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Some of the old problems are amongst the deepest. ..

EINSTEIN ATTACKS
QUANTUM THEORY

Scientist and Two Colleagues
Find It Is Not ‘Complete’
Even Though ‘Correct.’

SEE FULLER ONE POSSIBLE

[
Believe a Whole Description of
‘the Physical Reality’ Can Be
Provided Eventually.

New York Times, May 4 1935, reporting on Einstein-Podolsky-Rosen paper,
“Can Quantum-Mechanical Description of Physical Reality Be Considered Complete’
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A Higgs boson decay
o)
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~maximally entangled spin state
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Qutrits

) = L (1) =) = 10)[0) + [ ) [+))

@ This is a maximally entangled state of two qutrits
° )45 € (C*)?
@ Basis for each qutrit {0, 1,2}

[On the board: qutrits vs 3-state systems]
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Particles with weak decays are their own polarimeters
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The charged leptons are emitted in directions that strongly depend on the

spin of the parent W boson
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More precisely

The probability density function for a W boson to emit its charged
lepton in the f direction is:

Pl p) = 2 tr(p M), )

where p is the W boson spin density matrix and the projection operator is

Mia = |£a) (Eal

observe decay <= measure spin |
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Weak gauge bosons measure their own spin
SU(2) weak force is chiral: v#(1 —+°)
W boson

W+ — K—Ri_ + v

w- — gz + VR

Decay of a W boson is equivalent to a projective (von Neumann)
quantum measurement of its spin along the axis of the emitted lepton

Z boson
Z bosons also have spin-sensitive decays

Left, right couplings determined by electroweak mixing
Equivalent to a non-projective quantum measurement
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¢T¢~ azimuthal correlations observed in H — WTW~

T 3

ATLAS Preliminary 4 pata  \ Uncertainty
15 =13 TeV, 139 fb* Wy, MH, 3
H — WW* — evuv M other H  tTwt
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@ Higgs signal concentrated at small Agyy

@ Used e.g. in discovery searches
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Observables and density matries
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Also true for e.g. W*, Z0 ¢ 1
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Transforming between the spaces
The Wigner-Weyl formalism for spin

Operator — function

o2 (R) = (Al A|A)
Wigner @ symbols

Function — operator

2+1 N A
it /dsm ) 5 () (A,

Wigner P symbols
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Parameterise p

Symmetrically for qutrits in terms of the Gell-Mann matrices \;
Single vector boson

8
p=13hk+ Zai)\ia
i=1

a; : 8 real parameters (32 — 1)

@ Generalised Gell-Mann matrices )\,(-d) exist for any spin

@ For spin-half (d = 2) they are the Pauli matrices and we get the
Bloch sphere

@ For d = 3 they are the eight generators of SU(3)

Other parameterisations, e.g. Cartesian Tensors are good alternatives
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Parameterise p — bipartite system

Symmetrically for qutrits in terms of the Gell-Mann matrices \;

Single vector boson
8

p=3hk+> aiX,
i—1

a; : 8 real parameters (32 — 1)

Two vector bosons

8 8 8
p=5h®k+> aX®th+ ) bih®N+ D cAi®),
i—1 =1 ij=1

848-+64 = 80 real parameters (9% — 1)
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Angular distributions for each parameter

g

Q+
R

Wigner Q functions for the eight Gell-Mann

matrices

Dac
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Extracting the parameters experimentally

Parameters of p are the experimentally-measurable classical averages of
the Wigner P functions

5= 5 (of ()

av

5 (o700)

av

Gij = % <¢f(ﬁ1)¢f(ﬁ2)>

av
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Quantum State Tomography example
Higgs boson decays

pp— H— ww? vy Singlet state
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. ol [ | =
02 ° 0.2
7 .15 £ 0.15
: =
6 0.1 (O 0.1
m
s 0.05 5 + 0.05
I PR By
2 -0.1 2 -0.1
-0.15 -0.15
1 1
02 -0.2
- - 0.25 -0.25

1 2 3 4 5 6 7 8 : 1 2 3 4 5 6 7 8

W* GM index A GM index

Density matrix parameters from simulated Higgs boson decays to vector
bosons (Madgraph, no background)
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\begin{interlude}



discovernorthernireland.com
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discovernorthernireland.com

Belfast City Council ha name a street after one of Northern
Ireland's most eminent scientists.

