Exploring Bell inequalities and quantum entanglement in vector boson scattering

Roberto A. Morales Based on arXiv:2306.17247

Quantum Observables for Collider Physics 6-10 November 2023 – GGI Florence

- VBS processes
- S matrix and ρ density matrix formalism
- Entanglement quantifiers
- Numerical results
- Prospects at colliders
- Possible BSM analysis
- Summary

Why vector boson scattering?

Sensible to the deepest structure of the EW interactions in the SM precise cancellation of potentially large contributions \rightarrow unitarity restoration Higgs Mechanism dynamics

Active program of ATLAS and CMS [Covarelli et al. (2102.10991) Buarque Franzosi et al. (2106.01393)]

Suitable observable for New Physics looking for aTGC, aQGC and new Higgs interactions.

My previous works in the HEFT context: 1-loop renormalization, unitarity, matching with UV theories

VBS in Quantum Information context

Different **qubit** (photon) and **qutrit** (W^{\pm}, Z) final state bipartite systems $\{+, -\}$

$$2\otimes 2$$
 $W^+W^- o \gamma\gamma$

Also $t\bar{t}$ production

[Afik et al.; Fabbrichesi et al.; Severi et al.; Aoude et al.; Aguilar-Saavedra et al.; Dong et al.] $H \rightarrow \tau \tau, \gamma \gamma$

[Fabbrichesi et al.; Altakach et al.]

$$\begin{array}{c} 3 \otimes 2 \\ W^{\pm} \gamma \to W^{\pm} \gamma \\ W^{+} W^{-} \to Z \gamma \\ W^{\pm} Z \to W^{\pm} \gamma \end{array}$$

Also single-top [Aguilar-Saavedra]

$$3 \otimes 3$$

$$\gamma \to W^+ W^-, \ W^{\pm} \gamma \to W^{\pm} Z, \ W^+ W^- \to W^+ W^-$$

$$W^{\pm} W^{\pm} \to W^{\pm} W^{\pm}, \ W^+ W^- \to ZZ, \ W^{\pm} Z \to W^{\pm} Z$$

$$Z\gamma \to W^+ W^-, \ ZZ \to W^+ W^-, \ ZZ \to ZZ$$

Also $H \rightarrow WW$, ZZ and diboson production from fermions [Barr et al.; Aguilar-Saavedra et al.; Ashby-Pickering et al.; Fabbrichesi et al.]

Investigate quantum entanglement with highest possible energy at colliders

S matrix and ρ density matrix formalism

Spin density matrix of the final state polarizations $|f\rangle=|s_1\rangle\otimes|s_2\rangle$ $\rho=|f\rangle\langle f|$

QFT:
$$\langle f|S|i\rangle = i(2\pi)^4 \delta^{(4)}(p_1' + p_2' - p_1 - p_2)\mathcal{M}(V_1'V_2' \to V_1V_2)$$

Time-evolution of this density matrix through the S matrix operator:

$$\langle s_1 \, s_2 |
ho | ilde{s}_1 \, ilde{s}_2
angle = rac{1}{|\overline{\mathcal{M}}|^2} \mathcal{M}_{s_1,s_2} \mathcal{M}^\dagger_{ ilde{s}_1, ilde{s}_2}$$

Useful parametrization for quantum tomography [Ashby-Pickering et al. (2209.13990)]

$$\begin{split} \rho &= \frac{1}{d_1 d_2} I_{d_1 d_2} + \frac{1}{2 d_2} \sum_{i=1}^{d_1^2 - 1} \mathbf{A}_i \lambda_i^{(d_1)} \otimes I_{d_2} + \frac{1}{2 d_1} \sum_{j=1}^{d_2^2 - 1} \mathbf{B}_j I_{d_1} \otimes \lambda_j^{(d_2)} \\ &+ \frac{1}{4} \sum_{i=1}^{d_1^2 - 1} \sum_{j=1}^{d_2^2 - 1} \mathbf{C}_{ij} \lambda_i^{(d_1)} \otimes \lambda_j^{(d_2)} \end{split}$$

- Theoretical predictions for VBS quantum properties.
- Locate relevant kinematical regions $[\cos(\theta), \sqrt{S}]$ where quantum mechanical measurements might be performed.
- Determination of related quantities from simulations is postponed for future dedicated analysis.

Plan:

Define quantifiers related to entanglement detection and test Bell inequality. They require the full knowledge of ρ .

