Searches of New Physics with entangled tops

7/11/23 Claudio Severi - Quantum Observables for Collider Physics

This is probably mismodelling, but what if...

ATLAS-CONF-2023-069

$\mathbf{D}_{\text{Obs}} = \times \mathbf{D}_{\text{NP}} + (\mathbf{1} - \mathbf{X}) \mathbf{D}_{\text{SM}}$

Most favourable case: $D_{NP} = -1 \rightarrow x \simeq 0.15$

ATLAS-CONF-2023-069

$\mathbf{D}_{\text{Obs}} = \times \mathbf{D}_{\text{NP}} + (\mathbf{1} - \mathbf{X}) \mathbf{D}_{\text{SM}}$

Most favourable case: $D_{NP} = -1 \rightarrow x \simeq 0.15$

Inject resonant pseudoscalar signal with X_{340-380 GeV} ≈ 0.15

Inject resonant pseudoscalar signal with X_{340-380 GeV} ≈ 0.15

There is a variety of spin/entanglement observables, apart from D...

Observable	Coefficient	Coefficient function
$\cos heta_1^k$	B_1^k	b_k^+
$\cos \theta_2^k$	B_2^k	b_k^-
$\cos \theta_1^r$	B_1^r	b_r^+
$\cos \theta_2^r$	B_2^r	b_r^-
$\cos \theta_1^n$	B_1^n	b_n^+
$\cos \theta_2^n$	B_2^n	b_n^-
$\cos \theta_1^k \cos \theta_2^k$	C_{kk}	C _{kk}
$\cos \theta_1^r \cos \theta_2^r$	C_{rr}	C _{rr}
$\cos \theta_1^n \cos \theta_2^n$	C_{nn}	<i>C</i> _{nn}
$\cos \theta_1^r \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^r$	$C_{rk} + C_{kr}$	C _{rk}
$\cos heta_1^r \cos heta_2^k - \cos heta_1^k \cos heta_2^r$	$C_{rk} - C_{kr}$	C_n
$\cos\theta_1^n\cos\theta_2^r+\cos\theta_1^r\cos\theta_2^n$	$C_{nr} + C_{rn}$	C _{nr}
$\cos\theta_1^n\cos\theta_2^r - \cos\theta_1^r\cos\theta_2^n$	$C_{nr} - C_{rn}$	C _k
$\cos\theta_1^n\cos\theta_2^k + \cos\theta_1^k\cos\theta_2^n$	$C_{nk} + C_{kn}$	C _{kn}
$\cos \theta_1^n \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^n$	$C_{nk} - C_{kn}$	$-c_r$
$\cos \varphi$	D	$-(c_{kk}+c_{rr}+c_{nn})/3$
$\cos \varphi_{lab}$	$A_{\cos \varphi}^{\text{lab}}$	
$ \Delta \phi_{\ell \ell} $	$A_{ \Delta \phi_{\ell \ell} }$	—
$ \Delta\eta_{\ell\ell} $	$ \Delta\eta_{\ell\ell} $	

CMS-PAS-FTR-18-034

There is a variety of spin/entanglement observables, apart from D...

Observable	Coefficient	Coefficient function
$\cos \theta_1^k$	B_1^k	b_k^+
$\cos \theta_2^k$	B_2^k	b_k^{-}
$\cos \theta_1^r$	B_1^r	b_r^+
$\cos \theta_2^r$	B_2^r	b_r^-
$\cos \theta_1^n$	B_1^n	b_n^+
$\cos \theta_2^n$	B_2^n	b_n^-
$\cos \theta_1^k \cos \theta_2^k$	C_{kk}	C _{kk}
$\cos \theta_1^r \cos \theta_2^r$	C_{rr}	C _{rr}
$\cos \theta_1^n \cos \theta_2^n$	C_{nn}	C _{nn}
$\cos \theta_1^r \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^r$	$C_{rk} + C_{kr}$	C _{rk}
$\cos \theta_1^r \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^r$	$C_{rk} - C_{kr}$	C _n
$\cos \theta_1^n \cos \theta_2^r + \cos \theta_1^r \cos \theta_2^n$	$C_{nr} + C_{rn}$	C _{nr}
$\cos \theta_1^n \cos \theta_2^r - \cos \theta_1^r \cos \theta_2^n$	$C_{nr} - C_{rn}$	C _k
$\cos \theta_1^n \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^n$	$C_{nk} + C_{kn}$	C _{kn}
$\cos \theta_1^n \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^n$	$C_{nk} - C_{kn}$	$-c_r$
$\cos \varphi$	D	$-(c_{kk}+c_{rr}+c_{nn})/3$
$\cos \varphi_{\text{lab}}$	$A_{\cos \varphi}^{\text{lab}}$	—
$ \Delta \phi_{\ell \ell} $	$A_{ \Delta\phi_{\ell\ell} }$	—
$ \Delta\eta_{\ell\ell} $	$ \Delta\eta_{\ell\ell} $	—

