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Entanglement is quantum world’s most prominent feature:

* It refers to the situation where a measurement on a subsystem will
improve our knowledge on the rest of the system.

* A guantum state of a system is entangled if it cannot be written as a
tensor-product state of its subsystems.

* Consider a bipartite system Ho = H; ® Ho , a state vector
1) € Hia is entangled if there is NO |1)1) € Hiand|ys) € Ha such

that

V) = |11) @ |12)



On the other hand, symmetry is among the most fundamental
principles in physics:

Powerful characterization of nature based on invariance under a
specified group of transformations.

Symmetries give rise to conserved quantities: energy, momentum,
angular momentum, etc.

Combining with quantum mechanics, there is a subtle realization of
symmetry — spontaneous symmetry breaking.

All known fundamental interactions are based on symmetry principles.




But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out —
As we explore higher and higher energy regimes, we discover

more and more symmetries. The symmetry is usually hidden
or broken in low energies.
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But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out —

As we explore higher and higher energy regimes, we discover
more and more symmetries. The symmetry is usually hidden
or broken in low energies.

Garbage In, Beauty Out —

At high energy level there is no symmetry. Rather symmetry
emerges only at large distances, in the infrared. These are
emergent symmetries.

But neither explain whether symmetry can be the natural
outgrowth of more fundamental principles.



John Wheeler famously coined the phrase:

It from bit : “All things physical are information-theoretic in
origin”

INFORMATION, PHYSICS, QUANTUM: THE
SEARCH FOR LINKS

John Archibald Wheeler * 1

Abstract

This report reviews what quantum physics and information theory have to tell us
about the age-old question, How come existence? No escape is evident from four

R T

winnowing: It from bit. Otherwise put, every it — every particle, every field of
force, even the spacetime continuum itself — derives its function, its meaning, its
very existence entirely — even if in some contexts indirectly — from the apparatus-
elicited answers to yes or no questions, binary choices [52], bits.




Indeed, we have seen remarkable connections between
fundamental physics and information science in the past
decade.

It is natural to ask:

Can symmetry come from qubit?

Bit Qubit

1 1)

Q Q . ) = a0} + A1)

0 |0)



In 2018 a group from Seattle made a fascinating observation regarding
emergent symmetries and entanglement suppression in low-energy QCD:

PHYSICAL REVIEW LETTERS 122, 102001 (2019)

Entanglement Suppression and Emergent Symmetries of Strong Interactions

Silas R. Beane,1 David B. Kaplan,2 Natalie cho,l’2 and Martin J. Savage2
'Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
*Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA

® (Received 20 December 2018; published 14 March 2019)

Entanglement suppression in the strong-interaction § matrix is shown to be correlated with
approximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner
SU(4) symmetry for two flavors and an SU(16) symmetry for three flavors. We conjecture that

This raises the intriguing possibility of understanding symmetry from
guantum entanglement!



In this talk, we will study:

* Emergent (approximate) global symmetries in two very
different physical systems: low-energy QCD and 2HDMIs.

* Connection between symmetry and entanglement
suppression in 2-to-2 scattering.

e Elucidate the connection from an information-theoretic
viewpoint.



In this talk, we will study:

* Emergent (approximate) global symmetries in two very
different physical systems: low-energy QCD and 2HDMIs.

* Connection between symmetry and entanglement
suppression in 2-to-2 scattering.

e Elucidate the connection from an information-theoretic
viewpoint.

In the case of 2HDM, a SM-like Higgs boson emerges as an
outcome of entanglement suppression!



Emergent symmetries in low-energy QCD:

* Schrodinger symmetry (non-relativistic conformal invariance)

* Spin-flavor symmetries




SU(2Ns) spin-flavor symmetries are symmetries of non-relativistic quark
model and date back to 1960s:

| o
u T u
su(4): 4= Zj: su(): 6 = Z
dl st

y

They can be derived from QCD in the large N_ (=3) limit!

Dashen, Monohar (1993); Dashen, Jenkins, Manohar (1994); Kaplan, Savage (1995)



In low-energy nuclear physics, there is a different SU(4) symmetry first
observed by Wigner:

JANUARY 15, 1937 PHYSICAL REVIEW VOLUME 51

On the Consequences of the Symmetry of the Nuclear Hamiltonian
on the Spectroscopy of Nuclei

E. WiGNER*
Princeton University, Princeton, New Jersey

(Received October 23, 1936)

The structure of the multiplets of nuclear terms is investigated, using as first approximation
a Hamiltonian which does not involve the ordinary spin and corresponds to equal forces
between all nuclear constituents, protons and neutrons. The multiplets turn out to have a

. p N
In this case the neutron and (p \
proton fill out a “supermultiplet”: N= - )
\n 1/

In the EFT language, Wigner’s SU(4) is accidental in that,

after imposing the SU(4) quark spin-flavor symmetry, the
only remaining operator has this symmetry.



