Testing entanglement and Bell inequalities in $\mathrm{H} \rightarrow \mathrm{ZZ}$

In collaboration with
J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas

Quantum Observables for Collider Physics
Galileo Galilei Institute, Firenze
Nov 6-IO 2023

Jesús M. Moreno

Instituto de Física Teórica CSIC/UAM, Madrid

Quantum Entanglement

- Entanglement is perhaps the aspect of quantum mechanics that shows the greatest departure from classical conceptions
- 1935: a strange phenomenon of quantum mechanics, questioning the completeness of the theory

Einstein, Podolsky, and Rosen 1935
Schrödinger 1935
1964: Bell realised that entanglement leads to experimentally testable deviations of quantum mechanics from classical physics

$$
\text { Bell } 1964
$$

- With the emergence of quantum information theory, entanglement was recognized as a resource, enabling tasks like quantum cryptography, quantum teleportation or measurement based quantum computation: a threat became an opportunity
- Worth mentioning: the problem of classifying and quantifying the entanglement of general multipartite systems is still an open problem

Jose Ignacio Latorre talk
O. Gühne, G.Tóth 2009

Bell inequalities

The physical consequence of entanglement that departs from classical intuition is the violation of Bell inequalities, an impossible result in any local-realistic ("classical") theory of nature.

CHSH

FIG. 1. Scheme considered for a discussion of objective local theories. A source emitting particle pairs is viewed by two apparatuses. Each apparatus consists of an analyzer and an associated detector. The analyzers have parameters, a and b respectively, which are externally adjustable. In the above example, a and b represent the angles between the analyzer axes and a fixed reference axis.

Alice (Bob) chooses to measure certain (bi-valued) observables, $A, A^{\prime}\left(B, B^{\prime}\right)$ Then, classically,

$$
\left|\langle A B\rangle-\left\langle A B^{\prime}\right\rangle+\left\langle A^{\prime} B\right\rangle+\left\langle A^{\prime} B^{\prime}\right\rangle\right| \leq 2
$$

Bell inequalities in vector boson Higgs decays

Alan Barr talk
Alexander Bernal talk
Theo Maurin talk
Luca Marzola talk
A.J. Barr, 2022
A.J. Barr, P. Caban, J. Rembieliński, 2022
J.A. Aguilar-Saavedra, 2022
J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, J. M. Moreno 2022
R. Ashby-Pickering, A.J. Barr, A. Wierzchuck 2022
A. Bernal ,P. Caban, J. Rembieliński, 2023
F. Fabbri, J. Howarth,T. Maurin 2023
M. Fabbrichesi, R. Floreanini, E. Gabrielli, L. Marzola 2023
R. Aoude, E. Madge, F. Maltoni, L. Mantani 2023

Exploring Bell inequalities in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

Based on:

Testing entanglement and Bell inequalities in $H \rightarrow Z Z$

J. A. Aguilar-Saavedra@, ${ }^{*}$ A. Bernal®, ${ }^{\dagger}$ J. A. Casas ${ }^{*}{ }^{\ddagger}$ and J. M. Moreno \oplus^{\S} Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
© (Received 4 October 2022; accepted 3 January 2023; published 20 January 2023)
We discuss quantum entanglement and violation of Bell inequalities in the $H \rightarrow Z Z$ decay, in particular when the two Z-bosons decay into light leptons. Although such process implies an important suppression of the statistics, this is traded by clean signals from a "quasi maximally entangled" system, which makes it very promising to check these crucial phenomena at high energy. In this paper we devise a novel framework to extract from $H \rightarrow$ ZZ data all significant information related to this goal, in particular spin correlation observables. In this context we derive sufficient and necessary conditions for entanglement in terms of only two parameters. Likewise, we obtain a sufficient and improved condition for the violation of Bell-type inequalities. The numerical analysis shows that with a luminosity of $L=300 \mathrm{fb}^{-1}$ entanglement can be probed at $>3 \sigma$ level. For $L=3 \mathrm{ab}^{-1}$ (HL-LHC) entanglement can be probed beyond the 5σ level, while the sensitivity to a violation of the Bell inequalities is at the 4.5σ level.

