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• Testing quantum entanglement at hadron colliders is a 
brand new idea! Isn’t it? 
 
 
 
 
 
 
 
 

• In 1968, Henry Stapp proposed using spin correlations in 
proton-proton scattering. 

• Add in top quarks and you have the ATLAS paper title.

Introduction
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• Fair to say that the ‘buzzword’ effect is in full swing:

Shameless Advertising

(one of Clara’s worst performing videos…)
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• Interest appears to be growing (plot from summer 2023)

Papers Vs Time

• Interesting increase in non-LHC paper!
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• What is quantum entanglement? 
➡ “An entangled state is one that cannot be written as a 

convex combination of product states of density matrices” 

• If two particles are entangled, the quantum state of one 
particle cannot be described independently from the 
other:

Introduction

separable

non-separable

• Spin/polarisation is the canonical example of an 
observable to use to test entanglement.
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• Why do we care about doing this at the LHC? 

• Entanglement has been measured before in composite 
systems: 
➡ Diamonds, Mesons, Tardigrades, electrons in atoms). 

• And in free particle systems (photons).  

• top quarks are the first time it has been measured in an 
unbound fundamental fermion. 

• top quarks, even when produced near threshold, are 
genuinely relativistic ( β ~ 0.4 ) and Entanglement has 
never been explored under such conditions.

Introduction



Jay Howarth

• How does QE manifest in tt ̅events? 

• Key feature of top quarks is that it is VERY heavy! This 
leads to some unique properties: 
 
 
 
 
 
 

• QCD has no time to dilute the top’s quantum numbers, 
and they are transferred directly to its decay particles 
(where we can access them).

Introduction
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Spin Correlation in tt ̅

• QCD is P-conserving and T invariant → tops have no 
preferential polarisaton in tt ̅production. 

• But spins are correlated!

C =
N( ↑ ↑ ) + N( ↓ ↓ ) − N( ↑ ↓ ) − N( ↓ ↑ )
N( ↑ ↑ ) + N( ↓ ↓ ) + N( ↑ ↓ ) + N( ↓ ↑ )

• More formally:
Polarisation Spin Correlation

• Measuring B and C in tt ̅essentially means constructing 
angles with the decay particles (usually charged leptons). 



Jay Howarth

Spin Correlation in tt ̅

• It matters how you measure these angles!
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Spin Correlation in tt ̅

• It matters how you measure these angles!

Cx = Cy = Cz = 0%
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Spin Correlation in tt ̅

• It matters how you measure these angles!

Ck ~ -30%
Cn ~ -30%  
Cr ~ 0%
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• The goal of the ATLAS measurement is to measure: 
 
 
 

• Where ɸ is the angle between the top spin analysers in 
their parent top rest frames. 

• An observation of D < -1/3 is a sufficient condition to 
claim entanglement in tt ̅pairs (equivalently, that their density 
matrices are not factorable). 

• ATLAS has measured this D in tt ̅events using 140 fb-1 of  
13 TeV data.

Entanglement in tt ̅

D =
tr[C]

3
= − 3 ⋅ < cos(ϕ) >
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• If D is observed to be less than -1/3, then the tops can be 
said to be entangled. 
 
 
 
 
 
 
 
 
 

• This occurs in tt ̅production when the tops are close to 
threshold (in gg fusion) or very boosted (in qqbar). We focus 
on the former.

Getting the D

Entangled

Not entangled
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• The primary experimental challenges in this result are to 
reconstruct the tops with sufficient sensitivity to isolate 
the threshold region where tops are entangled.

Getting the small D
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• The primary experimental challenges in this result are to 
reconstruct the tops with sufficient sensitivity to isolate 
the threshold region where tops are entangled.

Getting the small D
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• We split our measurement based on mtt:̅ 

Signal/Validation Regions

SR: 340 - 380 GeV VR1: 380 - 500 GeV VR2: > 500 GeV
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• Why is it hard to reconstruct top quarks?

Top Decays
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• Why is it hard to reconstruct top quarks?

Top Decays

• Charged leptons 
are the perfect 
spin analyser!

• Neutrinos not 
detected (directly) 
by ATLAS

• ATLAS selects events with two charged leptons in the 
final state (+ 1 or more b-tagged jets).
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• In order to measure D, we need to fully reconstruct both 
tops (we need measure cos(Φ) in parent top rest frames). 
➡ This means somehow dealing with two neutrinos  

• There are a number of methods to achieve this, but this 
measurements relies heavily on the “Ellipse method”.

Reconstructing Tops

 Nucl.Instrum.Meth.A 736 (2014) 169-178

• Employs a geometry 
approach to analytically 
solve the system using 
linear algebra. 

• Some other numerical 
methods used in small 
number of events.
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• Events are selected with 
exactly 1 electron and 1 
muon (standard pT, η cuts). 

• Require 1 or more b-tagged 
jets (85% W.P):  
➡ loose working point to 

ensure high stats in signal 
region.

Selection

• Three regions in m(tt)̅ are defined: 

➡ SR:   340 < m(tt)̅ < 380 GeV [High degree of entanglement] 
➡ VR1: 380 < m(tt)̅ < 500 GeV [some entanglement] 
➡ VR2:           m(tt)̅ > 500 GeV [no entanglement]
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• This selection is a very robust one (similar selection used in 
dozens of analyses).

Selection

• Very good overall agreement between the number of 
signal+background events and the observed number of 
events in data. 
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• We somehow need to correct our observed D for detector 
effects: 
➡ We achieve this with a calibration curve.

