New foundational experiments with quantum process tomography

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Michał Eckstein^{1,2} & Paweł Horodecki^{2,3}

 $^{\rm 1}$ Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland $^{\rm 2}$ International Center for Theory of Quantum Technologies, University of Gdańsk $^{\rm 3}$ Gdańsk University of Technology, Poland

Firenze, 6 November 2023

$Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation,
- 2 Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation . . .)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs, .
 - Deviations from linearity in QM and/or OFT
 - Objective wave function collapse models

$Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation,
- 2 Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation . . .)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs,
 - Deviations from linearity in QM and/or OFT
 - Objective wave function collapse models

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

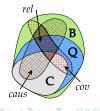
- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- 2 Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs,
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs,
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

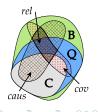
 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, . . .
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs, . . .
 - Deviations from linearity in QM and/or QFI
 - Objective wave function collapse models



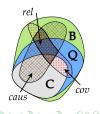
 $Standard\ Model \subset QFT = Quantum\ Mechanics + {\color{red} Special\ Relativity}$

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs, ...
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models



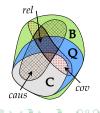
Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, . . .
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation . . .)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs, ...
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models



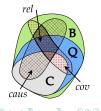
Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

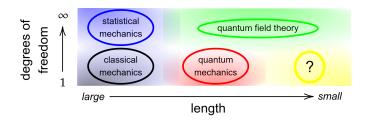
- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation . . .)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs, ...
 - Deviations from linearity in QM and/or QFT



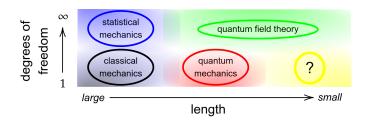
 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, . . .
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation . . .)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, GPTs, ...
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

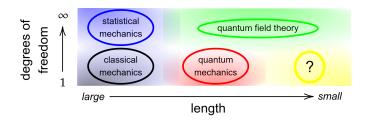




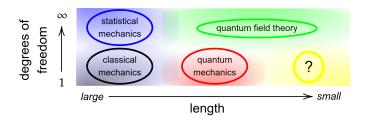
- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?



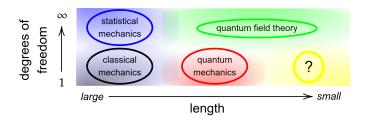
- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?



- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?



- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?



- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?

- Physical systems are treated (merely!) as information-processing devices ("black boxes") and probed by free agents.
- The conclusions are drawn from the output-input correlations.

$$P(\text{outputs} | \text{inputs})$$

Bell test: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The experimental (frequency) correlation function:

$$C_e(x, y) = P(a = b | x, y) - P(a \neq b | x, y)$$

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

• No pre-correlations between the inputs (x,y) and the box (λ) .

- Physical systems are treated (merely!) as information-processing devices ("black boxes") and probed by free agents.
- The conclusions are drawn from the **output-input correlations**.

$$P(\text{outputs} | \text{inputs})$$

Bell test: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The experimental (frequency) correlation function:

$$C_e(x,y) = P(a = b | x, y) - P(a \neq b | x, y)$$

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

ullet No pre-correlations between the inputs (x,y) and the box (λ) .

- Physical systems are treated (merely!) as information-processing devices ("black boxes") and probed by free agents.
- The conclusions are drawn from the **output-input correlations**.

$$P(\text{outputs} | \text{inputs})$$

Bell test: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The experimental (frequency) correlation function:

$$C_e(x, y) = P(a = b | x, y) - P(a \neq b | x, y)$$

The key assumption of *freedom of choice* ("measurement independence"):

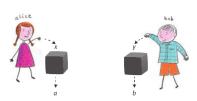
$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

ullet No pre-correlations between the inputs (x,y) and the box (λ) .

