Entanglement Suppression, Emergent Symmetry, and a SM-like Higgs Boson

The Galileo Galilei Institute For Theoretical Physics

Centro Nazionale di Studi Avanzati dell'Istituto Nazionale di Fisica Nucleare

Arcetri, Firenze

- Ian Low
- Argonne/Northwestern
- Workshop on "Quantum Observables for Collider Physics"
- Nov 6, 2023

Entanglement is quantum world's most prominent feature:

- It refers to the situation where a measurement on a subsystem will improve our knowledge on the rest of the system.
- A quantum state of a system is entangled if it cannot be written as a tensor-product state of its subsystems.
- Consider a bipartite system $\mathcal{H}_{12} = \mathcal{H}_1 \otimes \mathcal{H}_2$, a state vector $|\psi\rangle \in \mathcal{H}_{12}$ is *entangled* if there is NO $|\psi_1\rangle \in \mathcal{H}_1$ and $|\psi_2\rangle \in \mathcal{H}_2$ such that

$$|\psi
angle = |\psi_1
angle \otimes |\psi_2
angle$$

On the other hand, symmetry is among the most fundamental principles in physics:

Powerful characterization of nature based on invariance under a specified group of transformations.

Symmetries give rise to conserved quantities: energy, momentum, angular momentum, etc.

Combining with quantum mechanics, there is a subtle realization of symmetry – spontaneous symmetry breaking.

All known fundamental interactions are based on symmetry principles.

But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out –

As we explore higher and higher energy regimes, we discover more and more symmetries. The symmetry is usually hidden or broken in low energies. But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out –

As we explore higher and higher energy regimes, we discover more and more symmetries. The symmetry is usually hidden or broken in low energies.

Garbage In, Beauty Out – At high energy level there is no symmetry. Rather symmetry emerges only at large distances, in the infrared. These are emergent symmetries. But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out -

As we explore higher and higher energy regimes, we discover more and more symmetries. The symmetry is usually hidden or broken in low energies.

Garbage In, Beauty Out – At high energy level there is no symmetry. Rather symmetry emerges only at large distances, in the infrared. These are emergent symmetries.

But neither explain whether symmetry can be the natural outgrowth of more fundamental principles.

John Wheeler famously coined the phrase:

It from bit : "All things physical are information-theoretic in origin"

INFORMATION, PHYSICS, QUANTUM: THE SEARCH FOR LINKS

John Archibald Wheeler * [†]

Abstract

This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four

winnowing: It from bit. Otherwise put, every it — every particle, every field of force, even the spacetime continuum itself — derives its function, its meaning, its very existence entirely — even if in some contexts indirectly — from the apparatus-elicited answers to yes or no questions, binary choices [52], bits.

Indeed, we have seen remarkable connections between fundamental physics and information science in the past decade.

It is natural to ask:

0

0

In 2018 a group from Seattle made a fascinating observation regarding emergent symmetries and entanglement suppression in low-energy QCD:

PHYSICAL REVIEW LETTERS 122, 102001 (2019)

Entanglement Suppression and Emergent Symmetries of Strong Interactions

Silas R. Beane,¹ David B. Kaplan,² Natalie Klco,^{1,2} and Martin J. Savage² ¹Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA ²Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA

(Received 20 December 2018; published 14 March 2019)

Entanglement suppression in the strong-interaction S matrix is shown to be correlated with approximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner SU(4) symmetry for two flavors and an SU(16) symmetry for three flavors. We conjecture that

This raises the intriguing possibility of understanding symmetry from quantum entanglement!

In this talk, we will study:

- Emergent (approximate) global symmetries in two very different physical systems: low-energy QCD and 2HDMs.
- Connection between symmetry and entanglement suppression in 2-to-2 scattering.
- Elucidate the connection from an information-theoretic viewpoint.

In this talk, we will study:

- Emergent (approximate) global symmetries in two very different physical systems: low-energy QCD and 2HDMs.
- Connection between symmetry and entanglement suppression in 2-to-2 scattering.
- Elucidate the connection from an information-theoretic viewpoint.