Belfast-born, John Stewart Bell who died in 1990, is regarded as one of the
20th Century's greatest physicists.

The council received an application to name a street in Titanic Quarter after
Mr Bell.

However, the council rejected the proposal as it has "traditionally avoided
using the names of people” when deciding on street names.

Only two streets in the city have been named after individuals since the 1960s:
Prince Edward Park in 1962 and Prince Andrew Park in 1987.

Titanic Quarter Ltd had applied to name a currently unnamed street beside
Belfast Metropolitan College as John Bell Crescent.

Bell was born in Belfast in 1928 to a family from a poor background.

He was the only one of his siblings to stay at school over the age of 14, and his
family could not afford to send him to one of the city's grammar schools.

Instead he attended Belfast Technical High School, now Belfast Metropolitan

College, and then entered Queen's University.
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Testing a Bell Inequality
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The CGLMP Qutrit inequality

Collins Gisin Linden Massar Popescu (2002)

The optimal Bell inequality for pairs of qutrits
CGLMP function

I3 = P(Al = Bl) aF P(Bl =A+ 1)
+ P(Ay = By) + P(B = A1)
—P(Ai =B —1)— P(B1 = A)
CP(Ar =By —1)— P(By = A — 1).

v

P(A; = Bj + k) is the probability that A; and B; differ by k mod 3
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CGLMP limits?

In a local realist theory
I3 <2

In QM
M <14 /11/3 ~ 2.9149

In QM for a maximally entangled state

I:?M,singlet < 4/(6V3—9) ~ 2.8729
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Testing the CGLMP inequality

Knowing elements of p calculate J

Is=tr(p BéyGLMP)

where the CGLMP operator is
BiGime = _%(SX(&SX+5y®5y)+)\4®)\4+/\5®A5

where
Sy = \/%()\1 + ) and S, = %()\2 + A7)

27/38



Coordinates

W' 3
Fc3)
— —>—
A
_ P

Angular distributions are measured in the rest-frame
of the parent gauge boson
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Measuring Bell expectation values directly

CGLMP (qutrit) inequality from data for WW

Ty = tr(pBarap) = S5 (66 + 6560,

+25 (&7 = (6507 (62 = (§))),,

+100(8676 8y ),y

Is this Bell inequality violated in data?

T3 < 27
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H — WTW~ simulated results

In idealised, numerical simulation of H — W+ W, with finite width
effects and relativistic effects:

2.6

Q

13
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Doing for real & doing better?
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Bell operator optimisation

@ Optimal Bell operator not known in the general case.

@ Use freedom in measurement observables to perform independent
unitary transformations on each side of the experiment

B— (U V) -B-(UsV) J

@ U, V independent 3 x 3 unitary matrices, optimised for each
kinematic process

Fabbrichesi et al. 2302.00683
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https://arxiv.org/abs/2302.00683
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Searching Beyond the Standard Model?

ACrp/CPY AP/PM
—30% 0% 30% —30% 0% 30%

-0.1 00 01 02 =01 00 01 02
cw [TeV—? ew [TeV—?

concurrence purity

@ Production of W+/Z pairs at pp, ete™

@ Quantum spin observables complementary probes of Wilson
coefficients/EFT

o Offer increased sensitivity to certain operators

Aoude, Madge, Maltoni, Mantani Probing new physics through
entanglement in diboson production 2307.09675
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https://arxiv.org/abs/2307.09675

Semi-leptonic h - WW* — (~vcs

Semi-leptonic channel allows neutrino weighting reconstruction
Charm tagging allows identification of spin from angular distribution of
hadronic W