DOI: 10.1103/PhysRevD.107.016012

Exploring Bell inequalities in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

- Let $\left(m_{Z_{1}}, m_{Z_{2}}\right)$ the invariant masses for a particular event: In the CM reference, \mathbf{z}-axis along \mathbf{Z}_{1} momentum \vec{k}
$|\vec{k}|$ fixed by $\left(m_{Z_{1}}, m_{Z_{2}}, m_{H}\right)$
- J_{z} - and parity - conservation imply $\quad\left|\psi_{Z Z}\right\rangle=\frac{1}{\sqrt{2+\beta^{2}}}(|+-\rangle-\beta|00\rangle+|-+\rangle)$
- From the Lorentz structure of SM HZZ vertex, $\propto \eta_{\mu \nu} H Z^{\mu} Z^{\nu}$

$$
\begin{aligned}
& \quad\left|\psi_{Z Z}\right\rangle=\eta_{\mu \nu} e_{\sigma}^{\mu}\left(m_{1}, \vec{k}\right) e_{\lambda}^{\nu}\left(m_{2},-\vec{k}\right)|\vec{k}, \sigma\rangle_{A}|-\vec{k}, \lambda\rangle_{B} \quad \quad e_{\sigma}^{\mu}(m, \vec{k})=\left(\begin{array}{ccc}
0 & \frac{|\vec{k}|}{m} & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{\sqrt{2}}{\sqrt{2}} & 0 & \frac{\sqrt{\sqrt{2}}}{\sqrt{2}} \\
0 & -\frac{\sqrt{\mid k k^{2}+m^{2}}}{m} & 0
\end{array}\right) \\
& \text { One obtains }
\end{aligned}
$$

$$
\beta=1+\frac{m_{H}^{2}-\left(m_{1}+m_{2}\right)^{2}}{2 m_{1} m_{2}}
$$

Since $|\vec{k}| \geq 0$, then $\beta \geq 1$

Exploring Bell inequalities in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

The quantum ZZ state is a mixed state, shaped by the kinematics

Exploring Bell inequalities in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

The quantum $Z Z$ state is a mixed state, shaped by the kinematics

$$
\rho=\int d \beta \mathcal{P}(\beta) \rho_{\beta}
$$

The numerical probability $\mathcal{P}(\beta)$ obtained with the Monte Carlo agrees (\sim few \%) with the analytical one obtained by phase space analysis of 3 body decay $H \rightarrow Z \ell^{+} \ell^{-}$

$$
\rho=\frac{1}{2+w^{2}}\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -y & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -y & 0 & w^{2} & 0 & -y & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -y & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \text { Notice that } \quad \begin{aligned}
& \\
& y \neq w \\
& \\
&
\end{aligned}
$$

i) Choose (convenient) a basis for ρ (symmetries, etc)
ii) Express the experimental measurements as functions of the expansion coefficients

Exploring Bell inequalities in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

- A convenient way to parametrize the 9×9 spin density-operator of the two vector bosons is to use the basis of irreducible tensor operators $\left\{T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right\}$

$$
T_{M_{1}}^{L_{1}}, T_{M_{2}}^{L_{2}} \in\left\{\mathbb{1}_{3} ; T_{1}^{1}, T_{0}^{1}, T_{-1}^{1} ; T_{2}^{2}, T_{1}^{2}, T_{0}^{2}, T_{-1}^{2}, T_{-2}^{2}\right\} \quad \operatorname{Tr}\left\{T_{M}^{L}\left(T_{M}^{L}\right)^{\dagger}\right\}=3
$$

$$
T_{1}^{1}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right), \quad T_{0}^{1}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), \quad T_{-1}^{1}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) . \quad \begin{aligned}
& T_{ \pm 2}^{2} \\
& = \\
&
\end{aligned}
$$

$$
\rho=\frac{1}{9}\left[\mathbb{1}_{3} \otimes \mathbb{1}_{3}+A_{L M}^{1} T_{M}^{L} \otimes \mathbb{1}_{3}+A_{L M}^{2} \mathbb{1}_{3} \otimes T_{M}^{L}+C_{L_{1} M_{1} L_{2} M_{2}} T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right]
$$

