}, \mathcal{I}_{3}^{(2)}\right\}} .
$$

Resistance to noise

Minimal mixture for which $\rho_{\text {noise }}$ stops violating Bell inequality:

$$
\rho_{\text {noise }}=\lambda \rho_{V V}(c)+(1-\lambda) \frac{1}{9} \mathbb{1}_{9}\left(\text { or } \rho_{B G}\right), \quad \lambda_{\min }=\frac{2}{\max \left\{\mathcal{I}_{3}^{(1)}, \mathcal{I}_{3}^{(2)}\right\}}
$$

Figure 3: Resistance to noise for different cuts on the off-shell mass m_{2} as a function of c. Vertical dotted lines delimit the allowed range for c in $H \rightarrow Z Z$.

Conclusions

- The density matrix of an ensemble of diboson scalar states in terms of the most general Lorentz-invariant and CPT conserving couplings can be determined via analytical methods.
- Peres-Horodecki criterion remains as a necessary and sufficient condition for entanglement.
- New optimisation strategies ensuring the violation of Bell inequalities (highly non-trivial for entangled mixed states) is presented.
- In particular, $\rho_{Z Z}$ in the decay $H \rightarrow Z Z \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$violates Bell inequalities for any value of the anomalous coupling c.

Conclusions

- The density matrix of an ensemble of diboson scalar states in terms of the most general Lorentz-invariant and CPT conserving couplings can be determined via analytical methods.
- Peres-Horodecki criterion remains as a necessary and sufficient condition for entanglement.
- New optimisation strategies ensuring the violation of Bell inequalities (highly non-trivial for entangled mixed states) is presented.
- In particular, $\rho_{Z Z}$ in the decay $H \rightarrow Z Z \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$violates Bell inequalities for any value of the anomalous coupling c.

Thank you for listening!

