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HEP challenges for LHC and future colliders

Monte Carlo simulation and data analysis are intensive and requires lots of computing power.
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Parton-level Monte Carlo generators

Theoretical predictions in hep-ph are based on:

∑
a,b

∫ 1

xmin

dx1dx2 |Mab({pn})|2 J n
m({pn}) fa(x1, Q2)fb(x2, Q

2),

a multi-dimensional integral where:

• |M| is the matrix element,

• fi(x,Q
2) are Parton Distribution

Functions (PDFs),

• {pn} phase space for n particles,

• J n
m jet function for n particles to m.

⇒ Procedure driven by the integration algorithm.
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Monte Carlo generator pipeline
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R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:

4



R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:

4



Quantum Computing topics in HEP

The HEP community is testing quantum computing algorithms in topics related to:

hep-exp

Data analysis

hep-ph

Theoretical modelling

quant-ph

Software / Middleware
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Quantum computing for HEP experiments � arXiv:2307.03236

QC4HEP WG

Goal:

Replace classical ML data analysis methods

with variational quantum computing (QML)

and observe advantage with quantum

computing methods.

How?

• Developing variational models using

classical quantum simulation.

• Adapting problems and deploying strategies

on NISQ hardware.
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Quantum computing for Theoretical Modelling in HEP � arXiv:2307.03236

Goal:

Design new algorithms for QFT and Hadronic

physics observables, identify advantage from

quantum computing methods.

How?

• Designing hybrid quantum-classical

methods using classical quantum

simulation.

• Deploying classical quantum simulation

techniques on HPC infrastructure.

QC4HEP WG

7

https://arxiv.org/abs/2307.03236


Quantum machine learning



From classical Machine Learning to quantum

Classical Machine Learning solves statistical problems such as data generation, classification,

regression, forecasting, etc.

û Aims to know some hidden law between two variables: y = f(x);

| Defines a parametric model with returns yest = fest(x;θ);

� Defines an optimizer, which task is to compute argminθ
[
J(ymeas,yest)

]
.
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Parametric Quantum Circuits

º Classical bits are replaced by qubits: |q⟩ = α0 |0⟩+ α1 |1⟩;

2 The qubit state is modified by applying gates (unitary operators).

Rotational gates Rj(θ) = e−iθσ̂j are used to build parametric circuits C(θ);
� Information is accessed calculating expected values E[Ô ] of target observables Ô on the

state obtained executing C.
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Quantum Machine Learning

10



Quantum Machine Learning

10



Quantum Machine Learning

10



From ML to QML
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QML reuploading model � arXiv:1907.02085

We define an uploading channel U(x;θ), and we repeat the uploading N times.

It has been proved this approach is equivalent to approximate a function with an N -term

Fourier Series.
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Example 1: Parton Distribution Functions

  Parton distribution functions
(Machine Learning)
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Determination of parton distribution functions � arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1 Define a quantum circuit: U(θ, x)|0⟩⊗n = |ψ(θ, x)⟩

2 Uw(α, x) = Rz(α3 log(x) + α4)Ry(α1 log(x) + α2)

3 Using zi(θ, x) = ⟨ψ(θ, x)|Zi|ψ(θ, x)⟩:

qPDFi(x,Q0, θ) =
1− zi(θ, x)

1 + zi(θ, x)
.

U l(θl, γl, x)

U(θl,0, x) • Rz(γl,7)

U(θl,1, x) Rz(γl,0) •

U(θl,2, x) • Rz(γl,4)

U(θl,3, x) Rz(γl,1) •

= U(θl,4, x) • Rz(γl,5)

U(θl,5, x) Rz(γl,2) •

U(θl,6, x) • Rz(γl,6)

U(θl,7, x) Rz(γl,3) •

1Results from classical quantum simulation and hardware execution (IBM) are promising:
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Example 2: Event generation

  Event generation
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Monte Carlo event generation using style-QGAN � arXiv:2110.06933

Train with a small dataset, use unsupervised machine learning models to learn the

underlying distribution and generate for free a much larger dataset.
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Style-based quantum generator � arXiv:2110.06933

Quantum generator: a series of quantum layers with rotation and entanglement gates
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Simulation with LHC generated data � arXiv:2110.06933

Testing the style-qGAN with real data: proton-proton collision pp→ tt̄

Training and reference samples for Mandelstam variables (s, t) and rapidity y generated with

MadGraph5 aMC@NLO.