80 components

$$
\rho=\frac{1}{9}\left[\mathbb{1}_{3} \otimes \mathbb{1}_{3}+A_{L M}^{1} T_{M}^{L} \otimes \mathbb{1}_{3}+A_{L M}^{2} \mathbb{1}_{3} \otimes T_{M}^{L}+C_{L_{1} M_{1} L_{2} M_{2}} T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right]
$$

The differential $Z Z \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-} \quad$ cross section is given by

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\left(\frac{3}{4 \pi}\right)^{2} \operatorname{Tr}\left\{\rho\left(\Gamma_{1} \otimes \Gamma_{2}\right)^{T}\right\}
$$

with Γ, the decay density matrix of a \mathbf{Z} boson into $\ell^{+} \ell^{-}$, given by

$$
\Gamma=\frac{1}{4}\left(\begin{array}{ccc}
1+\cos ^{2} \theta-2 \eta_{\ell} \cos \theta & \frac{1}{\sqrt{2}}\left(\sin 2 \theta-2 \eta_{\ell} \sin \theta\right) e^{i \varphi} & \left(1-\cos ^{2} \theta\right) e^{i 2 \varphi} \\
\frac{1}{\sqrt{2}}\left(\sin 2 \theta-2 \eta_{\ell} \sin \theta\right) e^{-i \varphi} & 2 \sin ^{2} \theta & -\frac{1}{\sqrt{2}}\left(\sin 2 \theta+2 \eta_{\ell} \sin \theta\right) e^{i \varphi} \\
\left(1-\cos ^{2} \theta\right) e^{-i 2 \varphi} & -\frac{1}{\sqrt{2}}\left(\sin 2 \theta+2 \eta_{\ell} \sin \theta\right) e^{-i \varphi} & 1+\cos ^{2} \theta-2 \eta_{\ell} \cos \theta
\end{array}\right)
$$

Using

$$
\operatorname{Tr}\left\{\mathbb{1}_{3} \Gamma^{T}\right\}=2 \sqrt{\pi} Y_{0}^{0}(\theta, \varphi), \quad \operatorname{Tr}\left\{T_{M}^{1} \Gamma^{T}\right\}=-\sqrt{2 \pi} \eta_{\ell} Y_{1}^{M}(\theta, \varphi), \quad \operatorname{Tr}\left\{T_{M}^{2} \Gamma^{T}\right\}=\sqrt{\frac{2 \pi}{5}} Y_{2}^{M}(\theta, \varphi)
$$

We can very easily extract

$$
A_{L M}^{j} \equiv \int \frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}} Y_{L}^{M}\left(\Omega_{j}\right) d \Omega_{j} \quad C_{L_{1} M_{1} L_{2} M_{2}} \equiv \int \frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}} Y_{L_{1}}^{M_{1}}\left(\Omega_{1}\right) Y_{L_{2}}^{M_{2}}\left(\Omega_{2}\right) d \Omega_{1} d \Omega_{2}
$$

$$
\rho=\frac{1}{9}\left[\mathbb{1}_{3} \otimes \mathbb{1}_{3}+A_{L M}^{1} T_{M}^{L} \otimes \mathbb{1}_{3}+A_{L M}^{2} \mathbb{1}_{3} \otimes T_{M}^{L}+C_{L_{1} M_{1} L_{2} M_{2}} T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right]
$$

The differential $Z Z \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-} \quad$ cross section is given by

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\left(\frac{3}{4 \pi}\right)^{2} \operatorname{Tr}\left\{\rho\left(\Gamma_{1} \otimes \Gamma_{2}\right)^{T}\right\}
$$

A. Bernal, arXiv 23I0.10838

This Quantum Tomography

 Method can be generalized to other processes !!Alternative method:
R. Ashby-Pickering, A.J. Barr, A.Wierzchuck 2022

$$
A_{L M}^{j} \equiv \int \frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}} Y_{L}^{M}\left(\Omega_{j}\right) d \Omega_{j} \quad C_{L_{1} M_{1} L_{2} M_{2}} \equiv \int \frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}} Y_{L_{1}}^{M_{1}}\left(\Omega_{1}\right) Y_{L_{2}}^{M_{2}}\left(\Omega_{2}\right) d \Omega_{1} d \Omega_{2}
$$

