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Entanglement is perhaps the aspect of quantum mechanics that shows the greatest 
departure from classical conceptions

Quantum Entanglement

Einstein, Podolsky, and Rosen 1935

Schrödinger 1935

1935:   a strange phenomenon of quantum mechanics, questioning the completeness 
of the theory

1964:   Bell realised that entanglement leads to experimentally testable deviations of 
quantum mechanics from classical physics

Bell  1964

With the emergence of quantum information theory, entanglement was recognized as 
a resource, enabling tasks like quantum cryptography, quantum teleportation or 
measurement based quantum computation:  a threat became an opportunity   

Worth mentioning:  the problem of classifying and quantifying the entanglement of 
general multipartite systems is still an open problem

O. Gühne,  G. Tóth 2009
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Bell inequalities

The physical consequence of entanglement that departs from classical intuition is 
the violation of Bell inequalities, an impossible result in any local-realistic (“classical") 
theory of nature. 

CHSH 

Alice (Bob) chooses to measure certain

(bi-valued) observables,  A, A′ (B, B′)  
Then, classically, 

Clauser,  Horne,  Shimony and Holt,   1969

10 EXPERIMENTAL CONSEQUENCES OF OBJECTIVE. . .
than that previously employed, and prove that it
is sufficient to ensure the incompatibility of OLT
and the experimental results of Freedman and
Clauser. (e) We construct an explicit QLT model
which reproduces the results of that experiment.
We thereby prove that the Freedman-Clauser re-
sults constitute a refutation of only those OLT
which satisfy our (or some similar) supplementary
assumption.

During a period of time, while ihe adjustable
parameters have the values a and b, the source
emits, say, Nof the two-particle systems of in-
terest. ' For this period, denote by N, (a) and
N, (b) the number of counts at detectors 1 and 2,
respectively, and by N»(a, h} the number of simul-
taneous counts from the two detectors (coincident
counts) '.If N is sufficiently large, then the en-
semble probabilities of these results are
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II. OBJECTIVE LOCAL THEORIES

We will formulate and motivate objective local
theories in the context of the experimental ar-
rangement shown schematically in Fig. 1. A
source of coincident two-particle emissions is
viewed by two analyzer-detector assemblies 1 and
2. Each apparatus has an adjustable parameter;
let a denote the value of the parameter at apparatus
1, and 5 that at apparatus 2. In Fig. 1, a and
b are taken to be angles specifying the orienta-
tions of the analyzers, e.g. , the axes of linear
polarizers for photons, or the directions of the
field gradients of Stern-Gerlach magnets for
spin--,' particles. However, neither of these
particular interpretations of the parameters a
and b is essential for the discussion which fol-
lows; a and b may denote the values of any ad-
justable parameter at apparatus 1 and 2, respec-
tively. Finally, in addition to an adjustable com-
ponent and a detector, each apparatus may (and in
practice does) contain various other components,
such as additional. filters to shield the detectors
from unwanted radiations, etc. Since we require
that these additional apparatus components re-
main in place during the experiment, we will ig-
nore them in the discussion. Similarly, we ignore
and assume constant any other macroscopic vari-
ables, such as those describing the source-ap-
paratus geometry.

Consider one of the two-component emissions
from the source. Physical theories, classical,
quantum-mechanical, and presumably more gen-
eral ones as well, characterize a physical system
with a state. Moreover, during the system's ex-
istence, its state in general evolves. Consider
the state specification of the above system at a
time intermediate between its emission and its
impingement on either apparatus. " Denote this
state by A. . Note that we do not necessarily make
a commitment to the completeness of this state
specification, i.e., it may or may not describe
the ultimate essence of the system at the chosen
time. But neither do we make any restriction on
the possible complexity of A. , nor do we assume it
has any special characteristics; in short, we as-
sume no model. As the state described initially
by A. subsequently evolves, it may or may not
trigger a count at apparatus 1, and similarly it
may or may notdo so at apparatus 2. The initial state
A. , if it serves the same role as in existing theo-
ries, will suffice to determine at least the proba-
bilities of these events. " Let the probabilities of
a count being triggered at apparatus 1 and 2 be
P, (X, a) and P,(X, h}, respectively, and let p»(A, a, b)
be the probability that both counts are triggered. "
Since, in general, every system in the ensemble

emitted by the source may not have the same ini-
tial state, we allow a mixture of states. Let p(A)
be the normalized probability density character-
izing the ensemble of emissions. " In terms of the
quantities just defined, the ensemble probabilities
given in Eqs. (1) are

Apparatus
2

Apparatus p, (a)= / Ch p(Z)p, (X, a},r
FlG. 1. Scheme considered for a discussion of objective

local theories. A source emitting particle pairs is viewed
by two apparatuses. Each apparatus consists of an an-
alyzer and an associated detector. The analyzers have
parameters, a and b respectively, which are externally
adjustable. 1n the above example, a and b represent
the angles between the analyzer axes and a fixed refer-
ence axis.

p„(a, b) = ah p(X}p„(Z, a, h),

~here 1" is the space of the states A. . The formula-
tion (2} is quite general. Nothing so far has been

<latexit sha1_base64="7LN/l16/tYY6EYfZ7ZTaHsU+6ik="></latexit>��hABi � hAB0i+ hA0Bi+ hA0B0i
��  2
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Bell inequalities in vector boson Higgs decays

10 EXPERIMENTAL CONSEQUENCES OF OBJECTIVE. . .
than that previously employed, and prove that it
is sufficient to ensure the incompatibility of OLT
and the experimental results of Freedman and
Clauser. (e) We construct an explicit QLT model
which reproduces the results of that experiment.
We thereby prove that the Freedman-Clauser re-
sults constitute a refutation of only those OLT
which satisfy our (or some similar) supplementary
assumption.

During a period of time, while ihe adjustable
parameters have the values a and b, the source
emits, say, Nof the two-particle systems of in-
terest. ' For this period, denote by N, (a) and
N, (b) the number of counts at detectors 1 and 2,
respectively, and by N»(a, h} the number of simul-
taneous counts from the two detectors (coincident
counts) '.If N is sufficiently large, then the en-
semble probabilities of these results are

Artal y zer 2 Ana ly zer

Detector 2 b
Source Detector l

II. OBJECTIVE LOCAL THEORIES

We will formulate and motivate objective local
theories in the context of the experimental ar-
rangement shown schematically in Fig. 1. A
source of coincident two-particle emissions is
viewed by two analyzer-detector assemblies 1 and
2. Each apparatus has an adjustable parameter;
let a denote the value of the parameter at apparatus
1, and 5 that at apparatus 2. In Fig. 1, a and
b are taken to be angles specifying the orienta-
tions of the analyzers, e.g. , the axes of linear
polarizers for photons, or the directions of the
field gradients of Stern-Gerlach magnets for
spin--,' particles. However, neither of these
particular interpretations of the parameters a
and b is essential for the discussion which fol-
lows; a and b may denote the values of any ad-
justable parameter at apparatus 1 and 2, respec-
tively. Finally, in addition to an adjustable com-
ponent and a detector, each apparatus may (and in
practice does) contain various other components,
such as additional. filters to shield the detectors
from unwanted radiations, etc. Since we require
that these additional apparatus components re-
main in place during the experiment, we will ig-
nore them in the discussion. Similarly, we ignore
and assume constant any other macroscopic vari-
ables, such as those describing the source-ap-
paratus geometry.