- Physical systems are treated (merely!) as information-processing devices ("black boxes") and probed by free agents.
- The conclusions are drawn from the output-input correlations.

$$P(\text{outputs} | \text{inputs})$$

Bell test: 2 agents (Alice and Bob) — 2 inputs (x,y) — 2 outputs (a,b)



The experimental (frequency) correlation function:

$$C_e(x, y) = P(a = b | x, y) - P(a \neq b | x, y)$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

• No pre-correlations between the inputs (x,y) and the box (λ) .

- Physical systems are treated (merely!) as information-processing devices ("black boxes") and probed by free agents.
- The conclusions are drawn from the output-input correlations.

$$P(\text{outputs} | \text{inputs})$$

Bell test: 2 agents (Alice and Bob) — 2 inputs (x,y) — 2 outputs (a,b)



The *experimental* (frequency) correlation function:

$$C_e(x,y) = P(a = b | x, y) - P(a \neq b | x, y)$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

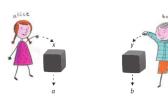
$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

 \bullet No pre-correlations between the inputs (x,y) and the box $(\lambda).$

- Physical systems are treated (merely!) as information-processing devices ("black boxes") and probed by free agents.
- The conclusions are drawn from the **output-input correlations**.

$$P(\text{outputs} | \text{inputs})$$

Bell test: 2 agents (Alice and Bob) — 2 inputs (x,y) — 2 outputs (a,b)



The *experimental* (frequency) correlation function:

$$C_e(x,y) = P(a = b | x, y) - P(a \neq b | x, y)$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

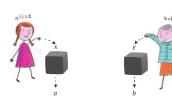
$$P(x, y | \lambda) = P(x) \cdot P(y)$$

• No pre-correlations between the inputs (x,y) and the box (λ) .

- Physical systems are treated (merely!) as information-processing devices ("black boxes") and probed by free agents.
- The conclusions are drawn from the **output-input correlations**.

$$P(\text{outputs} | \text{inputs})$$

Bell test: 2 agents (Alice and Bob) — 2 inputs (x,y) — 2 outputs (a,b)



The *experimental* (frequency) correlation function:

$$C_e(x,y) = P(a = b | x, y) - P(a \neq b | x, y)$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y | \lambda) = P(x) \cdot P(y)$$

• No pre-correlations between the inputs (x, y) and the box (λ) .

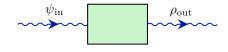
- We treat physical systems as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The pure input state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.

- We treat physical systems as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

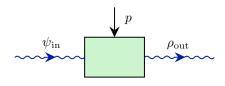
- p are classical parameters (e.g. scattering kinematics)
- The pure input state is **prepared**, $P: x \to \psi_{\text{in}}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.

- We treat physical systems as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.



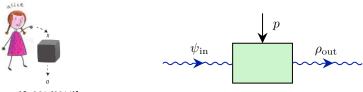
- p are classical parameters (e.g. scattering kinematics)
- The pure input state is **prepared**, $P: x \to \psi_{\text{in}}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.

- We treat physical systems as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.



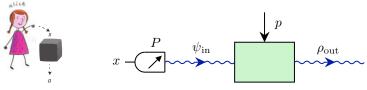
- \bullet p are classical parameters (e.g. scattering kinematics)
- The pure input state is **prepared**, $P: x \to \psi_{\text{in}}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.

- We treat physical systems as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.



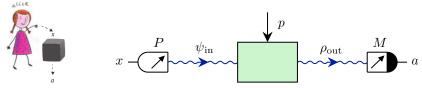
- [Nat. Phys. 10, 264 (2014)]
 - p are classical parameters (e.g. scattering kinematics)
 - The pure input state is **prepared**, $P: x \to \psi_{in}$.
 - The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.

- We treat physical systems as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

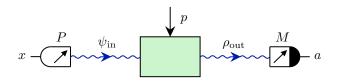


- [Nat. Phys. 10, 264 (2014)]
 - ullet p are classical parameters (e.g. scattering kinematics)
 - The pure input state is **prepared**, $P: x \to \psi_{\text{in}}$.
 - The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.