Density matrix parameterization

We get

$$
\rho=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{6}\left(\sqrt{2} A_{2,0}^{1}+2\right) & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & \frac{1}{3} C_{2,2,2,-2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & \frac{1}{3}\left(1-\sqrt{2} A_{2,0}^{1}\right) & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} C_{2,2,2,-2} & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & \frac{1}{6}\left(\sqrt{2} A_{2,0}^{1}+2\right) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

With the constraint

$$
\frac{1}{\sqrt{2}} A_{2,0}^{1}+1=C_{2,2,2,-2}
$$

We do not impose this relation when extracting the coefficients. It could be used:

- A way to estimate the uncertainties in the experimental determination of the density matrix
- To improve the determination of the independent coefficients and thereby improve the precision in the measurement of the entanglement observables.

Entanglement in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

- A generic, bipartite, quantum system is entangled iff

$$
\rho_{\mathrm{ent}} \neq \rho_{\mathrm{sep}}=\sum_{n} p_{n} \rho_{n}^{A} \otimes \rho_{n}^{B}
$$

with $\quad p_{n}>0$

- Checking separability is not , in general, an easy task
- Peres-Horodecki sufficient condition: $\quad \rho=\rho_{i \mu, j \nu}$ non-separable if

$$
\rho^{T_{2}}=\rho_{i \nu, j \mu} \quad \text { has at least a negative eigenvalue }
$$

Entanglement in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

Generic spin-density matrix with vanishing third-component,

$$
\rho=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & b & 0 & c & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b^{*} & 0 & d & 0 & f & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c^{*} & 0 & f^{*} & 0 & g & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\rho_{T_{2}}^{T_{2}}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c \\
0 & 0 & 0 & 0 & 0 & b & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & f & 0 \\
0 & 0 & 0 & 0 & d & 0 & 0 & 0 & 0 \\
0 & b^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g & 0 & 0 \\
0 & 0 & 0 & f^{*} & 0 & 0 & 0 & 0 & 0 \\
c^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Eigenvalues:
$a, d, g, \pm|b|, \pm|c|, \pm|f|$

- Therefore, for $b \neq 0, c \neq 0$ or $f \neq 0$ the density matrix is entangled
- Notice that if $b=c=f=0$ the density matrix is separable

A noteworthy example beyond a two-qubit system, where, thanks to an underlying symmetry, the Peres-Horodecki condition for entanglement is not just sufficient, but also necessary.

- This result is relevant for both SM and BSM H \rightarrow ZZ \& $\mathrm{H} \rightarrow \mathrm{WW}$ density matrices

Entanglement in $\mathrm{H} \longrightarrow \mathrm{ZZ}$

In our particular case :

$$
\rho=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{6}\left(\sqrt{2} A_{2,0}^{1}+2\right) & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & \frac{1}{3} C_{2,2,2,-2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & \frac{1}{3}\left(1-\sqrt{2} A_{2,0}^{1}\right) & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} C_{2,2,2,-2} & 0 & \frac{1}{3} C_{2,1,2,-1} & 0 & \frac{1}{6}\left(\sqrt{2} A_{2,0}^{1}+2\right) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The quantum system is entangled IFF

$$
C_{2,1,2,-1} \neq 0 \quad \text { or } \quad C_{2,2,2,-2} \neq 0
$$

BELL INEQUALITIES ?

Technical issue: We are dealing with"qutrits" (-, 0, +)

The optimal inequalities are not CHSH but CGLMP

Bell inequalities in $\mathrm{H} \rightarrow \mathrm{ZZ}$

$$
\begin{aligned}
I_{3}= & P\left(A_{1}=B_{1}\right)+P\left(B_{1}=A_{2}+1\right)+P\left(A_{2}=B_{2}\right)+P\left(B_{2}=A_{1}\right) \\
& -\left[P\left(A_{1}=B_{1}-1\right)+P\left(B_{1}=A_{2}\right)+P\left(A_{2}=B_{2}-1\right)+P\left(B_{2}=A_{1}-1\right)\right] \leq 2
\end{aligned}
$$

$A_{I}(-I, 0, I)$
$\mathrm{A}_{2}(-I, 0, I)$

$B_{1}(-I, 0, I)$
$B_{2}(-I, 0, I)$
($A_{1,2}, B_{1,2}$) chosen
to optimize I_{3}