Consider one of the two-component emissions
from the source. Physical theories, classical,
quantum-mechanical, and presumably more gen-
eral ones as well, characterize a physical system
with a state. Moreover, during the system's ex-
istence, its state in general evolves. Consider
the state specification of the above system at a
time intermediate between its emission and its
impingement on either apparatus. " Denote this
state by A. . Note that we do not necessarily make
a commitment to the completeness of this state
specification, i.e., it may or may not describe
the ultimate essence of the system at the chosen
time. But neither do we make any restriction on
the possible complexity of A. , nor do we assume it
has any special characteristics; in short, we as-
sume no model. As the state described initially
by A. subsequently evolves, it may or may not
trigger a count at apparatus 1, and similarly it
may or may notdo so at apparatus 2. The initial state
A. , if it serves the same role as in existing theo-
ries, will suffice to determine at least the proba-
bilities of these events. " Let the probabilities of
a count being triggered at apparatus 1 and 2 be
P, (X, a) and P,(X, h}, respectively, and let p»(A, a, b)
be the probability that both counts are triggered. "
Since, in general, every system in the ensemble

emitted by the source may not have the same ini-
tial state, we allow a mixture of states. Let p(A)
be the normalized probability density character-
izing the ensemble of emissions. " In terms of the
quantities just defined, the ensemble probabilities
given in Eqs. (1) are

Apparatus
2

Apparatus p, (a)= / Ch p(Z)p, (X, a},r
FlG. 1. Scheme considered for a discussion of objective

local theories. A source emitting particle pairs is viewed
by two apparatuses. Each apparatus consists of an an-
alyzer and an associated detector. The analyzers have
parameters, a and b respectively, which are externally
adjustable. 1n the above example, a and b represent
the angles between the analyzer axes and a fixed refer-
ence axis.

p„(a, b) = ah p(X}p„(Z, a, h),

~here 1" is the space of the states A. . The formula-
tion (2} is quite general. Nothing so far has beenH

V   V* 

VV     ≈  maximally entangled state

A.J. Barr,  2022

A.J. Barr,  P. Caban, J. Rembieliński,  2022

J.A. Aguilar-Saavedra, 2022

J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, J. M. Moreno 2022

R. Ashby-Pickering, A.J. Barr, A. Wierzchuck 2022

A. Bernal ,P. Caban, J. Rembieliński,  2023

F. Fabbri, J. Howarth, T. Maurin 2023

M. Fabbrichesi,  R. Floreanini, E. Gabrielli, L. Marzola 2023

R. Aoude, E. Madge, F. Maltoni, L. Mantani 2023

  J.M. Moreno , IFT Madrid       Firenze 2023   

Alan Barr talk

Alexander Bernal  talk

Theo Maurin talk

Luca Marzola talk



Based on: 

Exploring Bell inequalities in H       ZZ

Testing entanglement and Bell inequalities in H → ZZ

J. A. Aguilar-Saavedra ,* A. Bernal ,† J. A. Casas ,‡ and J. M. Moreno §

Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,
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We discuss quantum entanglement and violation of Bell inequalities in the H → ZZ decay, in particular
when the two Z-bosons decay into light leptons. Although such process implies an important suppression
of the statistics, this is traded by clean signals from a “quasi maximally entangled” system, which makes it
very promising to check these crucial phenomena at high energy. In this paper we devise a novel framework
to extract from H → ZZ data all significant information related to this goal, in particular spin correlation
observables. In this context we derive sufficient and necessary conditions for entanglement in terms of only
two parameters. Likewise, we obtain a sufficient and improved condition for the violation of Bell-type
inequalities. The numerical analysis shows that with a luminosity of L ¼ 300 fb−1 entanglement can be
probed at > 3σ level. For L ¼ 3 ab−1 (HL-LHC) entanglement can be probed beyond the 5σ level, while
the sensitivity to a violation of the Bell inequalities is at the 4.5σ level.

DOI: 10.1103/PhysRevD.107.016012

I. INTRODUCTION

Entanglement is possibly the aspect of quantum mechan-
ics that shows the greatest departure from classical con-
ceptions [1]. Such departure is evidenced by the violation
of Bell inequalities [2] by quantum mechanics, something
unfeasible in any theory consistent with the classical
notions of locality and realism. Let us recall here that
entanglement is a necessary but not sufficient condition for
the violation of the Bell inequalities. In consequence, it is
highly relevant to test both phenomena at different scales,
in particular at the highest possible energies [3,4].
This objective has recently been explored in several

articles [5–10], on the top-antitop system (tt̄) at the LHC.
On the other hand, a natural arena for these tests is provided
by the Higgs boson decays in various channels. Certainly,
the statistics is much smaller than for tt̄ production, but the
physical system is much closer to a maximally entangled
state. A first investigation in this sense was carried out in
Ref. [11], considering the decay of the Higgs boson (H)
into WþW−.

In this paper we will mainly focus on theH → ZZ decay,
in particular when the two Z-bosons decay into light
leptons. Admittedly, this amounts to an important suppres-
sion of the statistics, which is traded by clean signals from a
“quasi maximally entangled” system. On the other hand, an
important aspect in this kind of challenge is to devise a
framework to easily extract fromH → ZZ data all significant
information related to entanglement and the violation of Bell
inequalities, in particular the 80 spin and spin correlation
observables. Then we study necessary and sufficient con-
ditions for entanglement and violation of Bell inequalities in
terms of observable quantities and analyze the feasibility of
these checks by using actual experimental data. This repre-
sents the main goal of the paper.
In Sec. II we review the definition and conditions for

quantum entanglement and Bell inequalities, focusing on a
system with two dimension-3 subsystems. In Sec. III we
formulate the spin density matrix ρ associated to the ZZ
system that arises from Higgs decays. We describe there the
constraints on ρ from symmetry considerations and express
the matrix in an appropriate basis for Hermitian operators,
with coefficients that can be determined from experimental
data. In Sec. IV we give sufficient and necessary conditions
for entanglement in the ρ matrix, expressing them in terms
of the above coefficients. In Sec. V we perform a similar
task for the conditions for the violation of Bell inequalities,
introducing also a new Bell operator which is a more
powerful indicator of that violation than other proposals in
the literature. In Sec. VI we investigate the statistical
sensitivity of future experimental measurements to the
above described entanglement and violation of Bell
inequalities. We will show that there are good prospects
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In the CM reference,  z-axis along  Z1  momentum      
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~k
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~k
Let                    the invariant masses for a particular event: 
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(mZ1 , mZ2)
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(mZ1 ,mZ2 , mH)
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|~k| fixed by  

Jz  - and parity - conservation imply

massless final state fermions, as is our case; therefore, we can safely consider the o↵-shell Z boson

as a spin-1 particle too [16].