In the case of 2HDM, a SM-like Higgs boson emerges as an outcome of entanglement suppression!

Emergent symmetries in low-energy QCD:

• Schrodinger symmetry (non-relativistic conformal invariance)

The largest symmetry group preserved by the Schrodinger equation, which includes Galilean boosts, scale and special conformal transformations.

• Spin-flavor symmetries

Symmetries mixing flavor (internal) with spin (spacetime). Possible only in non-relativistic systems. Examples: SU(2N_f) quark spin-flavor symmetries; Wigner's "supermultiplet" SU(4) spin-flavor symmetry. $SU(2N_f)$ spin-flavor symmetries are symmetries of non-relativistic quark model and date back to 1960s:

SU(4):
$$\mathbf{4} = \begin{pmatrix} u \uparrow \\ u \downarrow \\ d \uparrow \\ d \downarrow \end{pmatrix}$$
 SU(6):
$$\mathbf{6} = \begin{pmatrix} u \uparrow \\ u \downarrow \\ d \uparrow \\ d \downarrow \\ s \uparrow \\ s \downarrow \end{pmatrix}$$

They can be derived from QCD in the large N_c (=3) limit!

Dashen, Monohar (1993); Dashen, Jenkins, Manohar (1994); Kaplan, Savage (1995)

In low-energy nuclear physics, there is a different SU(4) symmetry first observed by Wigner:

JANUARY 15, 1937

PHYSICAL REVIEW

VOLUME 51

On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei

E. WIGNER* Princeton University, Princeton, New Jersey (Received October 23, 1936)

The structure of the multiplets of nuclear terms is investigated, using as first approximation a Hamiltonian which does not involve the ordinary spin and corresponds to equal forces between all nuclear constituents, protons and neutrons. The multiplets turn out to have a

In this case the neutron and proton fill out a "supermultiplet": $N = \begin{pmatrix} p \downarrow \\ p \downarrow \\ n \uparrow \end{pmatrix}$

In the EFT language, Wigner's SU(4) is accidental in that, after imposing the SU(4) quark spin-flavor symmetry, the only remaining operator has this symmetry.

So far these spin-flavor symmetries can be argued from the large N_c limit. There are emergent symmetries beyond the large N_c :

• Unnaturally large scattering lengths in low-energy NN scattering in the s-wave, which include ${}^{1}S_{0}$ and ${}^{3}S_{1}$ channels.

So far these spin-flavor symmetries can be argued from the large N_c limit. There are emergent symmetries beyond the large N_c :

• Unnaturally large scattering lengths in low-energy NN scattering in the s-wave, which include ${}^{1}S_{0}$ and ${}^{3}S_{1}$ channels.

In NN scattering:

- ${}^{1}S_{0}$: a₀ = -23.7 fm
- ${}^{3}S_{1}$: a_{1} = 5.4 fm \rightarrow Deuteron, which is a shallow, near-threshold bound state!
- $1/m_{\pi} = 1.4 \text{ fm}$

In the limit the scattering length *a* diverges, the system has no scale and exhibits Schrodinger symmetry, also known as the non-relativistic conformal invariance. Mehen, Stewart, Wise (1999)

At the infinitesimal level,

boosts:	$\vec{x}' = \vec{x} + \vec{v}t \;\;,$	t'=t ,
scale:	$\vec{x}' = \vec{x} + s\vec{x}$,	$t'=t+2st \ ,$
conformal:	$\vec{x}' = \vec{x} - ct\vec{x} \ ,$	$t' = t - ct^2 \; ,$

So NN scattering has approximate Schrodinger symmetry.

WHO ORDERED THAT??!