Calibration Curve

• To construct this curve 
we need to change the 
amount of entanglement 
in our MC. 

• We create 5 hypothesis 
points corresponding to 
the SM and 4 different 
reweighing points: 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• How these alternative hypothesis points are constructed 
is one of the key points of the measurement. 

• We cannot dial entanglement up or down in the MC, so 
we reweight the cos(Φ) distribution as a function of m(tt)̅.

Reweighting 

• If this is not done correctly, the 
relation: 
 
 
does not hold. 

• The method we have used 
ensures that this relationship 
remains correct.

D =
tr[C]

3
= − 3 ⋅ < cos(ϕ) >
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• The relative size of the systematics is not fixed and changes 
at each hypothesis point:

Systematic Uncertainties

Reco

Truth Nominal
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• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 
 

• Ideally, truth and reco shift in a correlated way, and there is 
no resultant uncertainty.  
 
 
 

Systematic Uncertainties

Reco

Truth

Reco

TruthNominal Systematic Shift
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Systematic Uncertainties

Reco

Truth

Reco

TruthNominal Systematic Shift

• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 
 

• In practice, most uncertainties shift reco but not truth and 
therefore change the slope (all detector uncertainties do this).  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• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 
 

• In the worst case, systematics shift slope and offset and have 
a large effect (our dominant uncertainties behave this way).

Systematic Uncertainties

Reco

Truth

Reco

TruthNominal Systematic Shift
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• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 

• As with most top measurements, we are limited by signal 
modelling, though background modelling (Z+jets) matters too 
due to looser b-tag and shape of the background.

Systematic Uncertainties

Systematic source �⇡observed(⇡ = �0.547) �⇡ (%) �⇡expected(⇡ = �0.470) �⇡ (%)
Signal Modelling 0.017 3.2 0.015 3.2
Electrons 0.002 0.4 0.002 0.4
Muons 0.001 0.1 0.001 0.1
Jets 0.004 0.7 0.004 0.8
1-tagging 0.002 0.4 0.002 0.4
Pile-up < 0.001 < 0.1 < 0.001 < 0.1
⇢miss

T 0.002 0.3 0.002 0.4
Backgrounds 0.010 1.8 0.009 1.8

Total Statistical Uncertainty 0.002 0.3 0.002 0.4
Total Systematic Uncertainty 0.021 3.8 0.018 3.9

Total Uncertainty 0.021 3.8 0.018 3.9
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• We have a large suite of MC modelling related systematic 
uncertainties: 
 
 
 
 
 
 
 
 
 

• Colour reconnection, string vs cluster fragmentation, spin 
correlation in parton shower, EW shower were all tested but 
found to be negligible effects. 
 
 
 
 

Systematic Uncertainties
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• The observed (expected) results are:

Results

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

D = − 0.547 ± 0.002 [stat.] ± 0.021 [syst.] (−0.470 ± 0.002 [stat.] ± 0.018 [syst.]) ,
D = − 0.222 ± 0.001 [stat.] ± 0.027 [syst.] (−0.258 ± 0.001 [stat.] ± 0.026 [syst.]) ,
D = − 0.098 ± 0.001 [stat.] ± 0.021 [syst.] (−0.103 ± 0.001 [stat.] ± 0.021 [syst.]) ,

SR
VR1
VR2

• The observed results excludes the entanglement limit at more than 
5 sigma significance. 

ATLAS-CONF-2023-069

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-069
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Common Questions

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1
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• How reliable are the elements of this result?

Common Questions

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

• Corrections to the 
data: very reliable 

• A comprehensive and 
conservative (even by 
ATLAS’s standards) list 
of systematic 
uncertainties has 
been considered on 
all aspects of the 
analysis.
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• How reliable are the elements of this result?

Common Questions

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

• Predictions of the SM: 
Reliable but limited. 

• These predictions 
come from general 
purpose MC 
generators: 
➡We understand them 

very well, but they 
are not designed to 
model threshold 
perfectly.
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• How reliable are the elements of this result?

Common Questions

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

• Entanglement limits: 
Reliable but limited. 

• Same limitations as 
predictions. 

• Two models give 
different limits, but 
source is understood 
and we’ve taken the 
most conservative of 
the two. 
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• Bound state effects are most prevalent in the region that 
we care about.

What about Topponium?

Kiyo, Kühn, Moch, Steinhauser, Uwer, 2009

• These are not directly included in our MC simulations (but we 
have attempted to introduce them as a cross-check and other 
uncertainties cover similar effects).

https://arxiv.org/abs/0812.0919


Jay Howarth

• Bound state effects should be increasing entanglement: 
➡ Including them only makes result more significant, not less.

Common Questions

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

*exaggerated, the effect on the error bars would be too small to see.

*
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Parton Shower

AATTLLAASS SSiimmuullaattiioonn Preliminary 
√√

ss == 1133 TTeeVV,, ppaarrttiiccllee lleevveell

Herwig 7 LO Dipole shower

Herwig 7 LO Angular shower
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• Difference seems to come from the ordering of the 
shower.

• Angular ordered showers have a large effect compared to 
dipole showers. 

• Doesn’t effect detector corrections significantly. 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• ATLAS has observed quantum entanglement for the first 
time in a pair of fundamental quarks, at the highest lab-
made energies. 

• This is the first step in a program to use the LHC as a tool 
for exploring quantum information. 

• Important questions about how entanglement (and spin 
correlation) is modelled in this threshold region: 
➡Would be a very profitable area for further study in the 

theory community!

Conclusions