We will work in the conventional basis of eigenstates of the third component of the spin for each

boson, |+i, |0i, |�i, and in the center of mass (CM) reference system, defining the z�axis along the

3-momentum, ~k, of one of the Z’s. Furthermore, to avoid ambiguities, we will choose the latter as

the Z�boson with the largest invariant mass, which is always well defined in the H ! ZZ process.

Note that with this choice of reference system, the sign of third component of spin coincides with

the helicity for one of the bosons (and minus the helicity for the other).

It is interesting to discuss how far one can go to in determining the texture of the ⇢ matrix,

just based on the symmetries of the system. First of all, since in this case the two Z bosons arise

from the Higgs decay, the spin component along the momentum direction, i.e. Jz, is conserved and

vanishing for the joint system. This means that only the 9 entries of the ⇢ operator corresponding

to hui|⇢|uji, with |u1i = |+�i , |u2i = |00i , |u3i = |�+i, can be di↵erent from zero. In general, the

⇢ operator will be a convex combination

⇢ =
X

p`|`ih`|, with p` � 0,
X

p` = 1 (5)

and

|`i = ↵1 |+�i+ ↵2 |00i+ ↵3 |�+i , with
X

i=1,2,3

|↵i|2 = 1 . (6)

Since in the H ! ZZ process parity is conserved, for a particular event the ZZ state must be

necessarily of the form

| ZZi =
1p

2 + �2
(|+�i � � |00i+ |�+i) , (7)

with � real. Note that the ↵1 = ↵3 = 0 case in (6) is recovered for |�| ! 1. In the rest frame

the decay of the Higgs boson obviously has spherical symmetry, so the value of � just depends

on the non-trivial kinematical variables, namely the two invariant masses of the vector bosons,

m1,m2, and the modulus of the corresponding 3-momentum |~k|, which is related to the former

by
q
|~k|2 +m2

1 +
q
|~k|2 +m2

2 = mH . We can get an accurate expression for � using the Lorentz

structure of the interaction term / ⌘µ⌫HZµZ⌫ in the SM. Then the scalar state of the ZZ system

in the CM frame is given by [17]

| ZZi = ⌘µ⌫ eµ�(m1,~k) e
⌫

�
(m2,�~k) |~k,�iA|�~k,�iB , (8)

where �,� represent spin states and

eµ�(m,~k) =

0

BBBB@

0 |~k|
m

0

� 1p
2

0 1p
2

ip
2

0 ip
2

0 �
p

|~k|2+m2

m
0

1

CCCCA
. (9)

Comparing Eqs. (7), (8) we finally get

� = 1 +
m2

H
� (m1 +m2)2

2m1m2
. (10)
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Exploring Bell inequalities in HEP
Typically, the largest Z�mass, say m1, is close to on-shell mZ . From Eq. (10) we see that � � 1,

with � = 1 corresponding to the decay into two at-rest Z’s. In the latter case the spin-state of the

ZZ system is the singlet one, which is maximally entangled, see Eq. (7). Likewise, as m2 decreases,

and so |~k| approaches its maximal value, the state goes to |00i. In consequence, the larger the mass

of the o↵-shell Z, the larger the entanglement and the opportunities to experimentally show both

entanglement and violation of Bell inequalities.

For a given value of � the final spin state is pure and the ⇢ matrix, say ⇢� , is completely

determined. However, when one gathers data from di↵erent kinematical configurations, the state

becomes a mixture

⇢ =

Z
d� P(�)⇢� . (11)

Once the probability P(�) is known, the final ⇢ becomes also well determined. Fig. 1 shows P(�)

when no cuts are imposed on the kinematical variables.

Figure 1: Probability distribution of �, see Eq. (10), obtained with a Monte Carlo simulation when

no cuts are implemented.

In general, the form of P(�) depends on the possible cuts in the kinematical variables. Still, due

to the symmetric form of the possible final states, Eq. (7), the density matrix has a very defined

structure, namely
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with y real. When one only considers final states with the same m1, and m2, and thus the same �,

the spin state is pure and the density matrix, ⇢� has the form (12) with w = y = �. Otherwise w and
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The numerical probability          obtained with the Monte Carlo agrees (~ few %) 
with the analytical one obtained by phase space analysis of 3 body decay 
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y are averages over the kinematical variables, as expressed in Eq. (11). Of course, when the ⇢ matrix

is extracted from experimental data, it does not present the exact form (12) due to systematic and

statistical errors, and the existence of (small) background.

3.2 The irreducible tensor operator parametrization

A convenient way to parametrize the 9⇥ 9 spin density-operator of the two vector bosons is to use

the basis of irreducible tensor operators {TL1
M1

⌦ TL2
M2

} [18], where
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Exploring Bell inequalities in HEP

The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of

the final leptons. The decay density matrix of a Z boson into charged leptons is given by [19]

� =
1

4

0

B@
1 + cos2 ✓ � 2⌘` cos ✓

1p
2
(sin 2✓ � 2⌘` sin ✓)ei' (1� cos2 ✓)ei2'

1p
2
(sin 2✓ � 2⌘` sin ✓)e�i' 2 sin2 ✓ � 1p

2
(sin 2✓ + 2⌘` sin ✓)ei'

(1� cos2 ✓)e�i2' � 1p
2
(sin 2✓ + 2⌘` sin ✓)e�i' 1 + cos2 ✓ � 2⌘` cos ✓

1

CA , (18)

where ✓,� are the polar angles of the momentum of the negative charged lepton in the reference

system in which the Z is at rest, and

⌘` =
1� 4s2

W

1� 4s2
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+ 8s4
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' 0.13 , (19)

with sW the sine of the electroweak mixing angle [18]. The di↵erential cross section ZZ ! `+1 `
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the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L

and M indices is implicit):
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Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely
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where we have applied the orthonormality properties of spherical harmonics.
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Hence, the spin density matrix of the two vector bosons can be parametrized as
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where we are summing in L = 1, 2 and �L  M  L (likewise with L1,2 and M1,2). In order for ⇢
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⇤. Altogether

these are the 80 independent real parameters of the 9⇥ 9 ⇢ matrix.
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Hence, the spin density matrix of the two vector bosons can be parametrized as
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The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of
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Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of
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where we have applied the orthonormality properties of spherical harmonics.
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Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely

Z
1

�

d�

d⌦1d⌦2
Y M

L (⌦j)d⌦j =
BL

4⇡
Aj

LM
, j = 1, 2 .

Z
1

�

d�

d⌦1d⌦2
Y M1
L1

(⌦1)Y
M2
L2

(⌦2)d⌦1d⌦2 =
BL1BL2

(4⇡)2
CL1M1L2M2 , (25)

where we have applied the orthonormality properties of spherical harmonics.