• Nucleons are part of spin-1/2 octet baryons:

In the SU(3) flavor-symmetric limit :

$$B=egin{pmatrix} \Sigma^0/\sqrt{2}+\Lambda/\sqrt{6} & \Sigma^+ & p \ \Sigma^- & -\Sigma^0/\sqrt{2}+\Lambda/\sqrt{6} & n \ \Xi^- & \Xi^0 & -\sqrt{rac{2}{3}}\Lambda \end{pmatrix}$$

A low-energy effective field theory:

$$\begin{split} \langle \cdot \rangle &\equiv \mathrm{Tr}(\ \cdot \) \\ \mathcal{L}_{\mathrm{LO}}^{n_f=3} &= -\frac{c_1}{f^2} \langle B_i^{\dagger} B_i B_j^{\dagger} B_j \rangle - \frac{c_2}{f^2} \langle B_i^{\dagger} B_j B_j^{\dagger} B_i \rangle - \frac{c_3}{f^2} \langle B_i^{\dagger} B_j^{\dagger} B_i B_j \rangle - \frac{c_4}{f^2} \langle B_i^{\dagger} B_j^{\dagger} B_j B_i \rangle \\ &- \frac{c_5}{f^2} \langle B_i^{\dagger} B_i \rangle \langle B_j^{\dagger} B_j \rangle - \frac{c_6}{f^2} \langle B_i^{\dagger} B_j \rangle \langle B_j^{\dagger} B_i \rangle, \quad i, j = \uparrow, \downarrow \qquad \text{Savage, Wise (1995)} \end{split}$$

Lattice QCD could compute the six Wilson coefficients under some special circumstances:

INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076

Baryon-Baryon Interactions and Spin-Flavor Symmetry from Lattice Quantum Chromodynamics

Michael L. Wagman,^{1,2} Frank Winter,³ Emmanuel Chang, Zohreh Davoudi,⁴ William Detmold,⁴ Kostas Orginos,^{5,3} Martin J. Savage,^{1,2} and Phiala E. Shanahan⁴ (NPLQCD Collaboration)

m_π = 804 MeV

Lattice QCD could compute the six Wilson coefficients under some special circumstances:

INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076

Baryon-Baryon Interactions and Spin-Flavor Symmetry from Lattice Quantum Chromodynamics

Michael L. Wagman,^{1,2} Frank Winter,³ Emmanuel Chang, Zohreh Davoudi,⁴ William Detmold,⁴ Kostas Orginos,^{5,3} Martin J. Savage,^{1,2} and Phiala E. Shanahan⁴ (NPLQCD Collaboration)

ICCUB-20-020, UMD-PP-020-7, MIT-CTP/5238, INT-PUB-20-038 FERMILAB-PUB-20-498-T

Low-energy Scattering and Effective Interactions of Two Baryons at $m_\pi\sim 450$ MeV from Lattice Quantum Chromodynamics

Marc Illa,¹ Silas R. Beane,² Emmanuel Chang, Zohreh Davoudi,^{3,4} William Detmold,⁵ David J. Murphy,⁵ Kostas Orginos,^{6,7} Assumpta Parreño,¹ Martin J. Savage,⁸ Phiala E. Shanahan,⁵ Michael L. Wagman,⁹ and Frank Winter⁷ (NPLQCD Collaboration)

 m_{π} = 450 MeV

 m_{π} = 150 MeV in reality

In the limit where all coefficients but c_5 are vanishing:

$$\begin{aligned} \mathcal{L}_{\mathrm{LO}}^{n_{f}=3} &= -\frac{c_{1}}{f^{2}} \langle B_{i}^{\dagger} B_{j} B_{j}^{\dagger} B_{j} \rangle - \frac{c_{2}}{f^{2}} \langle B_{i}^{\dagger} B_{j} B_{j}^{\dagger} B_{i} \rangle - \frac{c_{3}}{f^{2}} \langle B_{i}^{\dagger} B_{j}^{\dagger} B_{i} B_{j} \rangle - \frac{c_{4}}{f^{2}} \langle B_{i}^{\dagger} B_{j}^{\dagger} B_{j} \rangle \\ &- \frac{c_{5}}{f^{2}} \langle B_{i}^{\dagger} B_{i} \rangle \langle B_{j}^{\dagger} B_{j} \rangle - \frac{c_{6}}{f^{2}} \langle B_{i}^{\dagger} B_{j} \rangle \langle B_{j}^{\dagger} B_{i} \rangle, \qquad i, j = \uparrow, \downarrow \end{aligned}$$

The remaining operator can be re-written,

$$\mathcal{B} = (n_{\uparrow}, n_{\downarrow}, p_{\uparrow}, p_{\downarrow}, \dots) \;, \qquad \mathcal{L} = -c_5 \left(\mathcal{B}^{\dagger} \mathcal{B}
ight)^2$$

which is invariant under an SU(16) spin-flavor symmetry $U = 16 \times 16$ unitary matrix!