Compute the scattering amplitudes $\mathcal{M}(S, \theta)$ of VBS processes.

Entanglement vs separability

convex combination of direct product states $\rho_{sep} = \sum_{n} p_n \rho_n^{(V_1)} \otimes \rho_n^{(V_2)}$? <u>Peres-Horodecki or PPT Criterion:</u> $\langle s_1 s_2 | \rho^{T_2} | \tilde{s}_1 \tilde{s}_2 \rangle = \langle s_1 \tilde{s}_2 | \rho | \tilde{s}_1 s_2 \rangle$ necessary and sufficient conditions for entanglement in 2 \otimes 2 and 3 \otimes 2 systems **Negativity** $\mathcal{N}[\rho] = \frac{1}{2} \sum_{k} |\lambda_k^{T_2}| - \lambda_k^{T_2}$ For 3 \otimes 3 case is just sufficient (special *H* decays [Aguilar-Saavedra *et al.* (2209.14033; 2209.13441)])

 $\rho^{2} = \rho$ Others entanglement quantifiers for pure states: $\rho_{red 1} = \text{Tr}_{2}[\rho] = \sum_{s_{2}} \langle s_{2} | \rho | s_{2} \rangle$

Entropy of Entanglement $S_{EE}[\rho] = -Tr[\rho_{red} \log \rho_{red}] = -\sum \lambda^{red} \log(\lambda^{red})$

Concurrence
$$\mathcal{C}[
ho] = \sqrt{2(1 - \mathrm{Tr}[(
ho_{red})^2])}$$

Separable state \leftrightarrow vanishing quantifiers

 \Rightarrow Restrictions over correlation matrix C_{ij}

Entangled \supset Bell-nonlocal: test both phenomena at high-energy

Bell inequality $\mathcal{I} \leq 2$ can be violated in QFT

<u>2⊗2 case:</u> optimal Clauser-Horne-Shimony-Holt operator

$$\mathcal{B}_{CHSH} = \vec{a}_1 \cdot \vec{\sigma} \otimes (\vec{b}_1 - \vec{b}_2) \cdot \vec{\sigma} + \vec{a}_2 \cdot \vec{\sigma} \otimes (\vec{b}_1 + \vec{b}_2) \cdot \vec{\sigma}$$

$$\Rightarrow \quad \mathcal{I}_2 = \underset{\vec{a}_i, \vec{b}_i}{\operatorname{Max}} \{ \operatorname{Tr}[\rho \cdot \mathcal{B}_{CHSH}] \} = 2\sqrt{r_1 + r_2}$$
two largest eigenvalues of $C^{\mathrm{T}}C$
Cirelson bound: $\mathcal{I}_2 \leq 2\sqrt{2}$ (MaxEnt)
[Lett. Math. Phys. 4 (1980)]

<u>3 \otimes 2 case:</u> generalized CHSH operator (not optimal) ^{[Caban et al.} (0801.3200); ^{Barr} (2106.01377)]

$$\vec{S} = \left(\frac{\lambda_1 + \lambda_6}{\sqrt{2}}, \frac{\lambda_2 + \lambda_7}{\sqrt{2}}, \frac{\lambda_3 + \sqrt{3}\lambda_8}{2}\right)$$
$$\mathcal{B}_{CHSH}^{gen} = \vec{n}_1 \cdot \vec{S} \otimes (\vec{n}_2 - \vec{n}_4) \cdot \vec{\sigma} + \vec{n}_3 \cdot \vec{S} \otimes (\vec{n}_2 + \vec{n}_4) \cdot \vec{\sigma}$$
$$\Rightarrow \mathcal{I}_{3\otimes 2} = \max_{\vec{n}_i} \left\{ \operatorname{Tr}[\rho \cdot \mathcal{B}_{CHSH}^{gen}] \right\} = 2\sqrt{\tilde{r}_1 + \tilde{r}_2}$$
two largest eigenvalues of $\tilde{c}^{\mathrm{T}} \tilde{c}$

$\mathsf{Collins}\text{-}\mathsf{Gisin}\text{-}\mathsf{Linden}\text{-}\mathsf{Massar}\text{-}\mathsf{Popescu}\ (\mathsf{CGLMP}) \to \mathsf{optimal}$