Leptons in the laboratory frame

CMS-PAS-FTR-18-034

There is a variety of spin/entanglement observables, apart from D...

Observable	Coefficient	Coefficient function
$\cos \theta_1^k$	B_1^k	b_k^+
$\cos heta_2^k$	B_2^k	b_k^-
$\cos \theta_1^r$	B_1^r	b_r^+
$\cos \theta_2^r$	B_2^r	b_r^-
$\cos extsf{ heta}_1^n$	B_1^n	b_n^+
$\cos \theta_2^n$	B_2^n	b_n^-
$\cos \theta_1^k \cos \theta_2^k$	C_{kk}	C _{kk}
$\cos \theta_1^r \cos \theta_2^r$	C_{rr}	C _{rr}
$\cos \theta_1^n \cos \theta_2^n$	C_{nn}	C _{nn}
$\cos\theta_1^r\cos\theta_2^k + \cos\theta_1^k\cos\theta_2^r$	$C_{rk} + C_{kr}$	C _{rk}
$\cos \theta_1^r \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^r$	$C_{rk} - C_{kr}$	c_n
$\cos\theta_1^n\cos\theta_2^r + \cos\theta_1^r\cos\theta_2^n$	$C_{nr} + C_{rn}$	C _{nr}
$\cos \theta_1^n \cos \theta_2^r - \cos \theta_1^r \cos \theta_2^n$	$C_{nr} - C_{rn}$	C _k
$\cos \theta_1^n \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^n$	$C_{nk} + C_{kn}$	<i>c</i> _{kn}
$\cos\theta_1^n\cos\theta_2^k - \cos\theta_1^k\cos\theta_2^n$	$C_{nk} - C_{kn}$	$-c_r$
$\cos \varphi$	D	$-(c_{kk}+c_{rr}+c_{nn})/3$
$\cos \varphi_{\text{lab}}$	$A_{\cos \varphi}^{\text{lab}}$	—
$ \Delta \phi_{\ell \ell} $	$A_{ \Delta \phi_{\ell \ell} }$	—
$ \Delta\eta_{\ell\ell} $	$ \Delta\eta_{\ell\ell} $	—

Leptons in the laboratory frame

CMS-PAS-FTR-18-034

The motivation for using some of these variables can be found in [25]. The highest ranked variables are the angular variables $\Delta \eta_{\ell\ell}$, $\cos \varphi_{lab}$, and $\Delta \phi_{\ell\ell}$. In principle, adding additional kinematic variables to the DNN will improve the sensitivity further. However, by adding basic

Spin correlations on the other hand...

$$C_{ij} = (1 - \mathsf{x}) C_{ij\,\mathrm{SM}} + \mathsf{x} C_{ij\,\mathrm{SUSY}} < C_{ij\,\mathrm{SM}}.$$
$$B_i = (1 - \mathsf{x}) B_{i\,\mathrm{SM}} + \mathsf{x} B_{i\,\mathrm{SUSY}} > B_{i\,\mathrm{SM}}.$$

Spin correlations on the other hand...