Simulation results: 3 qubits, 2 layers, 100 bins
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Testing different architectures � arXiv:2110.06933
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Example 3: Monte Carlo Integration / Sampling

  Monte Carlo Integration
20



Density estimation with adiabatic QML � arXiv:2303.11346

û Determining Probability Density Functions (PDF) by

fitting the corresponding Cumulative Density Function

(CDF) using an adiabatic QML ansatz.

� Algorithm’s summary:

1 Optimize the parameters θ using adiabatic evolution:

Had(τ ;θ) = [1− s(τ ;θ)]X̂ + s(τ ;θ)Ẑ in order to

approximate some target CDF values;

2 Derivate from Had a circuit C(τ ;θ) whose action on

the ground state of X̂ returns |ψ(τ)⟩;

3 The circuit at step 2 can be used to calculate the

CDF;

4 Compute the PDF by derivating C with respect to τ

using the Parameter Shift Rule.
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Multi-variable integration with classical INN � arXiv:2211.02834

Multi-variable integrals using Neural Networks:

Evaluate loss 
functionData

Optimizer updates 
parameters

Inject information into the NN

Target integral

Fit the integrand with the 
derivative of the NN

␣ both NN and dNN are models of the integral and integrand respectively;

␣ once trained, the NN can be called with any combination of data and parameters. Monte

Carlo Integration (MCI), instead, has to be recomputed every time;

␣ in the INN is the integrand to be approximated, instead of the integral (as in MCI), swaps

variance for approximation error.
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Quantum inspiration - Parameter Shift Rule � arXiv:1811.11184

Considering the unitary U(x) = e−ixU affected by one parameter x, if the hermitian generator

U has at most two eigenvalues ±r, an exact estimator of ∂xG is:

∂xG = r
[
G(x+)−G(x−)

]
.

Where x± = x± s and, considering rotational gates, we have s = π/2 and r = 1/2.
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Translating to quantum computing � arXiv:2308.05657

At this point, we know that:

1. variables can be injected into a quantum circuit as rotational angles;

2. the same circuit architecture C can be used to compute both the estimator and its

derivatives.

Evaluate loss 
functionData

Optimizer updates 
parameters

Evaluate derivatives

Inject information into the Circuit

Target integral

Fit the integrand with the 
derivative of the circuit

If independent variables, dG(x)
dx is obtained by summing all PSR contributions.
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The u-quark PDF � arXiv:2308.05657

Parameter Value

Nx,train 500

Q 1.67

Nlayers 4

Nparams 27

|I − Ĩ| 1.2 · 10−5

Nshots Exact simulation

Optimizer L-BFGS

Parameter Value

(Nx, NQ)train (120, 100)

NQ,est 20

Nruns 100

Nlayers 4

Nparams 36

|I − Ĩ| 7.4 · 10−5

Nshots 106

Optimizer L-BFGS
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Toy model on a superconducting quantum chip � arXiv:2308.05657

We finally tackle a dummy target using a real superconducting qubit:

I =

∫ 1

0

1

2
sin(2x) dx.
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x

0.1
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Fit of 12sin(2x) with PSR on hardware

Approximation
Target function

Parameter Value

Nx,train 50

Nx,est 20

Nruns 10

Nlayers 1

Nparams 6

|I − Ĩ| 2.8 · 10−2

Nshots 2 · 103

Optimizer L-BFGS
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Middleware challenges



Software challenges

How to design quantum algorithms and deploy on quantum hardware?

• Cloud-based quantum hardware:

• Use tools provided by providers.

• Self-hosted quantum hardware:

• Operate self-hosted quantum hardware.

• Accommodate custom lab setups.

• Bypass restrictions to execute an experiment.

Example

Let’s consider the PDF determination project, it

requires two stages: prototyping and deployment.
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Stage 1: Prototyping models / algorithms

Prototyping

1 High-level quantum circuit

programming language

2 Fast classical quantum simulation

for model prototyping
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Stage 2: Deployment on quantum hardware

Deployment

1 Gates to microwave pulses sequence

compilation (SC qubits)

2 Hardware compatible optimization

algorithms

3 Error-mitigation algorithms
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Introducing Qibo � arXiv:2009.01845

Qibo is an open-source hybrid operating system for self-hosted quantum computers.