From a suitable Bell operator, corresponding to H decays [Barr (2106.01377)] here, an optimization through rotation matrices $U_k = e^{-iS_z\alpha_k}e^{-iS_y\beta_k}$ is performed

$$\hat{\mathcal{B}}_{CGLMP}^{xy} = -\frac{2}{\sqrt{3}} \left(S_x \otimes S_x + S_y \otimes S_y \right) + \lambda_4 \otimes \lambda_4 + \lambda_5 \otimes \lambda_5$$

$$\Rightarrow \quad \mathcal{I}_3 = \max_{\vec{\alpha}_i, \vec{\beta}_i} \left\{ \operatorname{Tr}[\rho \cdot (U_1 \otimes U_2)^{\dagger} \cdot \hat{\mathcal{B}}_{CGLMP}^{xy} \cdot (U_1 \otimes U_2)] \right\}$$
maximum is $1 + \sqrt{11/3} \approx 2.915$ but not achieved by MaxEnt (≈ 2.873)
$$\stackrel{\text{Acin et al. [PRA 65 (2002)]}}{\xrightarrow{\text{Acin et al. [PRA 65 (2002)]}}}$$

2 \otimes 2 case: $W^+W^- \rightarrow \gamma\gamma$

Analytic treatment with illustrative purpose: A_i , B_j , C_{ij} , \mathcal{N} , \mathcal{S}_{EE} and \mathcal{I}_2

Caveat [Fabrichessi et al. (2208.11723)]

Requires polarization measurements of final photons (not currently in ATLAS nor CMS) Proposals for CP properties in $H \rightarrow \gamma \gamma$ and LHCb measurements in *b*-baryon decays

Roberto A. Morales

VBS entanglement

$3\otimes 2$ processes: entanglement

Analytic results for $W^{\pm}\gamma \rightarrow W^{\pm}\gamma$ Separable at $\sqrt{S} = M_{\rm W}$ or $\cos \theta = 1$

$$W^{\pm}Z \rightarrow W^{\pm}\gamma$$
 similar to $W^{+}W^{-} \rightarrow Z\gamma$

MaxEnt in part of the red region

Similar pattern for $S_{\rm EE}$

$3\otimes 2$ processes: Bell inequality

Concurrence for $3\otimes 3$ case

All processes have $\mathcal{C} > 0 \, \Rightarrow$ entangled final state

 $\gamma\gamma \rightarrow W^+W^-$

Analytical results

 $W^\pm W^\pm \to W^\pm W^\pm$

Experimental VBS golden channel

Maxima \sim central lower energy region and similar pattern for $\mathcal{S}_{\rm EE}$

Roberto A. Morales

Concurrence for $3 \otimes 3$ processes

 $ZZ \rightarrow W^+W^-$

Maximal Concurrence $\sim 2/\sqrt{3}$ in red region

 $ZZ \rightarrow ZZ$

Homogeneous distribution ~ 0.3 'less entangled'

Similar pattern for $\mathcal{S}_{\mathrm{EE}}$

Bell inequality for $3 \otimes 3$ processes

Optimization through rotation U matrices for each point of phase space.

 $\gamma\gamma \rightarrow W^+W^-$

 $\mathcal{I}_3 > 2$ for all energies Maximum ~ 2.38

 $W^{\pm}W^{\pm} \rightarrow W^{\pm}W^{\pm}$

Reduced region for $\mathcal{I}_3>2$ Maximum ~ 2.71

Bell inequality for $3 \otimes 3$ processes

 $ZZ \rightarrow W^+W^-$

Reduced region for $\mathcal{I}_3>2$ Maximum ~ 2.82

 ${\cal I}_3$ lower than 2 Maximum ~ 1.76

Broader regions for testing Bell inequality?

 \Rightarrow optimization through a more appropriate Bell operator [Aguilar-Saavedra *et al.* 2209.13441]

Roberto A. Morales

Prospects at colliders

 $pp \rightarrow (V_1V_2)_{
m leptonic \, decay} + j_1 + j_2$ for the LHC

 $e^-e^+ \rightarrow (V_1V_2)_{\rm leptonic\,decay} + l_1 + l_2$ for future electron-positron colliders

All final state were observed (except diphoton) $\sigma_{\rm tot}$ and $\sigma_{\rm fid}$ @13 TeV [Covarelli (PoS LHCP2021)]] Typical VBS cuts: $m_{jj} > 500$ GeV and $\Delta \eta_{jj} > 4$ Mixed states in complete process (no control |i))

$$ho = \sum \omega_{|i\rangle}^{q_1 q_2} \rho^{|f\rangle}$$

luminosity of q_i and V'_i in $\omega_{|i\rangle}^{q_1q_2}$ using EWA/EPA [Dawson (1985); Weizsacker-Williams (1934)]