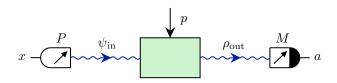
- We treat physical systems as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.



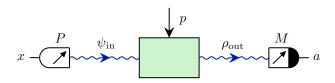
- [Nat. Phys. 10, 264 (2014)]
 - p are classical parameters (e.g. scattering kinematics)
 - The pure input state is **prepared**, $P: x \to \psi_{\text{in}}$.
 - The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.



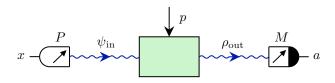
- \bullet For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
- A Q-data test yields a dataset $\{\psi_{\rm in}^{(k)},p^{(\ell)};\rho_{\rm out}^{(k,\ell)}\}_{k,\ell}.$
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the 'environment'.
- Don't need to gather all outgoing quantum information.



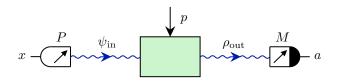
- ullet For every input state $\psi_{ ext{in}}$ one performs the full tomography of $ho_{ ext{out}}.$
- A Q-data test yields a dataset $\{\psi_{\rm in}^{(k)}, p^{(\ell)}; \rho_{\rm out}^{(k,\ell)}\}_{k,\ell}.$
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the 'environment'.
- Don't need to gather all outgoing quantum information.



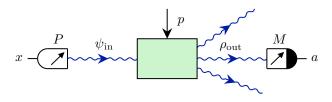
- \bullet For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
- A Q-data test yields a dataset $\{\psi_{\rm in}^{(k)}, p^{(\ell)}; \rho_{\rm out}^{(k,\ell)}\}_{k,\ell}.$
- ψ_{in} is pure, initially uncorrelated with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the 'environment'.
- Don't need to gather all outgoing quantum information.



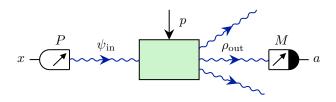
- \bullet For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
- A Q-data test yields a dataset $\{\psi_{\mathrm{in}}^{(k)}, p^{(\ell)}; \rho_{\mathrm{out}}^{(k,\ell)}\}_{k,\ell}.$
- ullet $\psi_{\rm in}$ is pure, initially **uncorrelated** with the box freedom of choice.
- \bullet ρ_{out} is in general *mixed*, i.e. entangled with the 'environment'.
- Don't need to gather all outgoing quantum information.



- \bullet For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
- A Q-data test yields a dataset $\{\psi_{\mathrm{in}}^{(k)}, p^{(\ell)}; \rho_{\mathrm{out}}^{(k,\ell)}\}_{k,\ell}.$
- ullet ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- \bullet $\rho_{\rm out}$ is in general *mixed*, i.e. entangled with the 'environment'.
- Don't need to gather all outgoing quantum information.



- \bullet For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
- A Q-data test yields a dataset $\{\psi_{\rm in}^{(k)},p^{(\ell)};\rho_{\rm out}^{(k,\ell)}\}_{k,\ell}$.
- ullet $\psi_{\rm in}$ is pure, initially **uncorrelated** with the box freedom of choice.
- \bullet ρ_{out} is in general *mixed*, i.e. entangled with the 'environment'.
- Don't need to gather all outgoing quantum information.