6

The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of

the final leptons. The decay density matrix of a Z boson into charged leptons is given by [19]

� =
1

4

0

B@
1 + cos2 ✓ � 2⌘` cos ✓

1p
2
(sin 2✓ � 2⌘` sin ✓)ei' (1� cos2 ✓)ei2'

1p
2
(sin 2✓ � 2⌘` sin ✓)e�i' 2 sin2 ✓ � 1p

2
(sin 2✓ + 2⌘` sin ✓)ei'

(1� cos2 ✓)e�i2' � 1p
2
(sin 2✓ + 2⌘` sin ✓)e�i' 1 + cos2 ✓ � 2⌘` cos ✓

1

CA , (18)

where ✓,� are the polar angles of the momentum of the negative charged lepton in the reference

system in which the Z is at rest, and

⌘` =
1� 4s2

W

1� 4s2
W

+ 8s4
W

' 0.13 , (19)

with sW the sine of the electroweak mixing angle [18]. The di↵erential cross section ZZ ! `+1 `
�
1 `

+
2 `

�
2

is given by

1

�

d�

d⌦1d⌦2
=

✓
3

4⇡

◆2 3X

i,j,a,b=1

⇢ia,jb(�1)ij(�2)ab =

✓
3

4⇡

◆2

Tr
�
⇢ (�1 ⌦ �2)

T
 

, (20)

where �j = �(✓ ! ✓j ,' ! 'j) for j = 1, 2. Using

Tr
�

13 �
T
 
= 2

p
⇡ Y 0

0 (✓,'), Tr
�
T 1
M �T

 
= �

p
2⇡⌘` Y

M

1 (✓,'), Tr
�
T 2
M �T

 
=

r
2⇡

5
Y M

2 (✓,')(21)

the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L

and M indices is implicit):

1

�

d�

d⌦1d⌦2
=

1

(4⇡)2

h
1 +A1

LMBLY
M

L (✓1,'1) +A2
LMBLY

M

L (✓2,'2) (22)

+CL1M1L2M2BL1BL2Y
M1
L1

(✓1,'1)Y
M2
L2

(✓2,'2)
i
, (23)

with

B1 = �
p
2⇡⌘` , B2 =

r
2⇡

5
. (24)

Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely

Z
1

�

d�

d⌦1d⌦2
Y M

L (⌦j)d⌦j =
BL

4⇡
Aj

LM
, j = 1, 2 .

Z
1

�

d�

d⌦1d⌦2
Y M1
L1

(⌦1)Y
M2
L2

(⌦2)d⌦1d⌦2 =
BL1BL2

(4⇡)2
CL1M1L2M2 , (25)

where we have applied the orthonormality properties of spherical harmonics.

6

<latexit sha1_base64="2WgbMLxmvwnXw+Y5kle36dnuFyA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RjBPCBZwuykNxkyO7vOzAZCyEd48aCIV7/Hm3/jbLIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8y/zmCJXmsXw04wT9iPYlDzmjxkrNDj6lfFTslspuxZ2BLBMvJ2XIUeuWvjq9mKURSsME1brtuYnxJ1QZzgROi51UY0LZkPaxbamkEWp/Mjt3Sk6t0iNhrGxJQ2bq74kJjbQeR4HtjKgZ6EUvE//z2qkJb/wJl0lqULL5ojAVxMQk+530uEJmxNgSyhS3txI2oIoyYxPKQvAWX14mjfOKd1W5fLgoV2/zOApwDCdwBh5cQxXuoQZ1YDCEZ3iFNydxXpx352PeuuLkM0fwB87nD/wXj1o=</latexit>⌘

The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of

the final leptons. The decay density matrix of a Z boson into charged leptons is given by [19]

� =
1

4

0

B@
1 + cos2 ✓ � 2⌘` cos ✓

1p
2
(sin 2✓ � 2⌘` sin ✓)ei' (1� cos2 ✓)ei2'

1p
2
(sin 2✓ � 2⌘` sin ✓)e�i' 2 sin2 ✓ � 1p

2
(sin 2✓ + 2⌘` sin ✓)ei'

(1� cos2 ✓)e�i2' � 1p
2
(sin 2✓ + 2⌘` sin ✓)e�i' 1 + cos2 ✓ � 2⌘` cos ✓

1

CA , (18)

where ✓,� are the polar angles of the momentum of the negative charged lepton in the reference

system in which the Z is at rest, and

⌘` =
1� 4s2

W

1� 4s2
W

+ 8s4
W

' 0.13 , (19)

with sW the sine of the electroweak mixing angle [18]. The di↵erential cross section ZZ ! `+1 `
�
1 `

+
2 `

�
2

is given by

1

�

d�

d⌦1d⌦2
=

✓
3

4⇡

◆2 3X

i,j,a,b=1

⇢ia,jb(�1)ij(�2)ab =

✓
3

4⇡

◆2

Tr
�
⇢ (�1 ⌦ �2)

T
 

, (20)

where �j = �(✓ ! ✓j ,' ! 'j) for j = 1, 2. Using

Tr
�

13 �
T
 
= 2

p
⇡ Y 0

0 (✓,'), Tr
�
T 1
M �T

 
= �

p
2⇡⌘` Y

M

1 (✓,'), Tr
�
T 2
M �T

 
=

r
2⇡

5
Y M

2 (✓,')(21)

the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L

and M indices is implicit):

1

�

d�

d⌦1d⌦2
=

1

(4⇡)2

h
1 +A1

LMBLY
M

L (✓1,'1) +A2
LMBLY

M

L (✓2,'2) (22)

+CL1M1L2M2BL1BL2Y
M1
L1

(✓1,'1)Y
M2
L2

(✓2,'2)
i
, (23)

with

B1 = �
p
2⇡⌘` , B2 =

r
2⇡

5
. (24)

Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely

Z
1

�

d�

d⌦1d⌦2
Y M

L (⌦j)d⌦j =
BL

4⇡
Aj

LM
, j = 1, 2 .

Z
1

�

d�

d⌦1d⌦2
Y M1
L1

(⌦1)Y
M2
L2

(⌦2)d⌦1d⌦2 =
BL1BL2

(4⇡)2
CL1M1L2M2 , (25)

where we have applied the orthonormality properties of spherical harmonics.