Significance with Monte-Carlo simulation (uncertainties, backgrounds, etc)

Next step: quantum tomography in the relevant regions reconstruct ρ from data with dedicated analysis

Roberto A. Morales

The non-linear HEFT or EChL

- Symmetries: Lorentz, EW gauge $SU(2)_L \times U(1)_Y$ and EW Chiral $SU(2)_L \times SU(2)_R$ (based on ChPT of QCD)
- Light degrees of freedom and building blocks as in the SM: Higgs boson is a SU(2) singlet, in contrast to the (linear) SM! EW gauge bosons $\Rightarrow \hat{W}_{\mu} = gW_{\mu}^{a}\tau^{a}/2$, $\hat{B}_{\mu} = g' B_{\mu}\tau^{3}/2$, $\hat{W}_{\mu\nu}$, $\hat{B}_{\mu\nu}$. EW GBs π^{a} transform non-linearly under the EW Chiral symmetry but $U = \exp\left(\frac{i\pi^{a}\tau^{a}}{v}\right)$ that transforms linearly $U \rightarrow g_{L}Ug_{R}^{\dagger}$ $\Rightarrow D_{\mu}U = \partial_{\mu}U + i\hat{W}_{\mu}U - iU\hat{B}_{\mu}$ and $\mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}$

Our assumptions: fermionic interactions as in SM.

Based on a derivative expansion ↔ Chiral expansion (powers of p). Derivatives and masses are soft scales of the EFT with power counting O(p) ⇒ L organized in terms of operators O(p²), O(p⁴), ...

bosonic sector
$$\mathcal{L}_{EChL} = \mathcal{L}_2^{F} + \mathcal{L}_4^{F} + ...$$

• Convenient for strongly interacting UV completions (in contrast to SMEFT)

Constraining the HEFT

New Physics in VBS:

$$\mathcal{L}_{2} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - V(H) - \frac{1}{2g^{2}} \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] - \frac{1}{2g^{\prime 2}} \operatorname{Tr} \left[\hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \right]$$

$$+ \frac{v^{2}}{4} \left(1 + 2\mathbf{a} \frac{H}{v} + \mathbf{b} \left(\frac{H}{v} \right)^{2} + \ldots \right) \operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right]$$

$$\mathcal{L}_{4} = \mathbf{a}_{1} \operatorname{Tr} \left[U \hat{B}_{\mu\nu} U^{\dagger} \hat{W}^{\mu\nu} \right] + i \mathbf{a}_{2} \operatorname{Tr} \left[U \hat{B}_{\mu\nu} U^{\dagger} [\mathcal{V}^{\mu}, \mathcal{V}^{\nu}] \right] - i \mathbf{a}_{3} \operatorname{Tr} \left[\hat{W}_{\mu\nu} [\mathcal{V}^{\mu}, \mathcal{V}^{\nu}] \right]$$

$$+ \mathbf{a}_{4} \operatorname{Tr} \left[\mathcal{V}_{\mu} \mathcal{V}_{\nu} \right] \operatorname{Tr} \left[\mathcal{V}^{\mu} \mathcal{V}^{\nu} \right] + \mathbf{a}_{5} \operatorname{Tr} \left[\mathcal{V}_{\mu} \mathcal{V}^{\mu} \right] \operatorname{Tr} \left[\mathcal{V}_{\nu} \mathcal{V}^{\nu} \right]$$

$$- \mathbf{a}_{\mathsf{HBB}} \frac{H}{v} \operatorname{Tr} \left[\hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \right] - \mathbf{a}_{\mathsf{HWW}} \frac{H}{v} \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] + \ldots$$

Different kinematics with respect to the SM:

$$i\Gamma_{WWZZ}^{\mu\nu\rho\sigma} = -ig^{2}c_{w}^{2} \left(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho}\right) \\ + i\frac{g^{4}}{c_{w}^{2}} \left(2(2c_{w}^{2}\mathbf{a}_{3} + \mathbf{a}_{5})g^{\mu\nu}g^{\rho\sigma} - (2c_{w}^{2}\mathbf{a}_{3} - \mathbf{a}_{4})(g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho})\right)$$