 $\begin{aligned} \mathcal{O}_{tu}^{8} &= \sum_{f=1}^{2} (\bar{t}\gamma_{\mu}T^{A}t) (\bar{u}_{f}\gamma^{\mu}T_{A}u_{f}) \\ \mathcal{O}_{td}^{8} &= \sum_{f=1}^{3} (\bar{t}\gamma_{\mu}T_{A}t) (\bar{d}_{f}\gamma^{\mu}T^{A}d_{f}) \\ \mathcal{O}_{tq}^{8} &= \sum_{f=1}^{2} (\bar{q}_{f}\gamma_{\mu}T_{A}q_{f}) (\bar{t}\gamma^{\mu}T^{A}t) \\ \mathcal{O}_{Qu}^{8} &= \sum_{f=1}^{2} (\bar{Q}\gamma_{\mu}T_{A}Q) (\bar{u}_{f}\gamma^{\mu}T^{A}u_{f}) \\ \mathcal{O}_{Qd}^{8} &= \sum_{f=1}^{3} (\bar{Q}\gamma_{\mu}T_{A}Q) (\bar{d}_{f}\gamma^{\mu}T^{A}d_{f}) \\ \mathcal{O}_{Qq}^{1,8} &= \sum_{f=1}^{2} (\bar{Q}\gamma_{\mu}T^{A}Q) (\bar{q}_{f}\gamma^{\mu}T_{A}q_{f}) \\ \mathcal{O}_{Qq}^{3,8} &= \sum_{f=1}^{2} (\bar{Q}\gamma_{\mu}T^{A}\sigma_{I}Q) (\bar{q}_{f}\gamma^{\mu}T_{A}\sigma^{I}q_{f}) \end{aligned}$

$$\mathcal{O}_{tG} = g_S \,\overline{Q} T_A \tilde{\varphi} \sigma^{\mu\nu} t \, G^A_{\mu\nu}$$

Aside: are we still measuring spin?

1. There is still such a thing as spin analyzing power

Aside: are we still measuring spin?

There is still such a thing as *spin analyzing power* The analyzing power of leptons is

$$\alpha_{\ell} = 1 - \frac{c_{uW,33}^2 v^4}{\Lambda^4} \frac{4(2m_t^6 + 3m_t^4 m_W^2 - 6m_t^2 m_W^4 + m_W^6 + 12m_t^4 m_W^2 \log m_W/m_t)}{(m_W^2 - m_t^2)^2 (m_t^2 + 2m_W^2)}$$

Aside: are we still measuring spin?

There is still such a thing as *spin analyzing power* The analyzing power of leptons is

 $lpha_\ell = 1 -$ (< 10⁻⁴)

Aside: are we still measuring spin?

There is still such a thing as *spin analyzing power* The analyzing power of leptons is

 $lpha_\ell = 1 -$ (< 10⁻⁴)

Usual spin correlation coefficients

$$\Delta^{\pm} = \pm (C_{kk} + C_{rr}) - C_{nn}$$

Example: Heavy non-resonant new physics As usual differential measurements enhance sensitivity

9

Example: Heavy non-resonant new physics As usual differential measurements enhance sensitivity

9

Example: Heavy non-resonant new physics As usual differential measurements enhance sensitivity

C_{tq}⁸ [TeV⁻²]

The 2019 CMS measurement (inclusive) constrained the top chromo dipole:

 $-0.24 < C_{\rm tG}/\Lambda^2 < 0.07 \,{\rm TeV^{-2}}$

The 2019 CMS measurement (inclusive) constrained the top chromo dipole:

$-0.24 < C_{\rm tG}/\Lambda^2 < 0.07 \,{\rm TeV^{-2}}$

We simulated a Run3 differential measurement (9 bins), finding:

	CMS [12]	Run III Projection	
Operator	$36\mathrm{fb}^{-1}$ Inclusive	$300{\rm fb}^{-1}$ Differential	Current Global Fit
\mathcal{O}_{tG}	[-0.18, 0.18]	[-0.03, 0.04]	[0.00, 0.11]
\mathcal{O}_{tu}^8	[-5.8, 3.6]	[-1.0, 0.7]	[-0.9, 0.3]
\mathcal{O}_{td}^8	[-7.9, 5.2]	[-1.3, 1.0]	[-1.3, 0.6]
\mathcal{O}_{tq}^{8}	[-4.2, 3.1]	[-0.7, 0.5]	[-0.5, 0.4]
\mathcal{O}_{Qu}^8	[-9.4, 4.6]	[-0.7, 0.6]	[-1.0, 0.5]
\mathcal{O}_{Qd}^{8}	[-11.7, 5.8]	[-0.9, 0.8]	[-1.6, 0.9]
$\mathcal{O}_{Qq}^{(1,8)}$	$[-5.8,-4.6] \cup [-1.7,2.5]$	[-0.4, 0.3]	[-0.4, 0.3]
$\mathcal{O}_{Qq}^{(3,8)}$	[-5.0, 4.2]	[-1.1, 0.8]	[-0.5, 0.4]
\mathcal{O}_{tu}^1	[-2.1, 2.1]	[-0.5, 0.5]	[-0.4, 0.3]
\mathcal{O}_{td}^1	[-2.7, 2.6]	[-0.6, 0.6]	[-0.4, 0.4]
\mathcal{O}_{tq}^1	[-1.7, 1.8]	[-0.4, 0.4]	[-0.2, 0.3]
\mathcal{O}^1_{Qu}	[-2.1, 2.4]	[-0.4, 0.5]	[-0.3, 0.4]
\mathcal{O}_{Qd}^1	[-2.8, 3.0]	[-0.6, 0.6]	[-0.3, 0.4]
$\mathcal{O}_{Qq}^{(1,1)}$	[-1.8, 1.8]	[-0.4, 0.4]	[-0.3, 0.2]
$\mathcal{O}_{Qq}^{(3,1)}$	[-1.8, 1.8]	[-0.4, 0.4]	[-0.1, 0.2]

The 2019 CMS measurement (inclusive) constrained the top chromo dipole:

$-0.24 < C_{\rm tG}/\Lambda^2 < 0.07 \,{\rm TeV^{-2}}$

We simulated a Run3 differential measurement (9 bins), finding:

One differential measurement will be competitive with the global fits to all top data!

			-
Operator	CMS [12]	Run III Projection	Current Global Fit
operator	$36{\rm fb}^{-1}$ Inclusive	$300{\rm fb}^{-1}$ Differential	Current Globar Pit
\mathcal{O}_{tG}	[-0.18, 0.18]	[-0.03, 0.04]	[0.00, 0.11]
\mathcal{O}_{tu}^8	[-5.8, 3.6]	[-1.0, 0.7]	[-0.9, 0.3]
\mathcal{O}_{td}^8	[-7.9, 5.2]	[-1.3, 1.0]	[-1.3, 0.6]
\mathcal{O}_{tq}^8	[-4.2, 3.1]	[-0.7, 0.5]	[-0.5, 0.4]
\mathcal{O}_{Qu}^8	[-9.4, 4.6]	[-0.7, 0.6]	[-1.0, 0.5]
\mathcal{O}_{Qd}^{8}	[-11.7, 5.8]	[-0.9, 0.8]	[-1.6, 0.9]
$\mathcal{O}_{Qq}^{(1,8)}$	$[-5.8,-4.6] \cup [-1.7,2.5]$	[-0.4, 0.3]	[-0.4, 0.3]
${\cal O}_{Qq}^{(3,8)}$	[-5.0, 4.2]	[-1.1, 0.8]	[-0.5, 0.4]
\mathcal{O}_{tu}^1	[-2.1, 2.1]	[-0.5, 0.5]	[-0.4, 0.3]
\mathcal{O}_{td}^1	[-2.7, 2.6]	[-0.6, 0.6]	[-0.4, 0.4]
\mathcal{O}_{tq}^1	[-1.7, 1.8]	[-0.4, 0.4]	[-0.2, 0.3]
\mathcal{O}^1_{Qu}	[-2.1, 2.4]	[-0.4, 0.5]	[-0.3, 0.4]
\mathcal{O}_{Qd}^1	[-2.8, 3.0]	[-0.6, 0.6]	[-0.3, 0.4]
$\mathcal{O}_{Qq}^{(1,1)}$	[-1.8, 1.8]	[-0.4, 0.4]	[-0.3, 0.2]
${\cal O}_{Qq}^{(3,1)}$	[-1.8, 1.8]	[-0.4, 0.4]	[-0.1, 0.2]

Thank you :D