Sampled v n

| or Lumi [fb~1] (B&Lmp)  (idealised) Signif. (idealised)

e 139 245 + 0.25(0.18) 1.8 (2.5)
o 300 245 + 0.17(0.12) 2.65 (3.75)
' 3000 245 + 0.05(0.04) 9.0 (11.25)

0

eteviatiintinitintioa i,
3510715 20 25 30 35 40 45 50
Sampled W mass

ep

Fabbri, Howarth, Maurin Isolating semi-leptonic H — WW?* decays for
Bell inequality tests 2307.13783
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https://arxiv.org/abs/2307.13783

Lots of other interesting work in this area, including:

o Aguilar-Saavedra, Bernal, Casas, Moreno Testing entanglement and
Bell inequalities in H — ZZ 2209.13441

o Aguilar-Saavedra, Laboratory-frame tests of quantum entanglement in
H — WW, 2209.14033

@ Fabbrichesi, Floreanini, Gabrielli, Marzola Stringent bounds on HWW
and HZZ anomalous couplings with quantum tomography at the LHC
2304.02403

o Morales Exploring Bell inequalities and quantum entanglement in
vector boson scattering 2306.17247

e Bi, Cao, Cheng, Zhang New observables for testing Bell inequalities in
W boson pair production 2307.14895

@ Bernal, Quantum tomography of helicity states for general scattering
processes 2310.10838
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Summary

Weak decays are wonderful quantum probes

Quantum spin self measurement via chiral weak decays

Spin density matrix can be reconstructed from angular distributions
(‘quantum state tomography')

Expect entanglement and even Bell inequality violation

Expect in Higgs decays but also Drell-Yan processes

Improved bounds on EFTs and new anomalous HWW and HZZ
couplings using quantum information toolbox
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In case you're curious

The CGLMP operator is!

Xy —
BCGLMP -
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lafter a minor tweak — see 2106.01377
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Getting the directions right

/]ZJ/ /’Z
s s
1 @/ e
‘s ,(\/}5

/

vy Ly

e /1 is emitted preferentially along spin direction (of W)
¢~ is emitted preferentially against spin direction (of /™)

e For H— W+W~ the W% spins are in different directions

@ So the two leptons prefer to go in the same direction as each other
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Spin in the H — W™ W~ decay

The Higgs boson is a scalar, while W¥ bosons are massive vector bosons,
each with three possible spin states (qutrits)

e H— WTW~ decays produce pairs of W bosons with zero total
angular momentum

@ In the narrow-width and non-relativistic approximations:

) = L ([4+) =) = [0) [0) + =) [+))

This is a maximally entangled state of two qutrits
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To get back to the density matrix

P+
;

Da
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Operator Coefficient Definition 95 % CL bounds
two-fermion operators
O o -(wf),‘ NC [-0.17,0.14]
Oy Cpd (cp*f) #) (d- wd) [~0.07,0.09]
o4 9 w'Dp ) (a7 q) (~0.06,0.22]
O&jq) t'(vdq) 1(4/;1 Du T[(p) q*y"‘r q) [~0.21,0.05]
Ope Cpe i(pt Bu%ﬁ) (eyte) [~0.21,0.26]
ol ) i(o' D) (Iv11) (—0.11,0.13]
o oy it Durr) (ye'l) [—0.21,0.05]
bosonic operators
Ow ew erax WL WHeewks,  [-0.18,0.22]
Quow Cow ((p ©— 7) Wiw, [-0.15,0.30]
O Con (w*eo - %) By, B [=0.11,0.11]
Ouwp CeWB (ot i) BWi, [~0.17,0.27]
Opp CpD (' Do) (ot Dyutp) [-0.52,0.43]
four-fermion operator
Ou cn (Iypd) (Iy1) [=0.16,0.02]

Aoude, Madge, Maltoni, Mantani Probing new physics through entanglement in

diboson production 2307.09675
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