6

<latexit sha1_base64="2WgbMLxmvwnXw+Y5kle36dnuFyA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RjBPCBZwuykNxkyO7vOzAZCyEd48aCIV7/Hm3/jbLIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8y/zmCJXmsXw04wT9iPYlDzmjxkrNDj6lfFTslspuxZ2BLBMvJ2XIUeuWvjq9mKURSsME1brtuYnxJ1QZzgROi51UY0LZkPaxbamkEWp/Mjt3Sk6t0iNhrGxJQ2bq74kJjbQeR4HtjKgZ6EUvE//z2qkJb/wJl0lqULL5ojAVxMQk+530uEJmxNgSyhS3txI2oIoyYxPKQvAWX14mjfOKd1W5fLgoV2/zOApwDCdwBh5cQxXuoQZ1YDCEZ3iFNydxXpx352PeuuLkM0fwB87nD/wXj1o=</latexit>⌘

The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of

the final leptons. The decay density matrix of a Z boson into charged leptons is given by [19]

� =
1

4

0

B@
1 + cos2 ✓ � 2⌘` cos ✓

1p
2
(sin 2✓ � 2⌘` sin ✓)ei' (1� cos2 ✓)ei2'

1p
2
(sin 2✓ � 2⌘` sin ✓)e�i' 2 sin2 ✓ � 1p

2
(sin 2✓ + 2⌘` sin ✓)ei'

(1� cos2 ✓)e�i2' � 1p
2
(sin 2✓ + 2⌘` sin ✓)e�i' 1 + cos2 ✓ � 2⌘` cos ✓

1

CA , (18)

where ✓,� are the polar angles of the momentum of the negative charged lepton in the reference

system in which the Z is at rest, and

⌘` =
1� 4s2

W

1� 4s2
W

+ 8s4
W

' 0.13 , (19)

with sW the sine of the electroweak mixing angle [18]. The di↵erential cross section ZZ ! `+1 `
�
1 `

+
2 `

�
2

is given by

1

�

d�

d⌦1d⌦2
=

✓
3

4⇡

◆2 3X

i,j,a,b=1

⇢ia,jb(�1)ij(�2)ab =

✓
3

4⇡

◆2

Tr
�
⇢ (�1 ⌦ �2)

T
 

, (20)

where �j = �(✓ ! ✓j ,' ! 'j) for j = 1, 2. Using

Tr
�

13 �
T
 
= 2

p
⇡ Y 0

0 (✓,'), Tr
�
T 1
M �T

 
= �

p
2⇡⌘` Y

M

1 (✓,'), Tr
�
T 2
M �T

 
=

r
2⇡

5
Y M

2 (✓,')(21)

the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L

and M indices is implicit):

1

�

d�

d⌦1d⌦2
=

1

(4⇡)2

h
1 +A1

LMBLY
M

L (✓1,'1) +A2
LMBLY

M

L (✓2,'2) (22)

+CL1M1L2M2BL1BL2Y
M1
L1

(✓1,'1)Y
M2
L2

(✓2,'2)
i
, (23)

with

B1 = �
p
2⇡⌘` , B2 =

r
2⇡

5
. (24)

Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely

Z
1

�

d�

d⌦1d⌦2
Y M

L (⌦j)d⌦j =
BL

4⇡
Aj

LM
, j = 1, 2 .

Z
1

�

d�

d⌦1d⌦2
Y M1
L1

(⌦1)Y
M2
L2

(⌦2)d⌦1d⌦2 =
BL1BL2

(4⇡)2
CL1M1L2M2 , (25)

where we have applied the orthonormality properties of spherical harmonics.
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Notice that the theoretical form of the density matrix (12) imposes strong constraints on the

various Aj

LM
, CL1M1L2M2 coe�cients. At the end of the day it simply reads

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
6

�p
2A1

2,0 + 2
�

0 1
3C2,1,2,�1 0 1

3C2,2,2,�2 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,1,2,�1 0 1

3

�
1�

p
2A1

2,0

�
0 1

3C2,1,2,�1 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,2,2,�2 0 1

3C2,1,2,�1 0 1
6

�p
2A1

2,0 + 2
�

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

. (26)

with
1p
2
A1

2,0 + 1 = C2,2,2,�2. (27)

We do not replace the latter relation in (26). It could be used, for example, as a way to estimate

the uncertainties in the experimental determination of the density matrix, or to improve the deter-

mination of the independent coe�cients and thereby improve the precision in the measurement of

the entanglement observables. An investigation of the optimal way to extract the latter from data

is beyond the scope of the present work.

4 Conditions for entanglement

Intuitively, a “classical” system of two vector bosons with vanishing spin-third-component can only

be in three states: |+�i , |00i or |�+i. Any superposition of these possibilities implies an entangled

quantum state. Hence, one can expect that if the ⇢�matrix is non-entangled, it can contain just

three non-vanishing entries, namely the diagonal ones: ⇢+�,+�, ⇢00,00 and ⇢�+,�+. Thus, if any

of the six remaining entries is di↵erent from zero, that would be a signal of entanglement. It is

interesting to show that this is indeed the case, by using the above-mentioned Peres-Horodecki

criterion, see Eq. (2) and below. For a generic spin-density matrix with vanishing third-component,

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 a 0 b 0 c 0 0

0 0 0 0 0 0 0 0 0

0 0 b⇤ 0 d 0 f 0 0

0 0 0 0 0 0 0 0 0

0 0 c⇤ 0 f⇤ 0 g 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

, (28)
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Density matrix parameterization

We get

A way to estimate the uncertainties in the experimental 
determination of the density matrix

With the constraint

We do not impose this relation when extracting the coefficients. It could be used:

To improve the determination of the independent coefficients and thereby 
improve the precision in the measurement of the entanglement observables.



Exploring Bell inequalities in HEP

Checking separability is not , in general, an easy task
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- Therefore, for                                   the density matrix is entangled

A noteworthy example beyond a two-qubit system, where, thanks 
to an underlying symmetry, the Peres-Horodecki condition for 
entanglement is not just sufficient, but also necessary.

- Notice that if                          the density matrix is separable

- This result is relevant for both SM and BSM  H→ZZ  & H→WW 
density matrices

Generic spin-density matrix with 
vanishing third-component,

Entanglement in  H      ZZ
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Notice that the theoretical form of the density matrix (12) imposes strong constraints on the

various Aj

LM
, CL1M1L2M2 coe�cients. At the end of the day it simply reads

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
6

�p
2A1

2,0 + 2
�

0 1
3C2,1,2,�1 0 1

3C2,2,2,�2 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,1,2,�1 0 1

3

�
1�

p
2A1

2,0

�
0 1

3C2,1,2,�1 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,2,2,�2 0 1

3C2,1,2,�1 0 1
6

�p
2A1

2,0 + 2
�

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

. (26)

with
1p
2
A1

2,0 + 1 = C2,2,2,�2. (27)

We do not replace the latter relation in (26). It could be used, for example, as a way to estimate

the uncertainties in the experimental determination of the density matrix, or to improve the deter-

mination of the independent coe�cients and thereby improve the precision in the measurement of

the entanglement observables. An investigation of the optimal way to extract the latter from data

is beyond the scope of the present work.