There is no large N_c explanation!

To summarize, in low-energy QCD there exist several emergent global symmetries that are not symmetries of the fundamental QCD Lagrangian:

- 1. Approximate SU(4), SU(6) quark spin-flavor symmetries. \rightarrow from large N_c!
- 2. Approximate Wigner's SU(4) spin-flavor symmetry. \rightarrow from large N_c!
- 3. Approximate Schrodinger symmetry in NN scattering \rightarrow ???
- 4. Approximate SU(16) symmetry as indicated by lattice simulations. →
 ???

Our goal is to understand 3 and 4 from a quantum information-theoretic perspective.

To discuss entanglement suppression, we need to quantify the amount of entanglement \rightarrow Entanglement Measure!

Many possibilities for Entanglement Measure. For bipartite systems:

von Neumann entropy:
$$E(
ho) = -\mathrm{Tr}(
ho_1 \ln
ho_1) = -\mathrm{Tr}(
ho_2 \ln
ho_2)$$

Linear entropy:

$$E(\rho) = -\operatorname{Tr}(\rho_1(\rho_1 - 1)) = 1 - \operatorname{Tr}\rho_1^2$$

$$ho = |\psi
angle\langle\psi| \qquad \qquad
ho_{1/2} = {
m Tr}_{2/1}(
ho)$$

The common property is that the entanglement measure vanishes for a product state $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$, but attains the maximum for maximally entangled states (such as the Bell states.)

Entanglement is a property of the quantum state.

But we are more interested in the ability of a *quantum-mechanical operator* (i.e. the S-matrix) to entangle.

However, there is a subtlety here, as the amount of entanglement generated by an operator could depend on the initial state.

Entanglement is a property of the quantum state.

But we are more interested in the ability of a *quantum-mechanical operator* (i.e. the S-matrix) to entangle.

However, there is a subtlety here, as the amount of entanglement generated by an operator could depend on the initial state.

Consider the CNOT (controlled NOT) gate in the computational basis: $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\}$

$$\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

CNOT does not entangle any of the basis state. However,

$$\frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}} \otimes |\uparrow\rangle \xrightarrow{\text{CNOT}} \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}$$

The "entanglement power" deals with this issue is by averaging over the initial states:

$$E(U) = \overline{E(U |\psi_1\rangle \otimes |\psi_2\rangle)},$$

For quibts, the average is over the Bloch sphere.

The entanglement power is a measure of the ability of an operator *U* to generate entanglement on product states.

The "entanglement power" deals with this issue is by averaging over the initial states:

$$E(U) = \overline{E(U |\psi_1\rangle \otimes |\psi_2\rangle)},$$

For quibts, the average is over the Bloch sphere.

The entanglement power is a measure of the ability of an operator *U* to generate entanglement on product states.

A minimally entangling operator has E(U) = 0, i.e.,

$$| \rangle \otimes | \rangle \xrightarrow{U} | \rangle \otimes | \rangle$$

There is, however, a notion of equivalent classes in this definition:

$$U \sim U'$$
 if $U = (U_1 \otimes U_2)U'(V_1 \otimes V_2)$

Modulo the equivalent class, there are two and only two minimally entangling operators, which in the computational basis,

$$\mathbf{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \text{SWAP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Identity gate: do nothing. SWAP gate: interchange the qubits.

$$SWAP \sim -1$$
 as $[SWAP]^2 = 1$

In terms of Pauli matrices,

SWAP =
$$(1 + \boldsymbol{\sigma} \cdot \boldsymbol{\sigma})/2$$
, $\boldsymbol{\sigma} \cdot \boldsymbol{\sigma} \equiv \sum_{a} \boldsymbol{\sigma}^{a} \otimes \boldsymbol{\sigma}^{a}$.