 \Rightarrow angular distributions (sensitivity to $\rho)$ could also change

Summary

- VBS analysis from a new perspective
- Relevant kinematical regions for quantum measurements at sub-process level
- Final bosons result entangled after scattering in all processes (even MaxEnt in some cases)
- Testing Bell inequality $(\mathcal{I} > 2)$ in reduced regions: $W^+W^- \rightarrow \gamma\gamma$ requires photon polarization measurement $W^{\pm}\gamma$, $Z\gamma$ final states and $ZZ \rightarrow ZZ$ not optimized Bell operator $\gamma\gamma \rightarrow W^+W^-$ and $ZZ \rightarrow W^+W^-$ most promising
- Guide to dedicated experimental searches
- Nest step:

quantum tomography by means of Monte-Carlo simulation HEFT analysis optimize $\mathcal{I}_{3\otimes 2}$ and \mathcal{I}_3 quantifiers for VBS

Backup slides

282

3⊗2

$3 \otimes 2$ processes: Entropy of Entanglement

Roberto A. Morales

VBS entanglement

$3 \otimes 3$ processes: Concurrence

C for $W^+W^- \rightarrow W^+W^-$

$3 \otimes 3$ processes: Concurrence

Roberto A. Morales

3⊗3 processes: Entropy of Entanglement

3⊗3 processes: Entropy of Entanglement

$3\otimes 3$ processes: Entropy of Entanglement

3⊗3 processes: Entropy of Entanglement

Roberto A. Morales

The Maximally Entangled two-qubits (d = 2) and two-qutrits (d = 3) **pure states** are defined as $|\Psi_{\text{MaxEnt}}\rangle = \frac{1}{\sqrt{d}} \sum_{k=1}^{d} |k\rangle \otimes |k\rangle$ for which $\mathcal{N}_{\text{MaxEnt}} = \frac{d-1}{2}$, $\mathcal{S}_{\text{EE}}^{\text{MaxEnt}} = \log(d)$ and $\mathcal{C}_{\text{MaxEnt}} = \sqrt{\frac{2(d-1)}{d}}$ Eltschka *et al.* [PRA 91 (2015)]

For **mixed states**, concurrence as (hard) optimization over pure sates of all possible decompositions: $C_{\text{mix}} = \inf \left\{ \sum p_i C_i^{\text{pure}} \right\}$

 $\Rightarrow \text{ lower bound } \mathcal{C}_{\min}^2 \geq C_2 = 2max \left\{ 0, \operatorname{Tr}[\rho^2] - \operatorname{Tr}[\rho_{\textit{red 1}}^2], \operatorname{Tr}[\rho^2] - \operatorname{Tr}[\rho_{\textit{red 2}}^2] \right\}$

and upper bound $C_{\min}^2 \leq 2min\{1 - \mathrm{Tr}[\rho_{red\,1}^2], 1 - \mathrm{Tr}[\rho_{red\,2}^2]\}$ _{Zhang et al. [PRA 78 (2008)]}

Effective W Approximation (EWA) Dawson [Nucl. Phys. B 249 no. 42 (1985)]

- W's and Z's considered as partons inside the proton. Generalization of the Weiszäcker-Williams approximation for photons.
- They are emitted collinearly from the fermions (quarks) with probability functions $f_V(\hat{x})$ and then scatter on-shell.
- Factorization using a sort of PDFs

$$\sigma(pp \to (V_1 V_2 \to V_3 V_4) + X) =$$

$$\sum_{i,j} \int \int dx_1 dx_2 f_{q_i}(x_1) f_{q_j}(x_2) \int \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 \to V_3 V_4)$$

More about the EWA

The most accurate EWA expression in our setup is the Dawson's Improved

$$\begin{split} f_{V_T}^{lmproved}(\hat{x}) &= \frac{C_V^2 + C_A^2}{8\pi^2 \hat{x}} \eta \left[\frac{-\hat{x}^2}{1 + M_V^2 / (4E^2(1-\hat{x}))} + \frac{2\hat{x}^2(1-\hat{x})}{M_V^2 / E^2 - \hat{x}^2} + \left\{ \hat{x}^2 + \frac{\hat{x}^4(1-\hat{x})}{(M_V^2 / E^2 - \hat{x}^2)^2} \left(2 + \frac{M_V^2}{E^2(1-\hat{x})} \right) - \frac{\hat{x}^2}{(M_V^2 / E^2 - \hat{x}^2)^2} \frac{M_V^4}{2E^4} \right\} \log \left(1 + \frac{4E^2(1-\hat{x})}{M_V^2} \right) + \hat{x}^4 \left(\frac{2-\hat{x}}{M_V^2 / E^2 - \hat{x}^2} \right)^2 \log \frac{\hat{x}}{2-\hat{x}} \right] \end{split}$$

with $C_{V(A)}$ the vector(axial) couplings Vqq, \hat{x} the fraction of

quark energy $E = \frac{\sqrt{s_{qq}}}{2}$ carried by V and $\eta \equiv \left(1 - \frac{M_V^2}{\hat{x}^2 E^2}\right)^{1/2}$