4 Conditions for entanglement

Intuitively, a “classical” system of two vector bosons with vanishing spin-third-component can only

be in three states: |+�i , |00i or |�+i. Any superposition of these possibilities implies an entangled

quantum state. Hence, one can expect that if the ⇢�matrix is non-entangled, it can contain just

three non-vanishing entries, namely the diagonal ones: ⇢+�,+�, ⇢00,00 and ⇢�+,�+. Thus, if any

of the six remaining entries is di↵erent from zero, that would be a signal of entanglement. It is

interesting to show that this is indeed the case, by using the above-mentioned Peres-Horodecki

criterion, see Eq. (2) and below. For a generic spin-density matrix with vanishing third-component,

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 a 0 b 0 c 0 0

0 0 0 0 0 0 0 0 0

0 0 b⇤ 0 d 0 f 0 0

0 0 0 0 0 0 0 0 0

0 0 c⇤ 0 f⇤ 0 g 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

, (28)
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the corresponding partially transposed matrix reads

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 c

0 0 0 0 0 b 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 0 0 0 0 f 0

0 0 0 0 d 0 0 0 0

0 b⇤ 0 0 0 0 0 0 0

0 0 0 0 0 0 g 0 0

0 0 0 f⇤ 0 0 0 0 0

c⇤ 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

, (29)

which has eigenvalues a, d, g,±|b|,±|c|,±|f |. Therefore if b 6= 0, c 6= 0 or f 6= 0 the density matrix

is entangled. Note that the reverse is also true: if b = c = f = 0 the state is obviously separable,

as ⇢ is diagonal in the separable basis. This represents a noteworthy example beyond a two-qubit

system, where, thanks to an underlying symmetry, the Peres-Horodecki condition for entanglement

is not just su�cient, but also necessary.

When applied this condition to our density matrix (26), it turns out that the ZZ system is

entangled if and only if

C2,1,2,�1 6= 0 or C2,2,2,�2 6= 0 . (30)

5 Conditions for violation of Bell inequalities

As mentioned in section 2, the explicit form of the CGLMP inequality depends on the specific choice

of the four observables, A1, A2, B1, B2 associated to the Alice and Bob Hilbert spaces. The optimal

choice, i.e. the one that leads to a larger violation of the inequality, depends on the state at hand

(in our case the density operator, ⇢).

This issue was considered in Ref. [15] in a more abstract context. Namely, denoting by |ii
A
, |ji

B

(i, j = 1, 2, 3) two orthonormal bases of HA, HB, if the state at hand is the maximally entangled

state of the form �� 0↵ =
1p
3
(|11i+ |22i+ |33i) , (31)

where |iji = |ii
A
|ji

B
, then a particular choice of the four observables A1, A2, B1, B2 was argued to

maximize the violation of the CGLMP inequality. A compact way to express this optimal choice is

by building the corresponding Bell operator, say O0
Bell

[20]. In terms of the TL

M
matrices of Eqs.(14,

16) O0
Bell

reads

O0
Bell

=
4

3
p
3

�
T 1
1 ⌦ T 1

1 + T 1
�1 ⌦ T 1

�1

�
+

2

3

�
T 2
2 ⌦ T 2

2 + T 2
�2 ⌦ T 2

�2

�
. (32)

Coming back to the H ! ZZ decay, and working in the usual spin basis

{|+i , |0i , |�i}A ⌦ {|+i , |0i , |�i}B , (33)

for a particular event, the spin state of the ZZ system is given by Eq. (7), which in general does not

have the form (31). However, in the non-relativistic limit, which corresponds to � = 1 in Eq. (7),

8

 In our particular case :

The quantum system is entangled  IFF
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BELL INEQUALITIES ?

We are dealing with  “qutrits” ( - ,  0,  + )   

The optimal inequalities are not CHSH  but CGLMP
Technical issue:
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where pn > 0 are classical probabilities, with
P

pn = 1, and ⇢An , ⇢
B
n are density matrices acting

in the Alice and Bob Hilbert spaces. A general test for a density matrix to determine whether it

corresponds to a separable or an entangled state is not known. The most popular one is the Peres-

Horodecki criterion [12,13], which provides a su�cient condition for entanglement: denoting |ii, |µi
two orthonormal bases of the HA, HB Hilbert spaces, and ⇢iµ,j⌫ the density matrix of the global

system, then a new matrix is constructed by transposing only the indices of Bob (or Alice),

⇢T2 = ⇢i⌫,jµ . (2)

If ⇢T2 has at least one negative eigenvalue, then the ⇢ matrix describes an entangled state. This

su�cient condition is also necessary in two general cases: dimHA = dimHB = 2 (qubits) and

dimHA = 2, dimHB = 3 (and vice-versa), but not for dimHA = dimHB = 3 (qutrits) or larger.

This is the case of the spin states of the massive vector bosons. However, as we will see soon, for

the ZZ system stemming from a Higgs decay, the Peres-Horodecki is a necessary condition as well.

Concerning the Bell inequalities, for subsystems of dimension 3, as the case at hand, several Bell-

like relations have been explored. Typically, when the system is not very far from a maximally

entangled state the popular CHSH inequality [14], which is optimal for qubits, does not provide the

maximal departure from local realism predictions [15]. A much more powerful relation is given by

the so-called CGLMP inequality [15]. Namely, if A1, A2 and B1, B2 are observables in HA, HB that

take (or are assigned to take) three possible values, ±1, 0 then the following inequality should hold

in any local-realistic theory

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)

� [P (A1 = B1 � 1) + P (B1 = A2) + P (A2 = B2 � 1) + P (B2 = A1 � 1)]  2 , (3)

where P (Bi = Aj + a) denotes the probability that the measurement of the observable Bi gives the

same result as the one of Aj plus a (mod. 3).

In quantum mechanics the above probabilities are expressed in terms of expectation values of

the appropriate projectors; e.g. P (A1 = 0) = hP 0
A1

i = Tr
�
⇢ P 0

A1
⌦ 13

 
, where P 0

A1
is the projector

associated to the eigenvalue 0 of A1. Consequently, the value of I3 can be expressed as the expectation

value of a certain operator, I3 = hOBelli, and the CGLMP inequality reads

I3 = hOBelli = Tr{⇢ OBell}  2 . (4)

The general expression of the “Bell operator” OBell, in terms of the four chosen observables,

A1, A2, B1, B2, is given in detail in Appendix A. Of course, in order to optimize the violation of

the CGLMP-inequality (4) in quantum mechanics, a smart choice of the A1, A2, B1, B2 has to be

made depending on the state ⇢ at hand. This issue will be examined in detail in section 5 below.