Low, Mehen: 2104.10835

In the scattering process the S-matrix acts on the IN-state:

$$|\mathrm{out}\rangle = S |\mathrm{in}\rangle$$

For 2-to-2 scattering of spin-1/2 fermions, the S-matrix can be viewed as a quantum logic gate acting on the spin-space:

Consider the scattering of two qubits, Alice and Bob, in the low-energy:

- Only the s-wave channel dominates.
- The S-matrix can be decomposed into ${}^{1}S_{0}$ and ${}^{3}S_{1}$ channels \rightarrow there are two phase shifts: δ_{0} and δ_{1} , respectively.
- Rotational invariance and Unitarity then uniquely fix the S-matrix:

In terms of quantum logic gates,

$$S = \frac{1}{2} \left(e^{2i\delta_1} + e^{2i\delta_0} \right) \mathbf{1} + \frac{1}{2} \left(e^{2i\delta_1} - e^{2i\delta_0} \right) \text{ SWAP},$$
$$-\underbrace{id}_{-id}$$

Conditions for the S-matrix to minimize entanglement: 1. S = 1 if $\delta_0 = \delta_1 \implies SU(4)$ or SU(16) spin-flavor sym. 2. S = SWAP if $|\delta_0 - \delta_1| = \pi/2 \implies Schrodinger sym.$

Low, Mehen: 2104.10835

Let's extend the analysis to other spin-1/2 baryons, which have a rich theoretical structure and phenomenology:

-- A total 8x8 = 64 scattering channels!

-- Strong interaction preserves charge (Q) and strangeness (S)

→ Classify the scattering channel into sectors with definitive (Q, S).

We are able to obtain the associated emergent symmetries when each (Q, S) sector is minimally entangled:

Flavor Subspace	Symmetry of Lagrangian	
np		
$\Sigma^- \Xi^-$	SU(6) spin-flavor symmetry	
$\Sigma^+ \Xi^0$	or conformal symmetry in 27 and $\mathbf{\overline{10}}$ irrep channels	
$n\Sigma^-$		
$p \Sigma^+$	conjugate of $SU(6)$ spin-flavor symmetry	
$\Xi^- \Xi^0$	or conformal symmetry in 27 and 10 irrep channels	
$(p\Lambda, p\Sigma^0, n\Sigma^+)$		
$(n\Lambda,n\Sigma^0,p\Sigma^-)$		
$(\Sigma^-\Lambda,\Sigma^-\Sigma^0,n\Xi^-)$	SO(8) flavor symmetry	
$(\Sigma^+\Lambda, \Sigma^+\Sigma^0, p\Xi^0)$	or conformal symmetry in $27, 8_{5}, 8_{\mathbf{A}}, 10$ and $\overline{10}$	
$(\Sigma^- \Xi^0, \Xi^- \Sigma^0, \Xi^- \Sigma^0)$	irrep channels	
$\left(\Xi^{-}\Sigma^{+},\Xi^{0}\Lambda,\Xi^{0}\Sigma^{0} ight)$		
$\overline{(\Sigma^+\Sigma^-,\Sigma^0\Sigma^0,\Lambda\Sigma^0,\Xi^-p,\Xi^0n,\Lambda\Lambda)}$	SU(16) symmetry	
•	or $SU(8)$ and conformal symmetry	

TABLE V. Symmetries predicted by entanglement minimization in each flavor sector.

Liu, Low, Mehen: 2210.12085

Next we will consider a fully relativistic quantum system.

The great Success of the Higgs Boson!

H⁰

J = 0

Mass $m = 125.09 \pm 0.24$ GeV Full width $\Gamma < 1.7$ GeV, CL = 95%

H^0 Signal Strengths in Different Channels

See Listings for the latest unpublished results.