So far these spin-flavor symmetries can be argued from the large N. limit.

There are emergent symmetries beyond the large N.:

* Unnaturally large scattering lengths in low-energy NN scattering in the
s-wave, which include 1S, and 3S; channels.



So far these spin-flavor symmetries can be argued from the large N. limit.

There are emergent symmetries beyond the large N.:

* Unnaturally large scattering lengths in low-energy NN scattering in the
s-wave, which include 15, and 35, channels.

P(r,0) = e** + f(6)

.
the s-wave solution () = Asin(kr + &)/

1
I= i

(€% —1) ~ 6, /k ~ —ay

47
o= — sin? §, = 4mwa?
L2

The scattering length




In NN scattering:
¢ 150 . ao - '237 fm

 35,:a,;=5.4fm > Deuteron, which is a shallow, near-threshold bound

state!

Average binding energy per nucleon (MeV)
SN

3 3
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In the limit the scattering length a diverges, the system has no scale and
exhibits Schrodinger symmetry, also known as the non-relativistic
conformal invariance. Mehen, Stewart, Wise (1999)

At the infinitesimal level,

boosts:
scale:

conformal:

So NN scattering has approximate Schrodinger symmetry.

WHO ORDERED THAT??!



* Nucleons are part of spin-1/2 octet baryons:

In the SU(3) flavor-symmetric limit :

20/v2+A/V6 >+

p

B = N ~X0/V24+A/V6  n

— =0

e

(1]

A low-energy effective field theory:

L8 = f2<BTBB’fB> f2<BTB B} B;) — 72
_ %(BTB ){(B!B;) — P<B§Bj><B}Bi>,

e

(BTBTB B;) —

1) =T

< :

y=Tr( )
7 (BTBTB B;)

Savage, Wise (1995)



Lattice QCD could compute the six Wilson coefficients under some special
circumstances:

: ErL‘ ’ ﬁ = INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076
NEEQED
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Baryon-Baryon Interactions and Spin-Flavor Symmetry

from Lattice Quantum Chromodynamics

Michael L. Wagman,'? Frank Winter,> Emmanuel Chang, Zohreh Davoudi,*
William Detmold,* Kostas Orginos,®*® Martin J. Savage,"? and Phiala E. Shanahan?
(NPLQCD Collaboration)
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Low-energy Scattering and Effective Interactions of Two Baryons at
my ~ 450 MeV from Lattice Quantum Chromodynamics

Marc Illa,! Silas R. Beane,2 Emmanuel Chang, Zohreh Davoudi,®*
William Detmold,® David J. Murphy,® Kostas Orginos,®7 Assumpta Parrefio,!
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In the limit where all coefficients but c; are vanishing:

The remaining operator can be re-written,

B = (nT7n~L7pT7pJ«7"') ) L= —Cx (BTB)z

which is invariant under an SU(16) spin-flavor symmetry
U=16x16

unitary matrix!

B—UB, Ut =1

There is no large N. explanation!



To summarize, in low-energy QCD there exist several emergent global
symmetries that are not symmetries of the fundamental QCD Lagrangian:

1. Approximate SU(4), SU(6) quark spin-flavor symmetries. 2 from large
N_!

2. Approximate Wigner’s SU(4) spin-flavor symmetry. = from large N.!

3. Approximate Schrodinger symmetry in NN scattering = ???

4. Approximate SU(16) symmetry as indicated by lattice simulations. 2
27?7

Our goal is to understand 3 and 4 from a quantum information-theoretic
perspective.



To discuss entanglement suppression, we need to quantify the amount
of entanglement = Entanglement Measure!

Many possibilities for Entanglement Measure. For bipartite systems:

von Neumann entropy: FE(p) = —Tr(p;1np;) = —Tr(py In ps)

Linear entropy: E(p) = —Tr(pi(p1 — 1)) = 1 — Trp?

p = Y)Y p1/2 = Tra/1(p)

The common property is that the entanglement measure vanishes for a
product state |¢¥) = |¢1) ® |¢2), but attains the maximum for maximally
entangled states (such as the Bell states.)



Entanglement is a property of the quantum state.

But we are more interested in the ability of a quantum-mechanical
operator (i.e. the S-matrix) to entangle.

However, there is a subtlety here, as the amount of entanglement
generated by an operator could depend on the initial state.



Entanglement is a property of the quantum state.