3 The H ! ZZ system

3.1 Expected form of the density matrix

The general spin state of the ZZ system is described by a density operator, ⇢, acting on the (dim 9)

Hilbert space defined by the three spin states of each Z. It is important to note that the propagator

of the o↵-shell Z boson also has a scalar component, whose contribution cancels when coupled to

2

Qutrits:  CGLMP Bell-type inequality

Collins,  Gisin,  Linden,  Massar,  Popescu, 2002

      (A1,2 ,  B1,2) chosen 
      to optimize I3 

The inequality can be written in terms of a Bell operator

A1 (-1, 0, 1)

A2 (-1, 0, 1)

B1 (-1, 0, 1)

B2 (-1, 0, 1)
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Collins,  Gisin,  Linden,  Massar,  Popescu, 2002

U can be chosen to optimize the Bell operator

  J.M. Moreno , IFT Madrid       Firenze 2023   

Optimal Bell operator

For the maximally entangled pure state, computational basis

Acin, Durt, Gisin, Latorre 2002

Can be mapped into the pure singlet state ( β = 1) 
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OBellImproved   

Sizeable improvement in the k-momentum peak region 

Using the improved version of              for β ≠ 0
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OBell

In terms of spin polarization and  spin correlations:

This is illustrated in Fig. 2, where the functions

I3(�, 1) =
12 + 8

p
3�

3(2 + �2)
,

I3(�, U0) =
(1 + �)(3 + 4

p
3 + 3�)

3(2 + �2)
,

(41)

are displayed, showing the improvement provided by this non-trivial choice.

Figure 2: Functions (I3(�, 1), I3(�, U0)) defined in Eq. (41). We have also displayed the local-realistic

upper bound for the Bell inequality (gray dashed horizontal line) as well as the mean value of � with

respect to the probability distribution P(�) shown in Fig. 1 (red dashed vertical line).

For completeness, we give the expression of the Bell operator (39) for U = U0:

OBell =

✓
2

3
p
3

�
T 1
1 ⌦ T 1

1 � T 1
0 ⌦ T 1

0 + T 1
1 ⌦ T 1

�1

�
+

1

12

�
T 2
2 ⌦ T 2

2 + T 2
2 ⌦ T 2

�2

�

+
1

2
p
6

�
T 2
2 ⌦ T 2

0 + T 2
0 ⌦ T 2

2

�
� 1

3
(T 2

1 ⌦ T 2
1 + T 2

1 ⌦ T 2
�1) +

1

4
T 2
0 ⌦ T 2

0

◆
+ h.c.

(42)

In general, the state of the ZZ system is given by the density operator ⇢ shown in Eq. (26) and the

corresponding prediction for I3 = Tr {⇢ OBell} reads

I3 =
1

36

⇣
18 + 16

p
3�

p
2
⇣
9� 8

p
3
⌘
A1

2,0 � 8
⇣
3 + 2

p
3
⌘
C2,1,2,�1 + 6C2,2,2,�2

⌘
. (43)

In other words, the ZZ system violates the GCLMP inequality whenever this expression for I3 is

larger than 2. Notice that the A1
2,0 parameter is related to C2,2,2,�2 by Eq. (27). However, we

will keep it as an independent parameter when extracting its value from data, as a possible handle

to estimate the involved uncertainties1. This may not be convenient, however, in the presence of

systematic uncertainties, but such a study is beyond the scope of the present work.

1
Actually, in this way the statistical uncertainty in I3 becomes 5% smaller in the simulations discussed in section

6.
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Some technical details:
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ẑ

BR 1.24 x 10-4

 - Cross section NNNL order is 48.61 pb at a centre-of-mass energy of 13 TeV

  (6.02 fb in the specific final state)

- Lepton detection efficiency:  0.7 (ie, overall 0.25 )

- Luminosity:   300 fb-1  (3. ab-1 ) for LHC Runs 2+3 (HL-LHC) respectively

Numerical Results

- Stat. uncertainty in the observables is determined by performing 103 pseudo-experiments.

- Results are presented  with / without cuts in mZ2
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ity, and calculate the observables from the di↵erential distribution, as aforementioned. Repeating

this procedure, we obtain the mean and standard deviation for each observable. The mean value

resulting from the pseudo-experiments is quite close to the theoretical value calculated with the full

Monte Carlo sample, and the standard deviation corresponds to the expected statistical uncertainty.

Systematic uncertainties are not included in our analysis. Given the clean final state and the good

experimental resolution for charged leptons, these uncertainties are expected to be small. In any

case, they must be addressed within an experimental analysis using a full detector simulation.

As discussed in section 3.1, the larger the mass m2 of the o↵-shell Z boson, the more entangled

the ZZ state is. However, requiring a lower cut on mZ2 also decreases the statistics, increasing

the uncertainty in the measurements. We give results without any cut and also with lower cuts

mZ2 � 10, 20, 30 GeV.

Table 1 gives the results for L = 300 fb�1. The entanglement can be probed at the 3� level using

C2,1,2,�1, and below the 2� level using C2,2,2,�2, see Eq. (30). A combination of both observables,

which is beyond the scope of this work, would improve the sensitivity. On the other hand, the

sensitivity to the violation of the Bell inequalities, see Eq. (43), is below the 2� level.

min mZ2

0 10 GeV 20 GeV 30 GeV

N 450 418 312 129

C2,1,2,�1 �0.98± 0.31 �0.97± 0.33 �1.05± 0.38 �1.06± 0.61

C2,2,2,�2 0.60± 0.37 0.64± 0.38 0.74± 0.43 0.82± 0.63

I3 2.66± 0.46 2.67± 0.49 2.82± 0.57 2.88± 0.89

Table 1: Values of the spin correlation coe�cients C2,1,2,�1 and C2,2,2,�2 signaling quantum entan-

glement, and the Bell operator I3 signaling violation of the Bell inequalities, obtained from 1000

pseudo-experiments with with L = 300 fb�1.

Table 2 gives the results for L = 3 ab�1. In this case, the entanglement can be probed beyond

the 5� level using both coe�cients, reaching a 10% precision in the case of C2,1,2,�1. The sensitivity

to a violation of the Bell inequalities is at the 4.5� level.

min mZ2

0 10 GeV 20 GeV 30 GeV

N 4500 4180 3120 1290

C2,1,2,�1 �0.95± 0.10 �1.00± 0.10 �1.04± 0.12 �1.04± 0.19

C2,2,2,�2 0.60± 0.12 0.64± 0.12 0.74± 0.14 0.83± 0.20

I3 2.63± 0.15 2.71± 0.16 2.81± 0.18 2.84± 0.28

Table 2: The same as Table 1, for L = 3 ab�1.
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 LHC Runs 2+3
300 fb-1 

              Bell  < 2 σ
          Entanglement  ~ 2 σ
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If New Physics in HZZ:  consequences?

2 Model independent analysis of H → ZZ(∗)

For our study of possible CPV in the Higgs sector we will examine the decay of a Higgs

boson into two Z bosons with subsequent decay into two lepton pairs,

H → ZZ(∗) → (f1f̄1)(f2f̄2) . (1)

To perform a model-independent analysis we examine the most general vertex including

possible CPV for a spin-0 boson1 coupling to two Z bosons with four-momenta q1 and q2,

respectively. This can be written as

V µν
HZZ =

igmZ

cos θW

[

a gµν + b
pµpν
m2

Z

+ c εµναβ
pαkβ

m2
Z

]

, (2)

where p = q1 + q2 and k = q1 − q2, θW denotes the weak-mixing angle and εµναβ is the

totally antisymmetric tensor with ε0123 = 1. As can be inferred from Eq. (2) the CP

conserving tree-level Standard Model coupling is recovered for a = 1 and b = c = 0.