Combined Final States = 1.10 ± 0.11 $W W^* = 1.08^{+0.18}_{-0.16}$ $Z Z^* = 1.29^{+0.26}_{-0.23}$ $\gamma \gamma = 1.16 \pm 0.18$ $b \overline{b} = 0.82 \pm 0.30$ (S = 1.1) $\mu^+ \mu^- < 7.0$, CL = 95% $\tau^+ \tau^- = 1.12 \pm 0.23$ $Z \gamma < 9.5$, CL = 95% $t \overline{t} H^0$ Production = $2.3^{+0.7}_{-0.6}$

Measurements at the LHC point to a Standard Model-like Higgs boson:

In most BSM models, a SM-like Higgs is by no means generic! We need special choices of parameters!! • Consider 2HDM, the prototypical model for BSM theories:

$$\begin{split} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} \,, \end{split}$$

• There exists a "basis" where all parameters are real. The VEV's are

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix} , \qquad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix} ,$$

$$v^2 \equiv v_1^2 + v_2^2 = \frac{4m_W^2}{g^2} = (246 \text{ GeV})^2 \qquad \tan\beta = \frac{v_2}{v_1}$$

• There are 8 real degrees of freedom:

3 eaten Goldstones and 5 physical scalars -- 2 charged Higgs, 1 CP-odd neutral Higgs and 2 CP-even neutral Higgs.

• The mixing angle in the CP-even neutral sector is defined as

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix} \equiv R(\alpha) \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}$$

• The 2x2 mass matrix can be diagonalized:

$$R^{T}(\alpha) \begin{pmatrix} m_{H}^{2} & 0 \\ 0 & m_{h}^{2} \end{pmatrix} R(\alpha) = \begin{pmatrix} \mathcal{M}_{11}^{2} & \mathcal{M}_{12}^{2} \\ \mathcal{M}_{12}^{2} & \mathcal{M}_{22}^{2} \end{pmatrix}$$

• A SM-like Higgs emerges when

$$g_{hVV} = g_{hVV}^{\rm SM} \ s_{\beta-\alpha} \qquad |c_{\beta-\alpha}| \ll 1$$

• This is the "alignment limit", which is more general than the "decoupling limit":

 $\begin{array}{l} m_A^2 \gg \lambda v^2 \\ \\ \text{Alignment Limit} \\ |c_{\beta-\alpha}| \ll 1 \end{array} \begin{array}{c} \text{Decoupling} \\ \text{Limit} \\ m_A^2 \gg \lambda v^2 \end{array} \end{array}$

• A SM-like Higgs emerges when

$$g_{hVV} = g_{hVV}^{\rm SM} \ s_{\beta-\alpha} \qquad |c_{\beta-\alpha}| \ll 1$$

• This is the "alignment limit", which is more general than the "decoupling limit":

 $m_A^2 \gg \lambda v^2$

Experimental data point to an "approximate" alignment limit!

We studied the tree-level S-matrix, in the limit the gauge and Yukawa couplings are turned off, of the 2-to-2 scattering of Higgs bosons:

 $\Phi^+_a \Phi^0_b \to \Phi^+_c \bar{\Phi}^0_d$

 $S = 1 + iT \qquad \langle \Phi_c \Phi_d | iT | \Phi_a \Phi_b \rangle$ = $i(2\pi)^4 \delta^{(4)}(p_a + p_b - p_c - p_c) M_{ab,cd}$ • Demanding that the S-matrix is in the equivalent class of Identity gate in the flavor subspace:

$$S = [\mathbf{1}]$$

lead to the following conditions on the tree amplitudes:

$$\begin{split} M_{11,11} + M_{22,22} &= M_{12,12} + M_{21,21} ,\\ M_{11,22} &= M_{12,21} = M_{21,12} = M_{22,11} = 0 ,\\ M_{11,12} &= M_{21,22} , \quad M_{11,21} = M_{12,22} ,\\ M_{22,21} &= M_{12,11} , \quad M_{22,12} = M_{21,11} . \end{split}$$