- \bullet For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
- \bullet A Q-data test yields a dataset $\{\psi_{\rm in}^{(k)},p^{(\ell)};\rho_{\rm out}^{(k,\ell)}\}_{k,\ell}.$
- ullet $\psi_{\rm in}$ is pure, initially **uncorrelated** with the box freedom of choice.
- \bullet ρ_{out} is in general *mixed*, i.e. entangled with the 'environment'.
- Don't need to gather all outgoing quantum information.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\mathrm{succ}}\big(\psi_{\mathrm{in}}^{(1)},\psi_{\mathrm{in}}^{(2)}\big) \coloneqq \frac{1}{2}\sum_{k=1}^2 P\big(a=k\,|\,\psi_{\mathrm{in}}^{(k)}\big).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \left\langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \right\rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\left\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\right\}_{k=1,2}$.
- $\bullet \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\mathrm{succ}}\big(\psi_{\mathrm{in}}^{(1)},\psi_{\mathrm{in}}^{(2)}\big) \coloneqq \frac{1}{2}\sum_{k=1}^2 P\big(a=k\,|\,\psi_{\mathrm{in}}^{(k)}\big).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \left\langle \psi_{\text{in}}^{(1)} \middle| \psi_{\text{in}}^{(2)} \right\rangle \right|^2} \right).$$

- Make a Q-data test with $\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\}_{k=1,2}$.
- $\bullet \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a = k \, | \, \psi_{\text{in}}^{(k)}).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\text{succ}} \le P_{\text{succ}}^{\text{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\left\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\right\}_{k=1,2}$.
- $\bullet \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\mathrm{succ}}\big(\psi_{\mathrm{in}}^{(1)},\psi_{\mathrm{in}}^{(2)}\big) \coloneqq \frac{1}{2}\sum_{k=1}^2 P\big(a=k\,|\,\psi_{\mathrm{in}}^{(k)}\big).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\text{succ}} \le P_{\text{succ}}^{\text{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\left\{\psi_{\mathrm{in}}^{(k)}; \rho_{\mathrm{out}}^{(k)}\right\}_{k=1,2}$.
- $\bullet \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- \bullet Define the success rate: $P_{\rm succ}\big(\psi_{\rm in}^{(1)},\psi_{\rm in}^{(2)}\big):=\frac{1}{2}\sum_{k=1}^2 P\big(a=k\,|\,\psi_{\rm in}^{(k)}\big).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\left\{\psi_{\mathrm{in}}^{(k)};\rho_{\mathrm{out}}^{(k)}\right\}_{k=1,2}$.
- $\bullet \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- \bullet Define the success rate: $P_{\rm succ}\big(\psi_{\rm in}^{(1)},\psi_{\rm in}^{(2)}\big):=\frac{1}{2}\sum_{k=1}^2 P\big(a=k\,|\,\psi_{\rm in}^{(k)}\big).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\left\{\psi_{\mathrm{in}}^{(k)};\rho_{\mathrm{out}}^{(k)}\right\}_{k=1,2}$.
- $\bullet \ \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- \bullet Define the success rate: $P_{\rm succ}\big(\psi_{\rm in}^{(1)},\psi_{\rm in}^{(2)}\big):=\frac{1}{2}\sum_{k=1}^2 P\big(a=k\,|\,\psi_{\rm in}^{(k)}\big).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right) \,.$$

- \bullet Make a Q-data test with $\left\{\psi_{\mathrm{in}}^{(k)};\rho_{\mathrm{out}}^{(k)}\right\}_{k=1,2}$
- $\bullet \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\mathrm{succ}}\big(\psi_{\mathrm{in}}^{(1)},\psi_{\mathrm{in}}^{(2)}\big) \coloneqq \frac{1}{2}\sum_{k=1}^2 P\big(a=k\,|\,\psi_{\mathrm{in}}^{(k)}\big).$
- ullet In quantum theory $P_{
 m succ}$ cannot exceed the **Helstrom bound**