In the limit
$$M_V \ll E$$
 (LLA) \Rightarrow
 $f_{V_T}^{LLA}(\hat{x}) = \frac{c_V^2 + c_A^2}{8\pi^2 \hat{x}} \left[\hat{x}^2 + 2(1-\hat{x}) \right] \log \left(\frac{4E^2}{M_V^2} \right)$

Among different f_V In the high \hat{x} region: similar results. In the low \hat{x} region: differ quite a lot.

Dawson's Improved gets correct $\sigma(pp \rightarrow V_1 V_2 + jj)$ in low m_{VV} region (most events here).

More about the EWA

The most accurate EWA expression in our setup is the Dawson's Improved

$$\begin{split} f_{V_T}^{Improved}(x) &= \frac{C_V^2 + C_A^2}{8\pi^2 x} \left[\frac{-x^2}{1 + M_V^2 / (4E^2(1-x))} + \frac{2x^2(1-x)}{M_V^2 / E^2 - x^2} + \left\{ x^2 + \frac{x^4(1-x)}{(M_V^2 / E^2 - x^2)^2} \left(2 + \frac{M_V^2}{E^2(1-x)} \right) \right. \\ &\left. - \frac{x^2}{(M_V^2 / E^2 - x^2)^2} \frac{M_V^4}{2E^4} \right\} \log \left(1 + \frac{4E^2(1-x)}{M_V^2} \right) + x^4 \left(\frac{2-x}{M_V^2 / E^2 - x^2} \right)^2 \log \frac{x}{2-x} \right] \eta \end{split}$$

$$f_{V_L}^{Improved}(x) = \frac{C_V^2 + C_A^2}{\pi^2} \frac{1 - x}{x} \frac{\eta}{(1 + \eta)^2} \left\{ \frac{1 - x - M_V^2/(8E^2)}{1 - x + M_V^2/(4E^2)} - \frac{M_V^2}{4E^2} \frac{1 + 2(1 - x)^2}{1 - x + M_V^2/(4E^2)} \frac{1}{M_V^2/E^2 - x^2} - \frac{M_V^2}{4E^2} \frac{x^2}{2(1 - x)(x^2 - M_V^2/E^2)^2} \left[(2 - x)^2 \log \frac{x}{2 - x} - \left(\left(x - \frac{M_V^2}{E^2x} \right)^2 - (2(1 - x) + x^2) \right) \log \left(1 + \frac{4E^2(1 - x)}{M_V^2} \right) \right] \right]$$

$$-\frac{M_V^2}{8E^2} \frac{x}{\sqrt{x^2 - M_V^2/E^2}} \left[\frac{2}{x^2 - M_V^2/E^2} + \frac{1}{1 - x} \right] \left[\log \frac{2 - x - \sqrt{x^2 - M_V^2/E^2}}{2 - x + \sqrt{x^2 - M_V^2/E^2}} - \log \frac{x - \sqrt{x^2 - M_V^2/E^2}}{x + \sqrt{x^2 - M_V^2/E^2}} \right] \right]$$

with $C_{V(A)}$ the vector(axial) couplings Vqq, x the fraction of

quark energy
$$E = \frac{\sqrt{s_{qq}}}{2}$$
 carried by V and $\eta \equiv \left(1 - \frac{M_V^2}{x^2 E^2}\right)^{1/2}$
In the limit $M_V \ll E$ (LLA) \Rightarrow
 $f_{V_T}^{LLA}(x) = \frac{C_V^2 + C_A^2}{8\pi^2 x} \left[x^2 + 2(1-x)\right] \log\left(\frac{4E^2}{M_V^2}\right)$
 $f_{V_L}^{LLA}(x) = \frac{C_V^2 + C_A^2}{\pi^2} \frac{1-x}{x}$