The terms containing a and b are associated with the coupling of a CP-even Higgs

boson to a pair of Z bosons, while that containing c is associated with that of a CP-

odd Higgs boson. In general these parameters can be momentum-dependent form factors

that may be generated from loops containing new heavy particles or equivalently from

the integration over heavy degrees of freedom giving rise to higher dimensional operators.

The form factors b and c may, in general, be complex. Since an overall phase will not

affect the observables studied here, we are free to adopt the convention that a is real. This

convention requires the assumption that the signal and background do not interfere, and

indeed in our approximation where the Higgs boson is taken on-shell, this interference is

exactly zero. Interference would be only manifest if the Higgs boson were taken off-shell

and since the dominant signal contribution arises from on-shell Higgs bosons, we expect

this interference to be small and neglect it.

In principle, the vertex is valid at all orders in perturbation theory. Contributions to

the HZZ vertex from loop corrections will not add any new tensor structures and will only

alter the values of a, b and c. More generally, a, b and c are momentum dependent form

factors obtained from integrating out the new physics at some large scale Λ. Since the

momentum dependence will involve ratios of typical momenta in the process to the large

scale Λ, we make the reasonable assumption that the scale dependence can be neglected

and keep only the constant part.

1In fact, in order to be as general as possible one should allow for a general CP violating coupling with

a “Higgs” particle of arbitrary spin, as in [30]. We keep this for future work.

4

At lowest other the Standard Model HZZ vertex is modified as:

 CP conserving tree-level SM coupling:         a=1,   (b, c)=0  
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massless final state fermions, as is our case; therefore, we can safely consider the o↵-shell Z boson

as a spin-1 particle too [16].

We will work in the conventional basis of eigenstates of the third component of the spin for each

boson, |+i, |0i, |�i, and in the center of mass (CM) reference system, defining the z�axis along the

3-momentum, ~k, of one of the Z’s. Furthermore, to avoid ambiguities, we will choose the latter as

the Z�boson with the largest invariant mass, which is always well defined in the H ! ZZ process.

Note that with this choice of reference system, the sign of third component of spin coincides with

the helicity for one of the bosons (and minus the helicity for the other).

It is interesting to discuss how far one can go to in determining the texture of the ⇢ matrix,

just based on the symmetries of the system. First of all, since in this case the two Z bosons arise

from the Higgs decay, the spin component along the momentum direction, i.e. Jz, is conserved and

vanishing for the joint system. This means that only the 9 entries of the ⇢ operator corresponding

to hui|⇢|uji, with |u1i = |+�i , |u2i = |00i , |u3i = |�+i, can be di↵erent from zero. In general, the

⇢ operator will be a convex combination

⇢ =
X

p`|`ih`|, with p` � 0,
X

p` = 1 (5)

and

|`i = ↵1 |+�i+ ↵2 |00i+ ↵3 |�+i , with
X

i=1,2,3

|↵i|2 = 1 . (6)

Since in the H ! ZZ process parity is conserved, for a particular event the ZZ state must be

necessarily of the form

| ZZi =
1p

2 + �2
(|+�i � � |00i+ |�+i) , (7)

with � real. Note that the ↵1 = ↵3 = 0 case in (6) is recovered for |�| ! 1. In the rest frame

the decay of the Higgs boson obviously has spherical symmetry, so the value of � just depends

on the non-trivial kinematical variables, namely the two invariant masses of the vector bosons,

m1,m2, and the modulus of the corresponding 3-momentum |~k|, which is related to the former

by
q

|~k|2 +m2
1 +

q
|~k|2 +m2

2 = mH . We can get an accurate expression for � using the Lorentz

structure of the interaction term / ⌘µ⌫HZµZ⌫ in the SM. Then the scalar state of the ZZ system

in the CM frame is given by [17]

| ZZi = ⌘µ⌫ eµ�(m1,~k) e
⌫

�
(m2,�~k) |~k,�iA|�~k,�iB , (8)

where �,� represent spin states and

eµ�(m,~k) =

0

BBBB@

0 |~k|
m

0

� 1p
2

0 1p
2

ip
2

0 ip
2

0 �
p

|~k|2+m2

m
0

1

CCCCA
. (9)

Comparing Eqs. (7), (8) we finally get

� = 1 +
m2

H
� (m1 +m2)2

2m1m2
. (10)

3

(kZ , b, c)
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to hui|⇢|uji, with |u1i = |+�i , |u2i = |00i , |u3i = |�+i, can be di↵erent from zero. In general, the

⇢ operator will be a convex combination

⇢ =
X

p`|`ih`|, with p` � 0,
X

p` = 1 (5)

and

|`i = ↵1 |+�i+ ↵2 |00i+ ↵3 |�+i , with
X

i=1,2,3

|↵i|2 = 1 . (6)

Since in the H ! ZZ process parity is conserved, for a particular event the ZZ state must be

necessarily of the form

| ZZi =
1p

2 + �2
(|+�i � � |00i+ |�+i) , (7)

with � real. Note that the ↵1 = ↵3 = 0 case in (6) is recovered for |�| ! 1. In the rest frame

the decay of the Higgs boson obviously has spherical symmetry, so the value of � just depends

on the non-trivial kinematical variables, namely the two invariant masses of the vector bosons,

m1,m2, and the modulus of the corresponding 3-momentum |~k|, which is related to the former

by
q

|~k|2 +m2
1 +

q
|~k|2 +m2

2 = mH . We can get an accurate expression for � using the Lorentz

structure of the interaction term / ⌘µ⌫HZµZ⌫ in the SM. Then the scalar state of the ZZ system

in the CM frame is given by [17]

| ZZi = ⌘µ⌫ eµ�(m1,~k) e
⌫

�
(m2,�~k) |~k,�iA|�~k,�iB , (8)

where �,� represent spin states and

eµ�(m,~k) =

0

BBBB@

0 |~k|
m

0

� 1p
2

0 1p
2

ip
2

0 ip
2

0 �
p

|~k|2+m2

m
0

1

CCCCA
. (9)

Comparing Eqs. (7), (8) we finally get

� = 1 +
m2

H
� (m1 +m2)2

2m1m2
. (10)

3

(b, c)
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The entanglement analysis that we have presented remains valid
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The optimal Bell operator will depend on (b,c)
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Conclusions

The quantum state of ZZ pairs produced in Higgs decays is a great 
system to test them:

- Improving Quantum Tomography (careful choice of ρ basis, etc)
- Optimizing Bell operators

- Run 2+3:  ρZZ entangled    ~ 2σ 

- HL-LHC:  ρZZ entangled    > 5σ and Bell Inequalities 3σ.  

Relevant aspects
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