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right) \,.$$

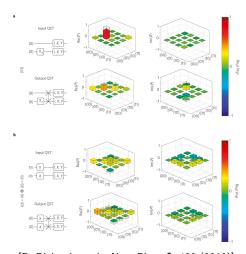
- Make a Q-data test with $\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\}_{k=1,2}$.
- $\bullet \ \text{If} \ P_{\text{succ}}\big(\rho_{\text{out}}^{(1)},\rho_{\text{out}}^{(2)}\big) > P_{\text{succ}}\big(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}\big) \ \text{then the Q-data box is } \textbf{not} \ \text{quantum}.$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\mathsf{in}}) \to S(\mathcal{H}_{\mathsf{out}})$ must be a $\mathbf{CP(TP)}$ map, $\mathcal{E} \otimes \mathbb{1}_N \geq 0 \ \ \forall \ N.$
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m=\dim \mathcal{H}_{\text{in}}, n=\dim \mathcal{H}_{\text{out}}.$
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^m |i\rangle\langle j| \otimes \mathcal{E}(|i\rangle\langle j|)$ is a quantum state.
- \mathcal{E} can be reconstructed from a Q-data test $\left\{\psi_{\mathrm{in}}^{(k)}; \rho_{\mathrm{out}}^{(k)}\right\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\left\{\psi_{\text{in}}^{(k)};\rho_{\text{out}}^{(k)}\right\}_{k=1}^{N} \text{ with } N>m^2$ are sensitive to deviations from CP and linearity.

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\mathsf{in}}) \to S(\mathcal{H}_{\mathsf{out}})$ must be a $\mathbf{CP(TP)}$ map, $\mathcal{E} \otimes \mathbb{1}_N \geq 0 \ \ \forall \ N.$
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}$.
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^m |i\rangle\langle j| \otimes \mathcal{E}(|i\rangle\langle j|)$ is a quantum state.
- \mathcal{E} can be reconstructed from a Q-data test $\left\{\psi_{\mathrm{in}}^{(k)}; \rho_{\mathrm{out}}^{(k)}\right\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\left\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\right\}_{k=1}^{N}$ with $N>m^2$ are sensitive to deviations from CP and linearity.

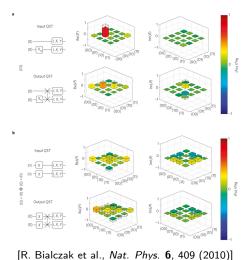
- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\mathsf{in}}) \to S(\mathcal{H}_{\mathsf{out}})$ must be a $\mathbf{CP(TP)}$ map, $\mathcal{E} \otimes \mathbb{1}_N \geq 0 \ \ \forall \ N.$
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}.$
- $\begin{array}{l} \bullet \;\; \mathcal{E} \; \text{is CPTP if and only if} \\ \widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle\langle j| \otimes \mathcal{E}(|i\rangle\langle j|) \\ \text{is a quantum state}. \end{array}$
- \mathcal{E} can be reconstructed from a Q-data test $\left\{\psi_{\mathrm{in}}^{(k)}; \rho_{\mathrm{out}}^{(k)}\right\}_{k=1}^{m^2}$.
- $\begin{array}{l} \bullet \ \ \text{Overcomplete Q-data tests,} \\ \left\{ \psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)} \right\}_{k=1}^{N} \ \text{with } N > m^2 \\ \text{are sensitive to deviations from CP and linearity.} \end{array}$

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\mathsf{in}}) \to S(\mathcal{H}_{\mathsf{out}})$ must be a $\mathbf{CP(TP)}$ map, $\mathcal{E} \otimes \mathbb{1}_N \geq 0 \ \ \forall \ N.$
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m=\dim \mathcal{H}_{in}, n=\dim \mathcal{H}_{out}$.
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^m |i\rangle\langle j| \otimes \mathcal{E}(|i\rangle\langle j|)$ is a quantum state.
- \mathcal{E} can be reconstructed from a Q-data test $\left\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\right\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\left\{\psi_{\text{in}}^{(k)};\rho_{\text{out}}^{(k)}\right\}_{k=1}^{N}$ with $N>m^2$ are sensitive to deviations from CP and linearity.