The inequality can be written in terms of a Bell operator

$$
\begin{aligned}
& I_{3}=\operatorname{Tr}\left\{\rho \mathcal{O}_{\text {Bell }}\right\} \\
& \mathcal{O}_{\text {Bell }}=\mathcal{O}_{\text {Bell }}\left(U_{A_{1}}, U_{A_{2}}, U_{B_{1}}, U_{B_{2}}\right)
\end{aligned}
$$

Optimal Bell operator

Collins, Gisin, Linden, Massar, Popescu, 2002
For the maximally entangled pure state, computational basis

$$
\begin{aligned}
\left|\psi^{\prime}\right\rangle & =\frac{1}{\sqrt{3}}(|11\rangle+|22\rangle+|33\rangle) \\
\mathcal{O}_{\text {Bell }}^{\prime} & =\frac{4}{3 \sqrt{3}}\left(T_{1}^{1} \otimes T_{1}^{1}+T_{-1}^{1} \otimes T_{-1}^{1}\right)+\frac{2}{3}\left(T_{2}^{2} \otimes T_{2}^{2}+T_{-2}^{2} \otimes T_{-2}^{2}\right) \quad \text { invariant under } U \otimes U^{*}
\end{aligned}
$$

Can be mapped into the pure singlet state ($\beta=\mathrm{I}$)

$$
\begin{aligned}
\left|\psi_{s}\right\rangle & =\frac{1}{\sqrt{3}}(|+-\rangle-|00\rangle+|-+\rangle) \\
\left|\psi_{s}\right\rangle & \rightarrow U O_{A} \otimes U^{*}\left|\psi_{s}\right\rangle
\end{aligned}
$$

$$
O_{A}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- U can be chosen to optimize the Bell operator

$$
U_{0}=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right)
$$

Optimal Bell operator

- Using the improved version of $\mathcal{O}_{\text {Bell }}$ for $\beta \neq 0$

Sizeable improvement in the k-momentum peak region

- In terms of spin polarization and spin correlations:

$$
I_{3}=\frac{1}{36}\left(18+16 \sqrt{3}-\sqrt{2}(9-8 \sqrt{3}) A_{2,0}^{1}-8(3+2 \sqrt{3}) C_{2,1,2,-1}+6 C_{2,2,2,-2}\right)
$$

We have generated

$$
p p \rightarrow H \rightarrow Z Z^{*} \rightarrow 4 \ell \quad \text { BR } 1.24 \times 10^{-4}
$$

using MadGraph and implementing our analysis in $e^{+} e^{-} \mu^{+} \mu^{-} \quad$ final state

Some technical details:

- Axis orientation: \hat{z} along \vec{k}_{Z}, \hat{x} in the production plane
- Cross section NNNL order is 48.6 I pb at a centre-of-mass energy of 13 TeV (6.02 fb in the specific final state)
- Lepton detection efficiency: 0.7 (ie, overall 0.25)
- Luminosity: $300 \mathrm{fb}^{-1}\left(3 . \mathrm{ab}^{-1}\right)$ for LHC Runs $2+3$ (HL-LHC) respectively
- Stat. uncertainty in the observables is determined by performing 10^{3} pseudo-experiments.
- Results are presented with / without cuts in mz2

Numerical results

LHC Runs 2+3

$300 \mathrm{fb}-1$

$\min m_{Z_{2}}$					
	0	10 GeV	20 GeV	30 GeV	
N	450	418	312	129	
$C_{2,1,2,-1}$	-0.98 ± 0.31	-0.97 ± 0.33	-1.05 ± 0.38	-1.06 ± 0.61	Entanglement $\sim 2 \sigma$
$C_{2,2,2,-2}$	0.60 ± 0.37	0.64 ± 0.38	0.74 ± 0.43	0.82 ± 0.63	Béll$<2 \sigma$
I_{3}	2.66 ± 0.46	2.67 ± 0.49	2.82 ± 0.57	2.88 ± 0.89	