But we are more interested in the ability of a quantum-mechanical
operator (i.e. the S-matrix) to entangle.

However, there is a subtlety here, as the amount of entanglement
generated by an operator could depend on the initial state.

Consider the CNOT (controlled NOT) gate in the computational basis:

D 114 ) [}

CNOT =

S O o
S O = O
_o O O
O = O O

CNOT does not entangle any of the basis state. However,

DEAN
V2

ONOT, T + L)

®[1) NG



The “entanglement power” deals with this issue is by averaging over the

initial states:

EU) = EU |11) ®[12)),

For quibts, the average
is over the Bloch sphere.

The entanglement power is a measure of the ability of an operator U to

generate entanglement on product states.




The “entanglement power” deals with this issue is by averaging over the
initial states:

For quibts, the average

E(U) — E(U |¢1> X W2>)a is over the Bloch sphere.

The entanglement power is a measure of the ability of an operator U to
generate entanglement on product states.

A minimally entangling operator has E(U) =0, i.e.,

BEIBEIREIR

There is, however, a notion of equivalent classes in this definition:

U~U i U= (UU)U(Vi®W)



Modulo the equivalent class, there are two and only two minimally
entangling operators, which in the computational basis,

(10 0 0) (10 0 0)
0100 0010

1= , SWAP =
0 01O0 0100

\0 0 0 1) \0 00 1)

|Identity gate: do nothing.
SWAP gate: interchange the qubits.

SWAP ~ —1 as [SWAP]? =1
In terms of Pauli matrices,
SWAP = (1+0-0)/2, a-azZa“@a“.

Low, Mehen: 2104.10835



In the scattering process the S-matrix acts on the IN-state:

lout) = S |in)

For 2-to-2 scattering of spin-1/2 fermions, the S-matrix can be viewed as a
guantum logic gate acting on the spin-space:

|p1, s1,{a}) S |p/1a81,{al}>

P2, 52, {b}) [P, 52, {b'})

p1, 51, {a}) Uta S Uar P}, s1,{a’})

P2, 52, {b}) Usp Upar [Py, 52, {b'})




Consider the scattering of two qubits, Alice and Bob, in the low-energy:

* Only the s-wave channel dominates.

* The S-matrix can be decomposed into 1S, and 3S; channels = there
are two phase shifts: 6, and 6, , respectively.

 Rotational invariance and Unitarity then uniquely fix the S-matrix:

G — 2ib0 1=0w0) | 2i6, (3+0-0)

‘iih ‘ir
Spin-projector Spin-projector

into 1S, channel into 35, channel




In terms of quantum logic gates,

(e2i51 i e2i5o) 1 4 % (e2i51 . 62i50) SWAP,

— id —
v L
— id —

S =

DN | —

Low, Mehen: 2104.10835






We are able to obtain the associated emergent symmetries when each (Q,
S) sector is minimally entangled:

Flavor Subspace

Symmetry of Lagrangian

np

YTET SU(6) spin-flavor symmetry

y+=0 or conformal symmetry in 27 and 10 irrep channels
ny-

pXTt conjugate of SU(6) spin-flavor symmetry

=—=0

or conformal symmetry in 27 and 10 irrep channels

(pA, px°, nX7)
(nA, nX°, p¥7)
(B-A, X0, n=")
(SFA, £+5°, p=0)
(220, =-%°, =-x0)
(E-%+,Z0A, 20%0)

SO(8) flavor symmetry -
or conformal symmetry in 27, 85, 8 4, 10 and 10
irrep channels

(ZT=-, 2050, AX0, = p, =0, AA)

SU(16) symmetry
or SU(8) and conformal symmetry

TABLE V. Symmetries predicted by entanglement minimization in each flavor sector.

Liu, Low, Mehen: 2210.12085



Next we will consider a fully relativistic guantum system.

The great Success of the Higgs Boson!

Mass m = 125.09 &+ 0.24 GeV
Full width T < 1.7 GeV, CL = 95%

HO Signal Strengths in Different Channels

See Listings for the latest unpublished results.

Combined Final States = 1.10 & 0.11
g
= 1297073
vy = 1.16 + 0.18
bb=082+030 (S=1.1)
ptp~ < 7.0, CL = 95%
rtr— =1.12 £ 0.23
Zy < 9.5, CL =95%
ttHO Production = 2.3f8:g




Measurements at the LHC point to a Standard Model-like Higgs boson:

CMS 138 b (13 TeV)
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In most BSM models, a SM-like Higgs is by no means generic!