[R. Bialczak et al., *Nat. Phys.* **6**, 409 (2010)]

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\mathsf{in}}) \to S(\mathcal{H}_{\mathsf{out}})$ must be a $\mathbf{CP(TP)}$ map, $\mathcal{E} \otimes \mathbb{1}_N \geq 0 \ \ \forall \ N.$
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m=\dim \mathcal{H}_{in}, n=\dim \mathcal{H}_{out}$.
- $\begin{array}{l} \bullet \;\; \mathcal{E} \; \text{is CPTP if and only if} \\ \widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^m |i\rangle\langle j| \otimes \mathcal{E}(|i\rangle\langle j|) \\ \text{is a quantum state}. \end{array}$
- \mathcal{E} can be reconstructed from a Q-data test $\left\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\right\}_{k=1}^{m^2}$.



N. Biaiczak et al., Nat. 1 llys. 0, 409 (2010)]

- ① Prepare 'quantum-programmed' particles carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization. \leadsto polarized beams
- Probe a 'Q-data box' that is collide them!
- 3 Measure projectively the outgoing projectiles and reconstruct $ho_{
 m out}.$
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\text{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\text{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\text{out}} = \mathbb{C}^3 \otimes \mathbb{C}$
 - Direct processes, e.g. $e^+e^- o t ar t$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to t\bar{t} + Y$ Such an operation $\mathcal{E}: \mathbb{C}^2_p \otimes \mathbb{C}^2_{e^-} \to S(\mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-})$ is not unitary, but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying ψ_{in} , e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- 3 Measure projectively the outgoing projectiles and reconstruct ρ_{out} .
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\text{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\text{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\text{out}} = \mathbb{C}^3 \otimes \mathbb{C}^2$
 - Direct processes, e.g. $e^+e^- o t ar t$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to t\bar{t} + Y$ Such an operation $\mathcal{E}: \mathbb{C}^2_p \otimes \mathbb{C}^2_{e^-} \to S(\mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-})$ is *not* unitary, but it must be CP *if* quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying ψ_{in} , e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Measure projectively the outgoing projectiles and reconstruct $ho_{
 m out}$.
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\text{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\text{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\text{out}} = \mathbb{C}^3 \otimes \mathbb{C}^2$
 - ullet Direct processes, e.g. $e^+e^-
 ightarrow tar{t}$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to tt + Y$ Such an operation $\mathcal{E}: \mathbb{C}^2_p \otimes \mathbb{C}^2_{e^-} \to S(\mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-})$ is *not* unitary, but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Measure projectively the outgoing projectiles and reconstruct $ho_{
 m out}$.
- Experimental prospects:
 - Explore the spin dynamics with polarised beams,

 H_{in} = C² ⊗ C². H_{out} = C² ⊗ C² or H_{out} = C³ ⊗
 - ullet Direct processes, e.g. $e^+e^- o tar t$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to tt + Y$ Such an operation $\mathcal{E}: \mathbb{C}_p^2 \otimes \mathbb{C}_{c^-}^2 \to S(\mathbb{C}_{t^+}^2 \otimes \mathbb{C}_{t^-}^2)$ is not unitary but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Measure projectively the outgoing projectiles and reconstruct $ho_{
 m out}$.
- Experimental prospects:
 - Explore the spin dynamics with polarised beams,