Carena, Low, Wagner and Xiao: 2307.08112

• Demanding that the S-matrix is in the equivalent class of Identity gate in the flavor subspace:

$$S = [\mathbf{1}]$$

lead to the following conditions on the tree amplitudes:

$$\begin{split} M_{11,11} + M_{22,22} &= M_{12,12} + M_{21,21} ,\\ M_{11,22} &= M_{12,21} = M_{21,12} = M_{22,11} = 0 ,\\ M_{11,12} &= M_{21,22} , \quad M_{11,21} = M_{12,22} ,\\ M_{22,21} &= M_{12,11} , \quad M_{22,12} = M_{21,11} . \end{split}$$

What scalar potential could give rise to such an entanglementsuppressing S-matrix??

Carena, Low, Wagner and Xiao: 2307.08112

• The resulting scalar potential is

$$V = Y \left(\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 \right) + \frac{\lambda}{2} \left(\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 \right)^2$$
$$= Y \vec{\Phi} \cdot \vec{\Phi} + \frac{\lambda}{2} \left(\vec{\Phi} \cdot \vec{\Phi} \right)^2$$

 $\vec{\Phi} = \left(\operatorname{Re}\phi_1^+, \operatorname{Im}\phi_1^+, \operatorname{Re}\phi_1^0, \operatorname{Im}\phi_1^0, \operatorname{Re}\phi_2^+, \operatorname{Im}\phi_2^+, \operatorname{Re}\phi_2^0, \operatorname{Im}\phi_2^0\right)^T$

Carena, Low, Wagner and Xiao: 2307.08112

- This potential has a maximal SO(8) symmetry, which rotates the eight real components in the two complex doublets.
- The SO(8) broken down to SO(7) by the Higgs VEV.
 All non-SM Higgs are Goldstone bosons, which become massive after turning on gauge and Yukawa couplings.
- More importantly, a SM-like Higgs boson follows from this scalar potential.

A SM-like Higgs is a consequence of entanglement suppression!

<u>Outlook</u>

In pursuit of a new paradigm:

Can symmetry be the outgrowth of more fundamental principles?

The answer appears to be a tantalizing YES!

In pursuit of a new paradigm:

Can symmetry be the outgrowth of more fundamental principles?

The answer appears to be a tantalizing YES!

With the benefit of hindsight:

In pursuit of a new paradigm:

Can symmetry be the outgrowth of more fundamental principles?

The answer appears to be a tantalizing YES!

With the benefit of hindsight:

• What is the information-theoretic measure to quantify the amount of symmetry,, eg SU(2) v.s. SU(3), in a physical system?

- What is the information-theoretic measure to quantify the amount of symmetry,, eg SU(2) v.s. SU(3), in a physical system?
- What is the information-theoretic order-parameter for spontaneous symmetry breaking?

- What is the information-theoretic measure to quantify the amount of symmetry,, eg SU(2) v.s. SU(3), in a physical system?
- What is the information-theoretic order-parameter for spontaneous symmetry breaking?
- What is the information-theoretic criterion for other types of symmetries, such as the conformal symmetry and gauge symmetry?

- What is the information-theoretic measure to quantify the amount of symmetry,, eg SU(2) v.s. SU(3), in a physical system?
- What is the information-theoretic order-parameter for spontaneous symmetry breaking?
- What is the information-theoretic criterion for other types of symmetries, such as the conformal symmetry and gauge symmetry?
- The deuteron, as a near-threshold bound state, is often cited as the prime example that Nature could be unnatural.

Can we understand (un)naturalness through the lens of quantum information?

- What is the information-theoretic measure to quantify the amount of symmetry,, eg SU(2) v.s. SU(3), in a physical system?
- What is the information-theoretic order-parameter for spontaneous symmetry breaking?
- What is the information-theoretic criterion for other types of symmetries, such as the conformal symmetry and gauge symmetry?
- The deuteron, as a near-threshold bound state, is often cited as the prime example that Nature could be unnatural.
 - Can we understand (un)naturalness through the lens of quantum information?

Understanding these issues might help us devise more efficient quantum algorithms for simulating systems exhibiting a particular type of symmetry.