We need special choices of parameters!!



e Consider 2HDM, the prototypical model for BSM theories:
YV = m2, &1, + m2, 010, — [m%,®!®, + h.c]
FLI0(D1@1)2 + Io(D1B3)? + A3(®] 1) (DLB2) + Ay(D] D) (D1D1)

+{325(@1@,) + [Ao(@[®1) + Ar(@]@,)] @]@, + hc.} |

* There exists a “basis” where all parameters are real. The VEV’s are

m-5(0). wh(0)

v =0 4 vy = = (246 GeV)? tan 8 = —




* There are 8 real degrees of freedom:
3 eaten Goldstones and 5 physical scalars -- 2 charged Higgs, 1 CP-odd

neutral Higgs and 2 CP-even neutral Higgs.

* The mixing angle in the CP-even neutral sector is defined as

0 0
- o | — h(a) 0

* The 2x2 mass matrix can be diagonalized:

9 9 2
my 0 M3, My,

T
R (e) 2 2 2
0 my M1, My,



* A SM-like Higgs emerges when
SM
ghvv = ghVV Sp—a |Cﬂ—a| <1

* This is the “alignment limit”, which is more general than the “decoupling
limit”: 5 5
T 5 > )\U

Alignment Limit

lcs—al <1




* A SM-like Higgs emerges when
SM
ghvv = ghVV Sp—a |Cﬂ—a| <1

* This is the “alignment limit”, which is more general than the “decoupling
limit”: 5 5
T 5 > )\U

Alignment Limit

lcs—al <1

Experimental data point to an “approximate” alignment limit!



We studied the tree-level S-matrix, in the limit the gauge and Yukawa
couplings are turned off, of the 2-to-2 scattering of Higgs bosons:

o) —» oY

o of % 2B °f e o7
>< P, P..;
PS 1
B9 89 @Y oy i af 29
(a) (b) ) (@
S =1 +’I,T <(I)c(I)d|7/T|(I)a(I)b>

= ’1,(27'(')45(4) (pa + Pb — Pec — pc)Mab,cd



 Demanding that the S-matrix is in the equivalent class of Identity gate in
the flavor subspace:

S = [1]

lead to the following conditions on the tree amplitudes:

Mi1.11 + Mag 99 = Mio12 + Moy 21 ,
Mi1,20 = Mi221 = M1 12 = Mo 11 =0,
Mi112 = Ma122, Mi121 = Mi229,
Msg 91 = M1211, Maz12 = Mo1 11 .

Carena, Low, Wagner and Xiao: 2307.08112



 Demanding that the S-matrix is in the equivalent class of Identity gate in
the flavor subspace:

S = [1]

lead to the following conditions on the tree amplitudes:

Mi1.11 + Mag 99 = Mio12 + Moy 21 ,
Mi1,20 = Mi221 = M1 12 = Mo 11 =0,
Mi112 = Ma122, Mi121 = Mi229,
Msg 91 = M1211, Maz12 = Mo1 11 .

What scalar potential could give rise to such an entanglement-
suppressing S-matrix??

Carena, Low, Wagner and Xiao: 2307.08112



* The resulting scalar potential is

2
V=Y (cb{cbl + <I>;<I>2) + (cb{cbl + <I>;<I>2)

A
2
S s N/ o\2
- T
¢ = (Re !, Im ¢}, Re ¢y, Im ¢}, Re @3, Im ¢, Re ¢, Tm 65)

Carena, Low, Wagner and Xiao: 2307.08112

* This potential has a maximal SO(8) symmetry, which rotates the eight real
components in the two complex doublets.

* The SO(8) broken down to SO(7) by the Higgs VEV.
All non-SM Higgs are Goldstone bosons, which become massive after
turning on gauge and Yukawa couplings.

* More importantly, a SM-like Higgs boson follows from this scalar potential.

A SM-like Higgs is a consequence of entanglement suppression!
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Outlook

In pursuit of a new paradigm:

Can symmetry be the outgrowth of more

fundamental principles?

The answer appears to be a tantalizing YES!
With the benefit of hindsight:

Entanglement Predictive power Emergent
Suppression for the first time! Symmetry

Presence of
Order
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Outlook

Opens up a new venue to rethink quantum field theory. Some examples:

e Whatis the information-theoretic measure to quantify the amount of
symmetry,, eg SU(2) v.s. SU(3), in a physical system?

* What s the information-theoretic order-parameter for spontaneous
symmetry breaking?

* What s the information-theoretic criterion for other types of
symmetries, such as the conformal symmetry and gauge symmetry?

e The deuteron, as a near-threshold bound state, is often cited as the
prime example that Nature could be unnatural.

Can we understand (un)naturalness through the lens of quantum

information?

Understanding these issues might help us devise more efficient quantum
algorithms for simulating systems exhibiting a particular type of symmetry.