Numerical results

LHC Runs 2+3

$300 \mathrm{fb}^{-1}$

$\min m_{Z_{2}}$					
	0	10 GeV	20 GeV	30 GeV	
N	450	418	312	129	
$C_{2,1,2,-1}$	-0.98 ± 0.31	-0.97 ± 0.33	-1.05 ± 0.38	-1.06 ± 0.61	Entanglement $\sim 2 \sigma$
$C_{2,2,2,-2}$	0.60 ± 0.37	0.64 ± 0.38	0.74 ± 0.43	0.82 ± 0.63	Béll<20
I_{3}	2.66 ± 0.46	2.67 ± 0.49	2.82 ± 0.57	2.88 ± 0.89	

HL - LHC

$3 a b^{-1}$
$\min m_{Z_{2}}$

	0	10 GeV	20 GeV	30 GeV	
N	4500	4180	3120	1290	
$C_{2,1,2,-1}$	-0.95 ± 0.10	-1.00 ± 0.10	-1.04 ± 0.12	-1.04 ± 0.19	
$C_{2,2,2,-2}$	0.60 ± 0.12	0.64 ± 0.12	0.74 ± 0.14	0.83 ± 0.20	Entanglement $\sim 5 \sigma$
I_{3}	2.63 ± 0.15	2.71 ± 0.16	2.81 ± 0.18	2.84 ± 0.28	Bell $\sim 4.5 \sigma$

If New Physics in HZZ: consequences?

At lowest other the Standard Model HZZ vertex is modified as:

$$
V_{H Z Z}^{\mu \nu}=\frac{i g m_{Z}}{\cos \theta_{W}}\left[a g_{\mu \nu}+b \frac{p_{\mu} p_{\nu}}{m_{Z}^{2}}+c \epsilon_{\mu \nu \alpha \beta} \frac{p^{\alpha} k^{\beta}}{m_{Z}^{2}}\right]
$$

CP conserving tree-level SM coupling: $\quad a=I, \quad(b, c)=0$

If New Physics in HZZ: consequences?

At lowest other the Standard Model HZZ vertex is modified as:

$$
\begin{aligned}
& \qquad V_{H Z Z}^{\mu \nu}=\frac{i g m_{Z}}{\cos \theta_{W}}\left[a g_{\mu \nu}+b \frac{p_{\mu} p_{\nu}}{m_{Z}^{2}}+c \epsilon_{\mu \nu \alpha \beta} \frac{p^{\alpha} k^{\beta}}{m_{Z}^{2}}\right] \\
& \text { CP conserving tree-level SM coupling: } \quad \mathrm{a}=\mathrm{I}, \quad(\mathrm{~b}, \mathrm{c})=0
\end{aligned}
$$

- The previous results can be generalized

$$
\begin{aligned}
\left|\psi_{Z Z}\right\rangle & \equiv\left|\psi_{Z Z}\right\rangle(\mathrm{kz}, \mathrm{~b}, \mathrm{c}) \\
\rho & \equiv \rho(\mathrm{b}, \mathrm{c})
\end{aligned}
$$

Aoude, Madge, Maltoni, Mantani 2023
Fabbrichesi, Floreanini, Gabrielli, Marzola, 2023

- The entanglement analysis that we have presented remains valid
- The optimal Bell operator will depend on (b,c)

Conclusions

LHC data offer us the opportunity to test entanglement and Bell inequalities at high energies

Conclusions

- LHC data offer us the opportunity to test entanglement and Bell inequalities at high energies

The quantum state of $Z Z$ pairs produced in Higgs decays is a great system to test them:

- Run 2+3: $\rho_{z z}$ entangled $\sim 2 \sigma$
- HL-LHC: $\rho_{z z}$ entangled $>5 \sigma$ and Bell Inequalities 3σ.

Conclusions

- LHC data offer us the opportunity to test entanglement and Bell inequalities at high energies
- The quantum state of $Z Z$ pairs produced in Higgs decays is a great system to test them:
- Run 2+3: $\rho_{z z}$ entangled $\sim 2 \sigma$
- HL-LHC: $\rho_{z z}$ entangled $>5 \sigma$ and Bell Hrequalities 3σ.
- Relevant aspects
- Improving Quantum Tomography (careful choice of ρ basis, etc)
- Optimizing Bell operators

THANKS