 H_{in} = C² ⊗ C². H_{out} = C² ⊗ C² or H_{out} = C³ ⊗
 - ullet Direct processes, e.g. $e^+e^- o tar t$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to tt + Y$ Such an operation $\mathcal{E}: \mathbb{C}_p^2 \otimes \mathbb{C}_{c^-}^2 \to S(\mathbb{C}_{t^+}^2 \otimes \mathbb{C}_{t^-}^2)$ is *not* unitary but it must be CP *if* quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Reconstruct the output states ρ_{out} . \leadsto weak decays
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\text{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\text{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\text{out}} = \mathbb{C}^3 \otimes \mathbb{C}^2$
 - ullet Direct processes, e.g. $e^+e^-
 ightarrow tar{t}$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to t\bar{t} + Y$ Such an operation $\mathcal{E}: \mathbb{C}^2_p \otimes \mathbb{C}^2_{e^-} \to S(\mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-})$ is not unitary, but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- 2 Probe a 'Q-data box' that is collide them!
- **3** Reconstruct the output states ρ_{out} . \leadsto weak decays
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\text{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\text{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\text{out}} = \mathbb{C}^3 \otimes \mathbb{C}^3$
 - Direct processes, e.g. $e^+e^- \to t\bar{t}$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to t\bar{t} + Y$ Such an operation $\mathcal{E}: \mathbb{C}_p^2 \otimes \mathbb{C}_{e^-}^2 \to S\left(\mathbb{C}_{t^+}^2 \otimes \mathbb{C}_{t^-}^2\right)$ is not unitary, but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Reconstruct the output states ρ_{out} . \leadsto weak decays
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^3 \otimes \mathbb{C}^3$
 - Direct processes, e.g. $e^+e^- o t ar t$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to t\bar{t} + Y$ Such an operation $\mathcal{E}: \mathbb{C}_p^2 \otimes \mathbb{C}_{e^-}^2 \to S\left(\mathbb{C}_{t^+}^2 \otimes \mathbb{C}_{t^-}^2\right)$ is not unitary, but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Reconstruct the output states ρ_{out} . \leadsto weak decays
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^3 \otimes \mathbb{C}^3$
 - \bullet Direct processes, e.g. $e^+e^- \to t\bar{t}$ $\,$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to tt + Y$ Such an operation $\mathcal{E}: \mathbb{C}_p^2 \otimes \mathbb{C}_{e^-}^2 \to S \left(\mathbb{C}_{t^+}^2 \otimes \mathbb{C}_{t^-}^2 \right)$ is not unitary, but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Reconstruct the output states ρ_{out} . \leadsto weak decays
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^3 \otimes \mathbb{C}^3$
 - \bullet Direct processes, e.g. $e^+e^- \to t\bar t$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ o \gamma g + X o t\bar t + Y$ Such an operation $\mathcal E: \mathbb C_p^2 \otimes \mathbb C_{e^-}^2 o S \left(\mathbb C_{t^+}^2 \otimes \mathbb C_{t^-}^2\right)$ is not unitary, but it must be CP if quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- ① Prepare 'quantum-programmed' particles carrying ψ_{in} , e.g. electron's spin or photon's polarization. \leadsto polarized beams
- 2 Probe a 'Q-data box' that is collide them!
- **3** Reconstruct the output states ρ_{out} . \rightsquigarrow weak decays
- Experimental prospects:
 - Explore the spin dynamics with polarised beams, $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2 \otimes \mathbb{C}^2$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2 \otimes \mathbb{C}^2$ or $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^3 \otimes \mathbb{C}^3$
 - ullet Direct processes, e.g. $e^+e^-
 ightarrow t ar t$ [C. Altomonte, A. Barr (2022)]
 - Indirect processes, e.g. $e^-p^+ \to \gamma g + X \to t\bar{t} + Y$ Such an operation $\mathcal{E}: \mathbb{C}_p^2 \otimes \mathbb{C}_{e^-}^2 \to S\left(\mathbb{C}_{t^+}^2 \otimes \mathbb{C}_{t^-}^2\right)$ is *not* unitary, but it must be CP *if* quantum mechanics is valid.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test!
 - Could we make direct projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .
 - Understand quantum dynamics in HEP
 - Need polarised beems and/or targets

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .
 - Understand quantum dynamics in HEP
 - Need polarised beems and/or targets.

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test!
 - Could we make direct projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .
 - Understand quantum dynamics in HEP.
 - Need polarised beems and/or targets

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .)
 - Understand quantum dynamics in HEP
 - Need polarised beems and/or targets

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .)
 - Understand quantum dynamics in HEP
 - Need polarised beems and/or targets

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and/or targets.

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and/or targets

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, . . .)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and/or targets

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is not a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, ...)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and/or targets.

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make direct projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CP, linearity, ...)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and/or targets.