Qibo Language API

Quantum annealing

Quantum circuits

Implementation

Simulation

Qibojit
Efficient device-agnostic 
simulation with custom 
operators

numpy Lightweight, fits
well with any CPU

tensorflow
Simulation of hybrid QML 
with automatic 
differentiation

Quantum 
hardware

Qibocal 

Characterization

Calibration

Validation

Qibolab

Control drivers

Convert gates to pulses

Transpiler

= backends

= tools

RFSoCs

Application 
packages

Qibosoq

Qibochem

https://qibo.science 30
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Qibo Contributors (November 2023)
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Laboratory Country Technology Qubits

INFN Italy Superconducting 1

UNIMIB Italy Superconducting 1

TII UAE Superconducting 1, 2, 5, 25

Qilimanjaro Spain Superconducting 1 and 2

CQT Singapore SC and trapped ion 10
32



Classical quantum simulation benchmarks � arXiv:2203.08826

State vector simulation solves:

ψ′(σ1, . . . , σn) =
∑
τ ′

G(τ , τ ′)ψ(σ1, . . . , τ
′, . . . , σn)

The number of operations scales exponentially with the number of qubits.

Qibo uses just-in-time technology and hardware acceleration:

Qibojit

CPU

Custom operations 

using Numba

NumPy tensors

GPU(s)

CuPy tensors 

Custom operations using

CuPy JIT

NVIDIA cuQuantum

Specialized operators 

for 1 and 2 qubits gates 

exploiting sparsity.

In-place updates.
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Classical quantum simulation benchmarks � arXiv:2203.08826
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qibojit, qft, double precision
NVIDIA RTX A6000 (cupy)
NVIDIA DGX V100 (cupy)
NVIDIA GTX 1650 (cupy)
AMD Radeon VII (cupy)
NVIDIA RTX A6000 (cupy-multigpu)
AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)

Major features:

• Supports CPU, GPU and multi-GPU.

• NVIDIA and AMD GPUs support.

• Reduced memory footprint.

qft variational supremacy qv bv0

100

200

To
tal
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ry

 ru
n 

tim
e (

se
c)

Multi-GPU - 32 qubits

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks
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Qibo vs other libraries � arXiv:2203.08826

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks

qft variational supremacy qv bv

101

102

To
tal

 d
ry

 ti
m

e (
se

c)

30 qubits - single precision
Qibo
Qibo GPU
Qiskit
Qiskit GPU
HybridQ
HybridQ GPU
QCGPU

qft variational supremacy qv bv
101

102

To
tal
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ry

 ti
m

e (
se

c)

30 qubits - double precision
Qibo
Qibo GPU
Qiskit
Qiskit GPU
HybridQ
HybridQ GPU
Qulacs
Qulacs GPU
ProjectQ
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The Tensor Network approach

Advantages

• Efficient on large systems > 40 qubits.

• Potential tool to solve gauge theories

(quantum annealing / Hamiltonian

computing).

Disadvantages

• How many qubits do we really need?

• How to validate results?

• Limited to few observables?

• Software is HPC-infrastructure dependent.

On-going: QiboTN module for Tensor Networks simulation on GPUs.
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How to control qubits? � arXiv:2308.06313
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How to control qubits? Qibolab � arXiv:2308.06313

Qibolab

Pulses

Transpiler

Drivers

Qblox

QM

Zurich

RFSoC

Qibosoq

Major features:

• Pulse and pulse sequence API.

• Drivers for lab instruments, including AWGs and FPGAs.

• Hardware sweeps for faster execution of calibration routines.

• Transpilers from arbitrary circuits to pulses.

Platform

Qubit
NativeGate

Characterization

QubitPair
NativeGate

Characterization

Instrument Port

Channel
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Qubit characterization and calibration � arXiv:2308.06313

 Hardware 
Characterization

Single Qubit Routines

Gate Set Characterization
Standard Randomized 

Benchmarking

Low Level Characterization

Resonator Characterization

Resonator Spectroscopy

Resonator Punchout

Resonator Flux Dependence

Qubit Characterization
Qubit Spectroscopy

Qubit Flux Dependence

Rabi Oscillations

Ramsey
Standard

Detuned

T1 & T2

Single-shot classification

AllXY & Drag Pulse Tuning

Flipping

Dispersive Shift

Readout Characterization
Fidelity

QND-ness

Readout Frequency Optimization

Fast Reset Test

Time of Flight Readout

Two Qubits 
Interactions

Chevron

Tune Landscape

Major features:

Calibration of single and multi-qubit

platforms are possible using Qibo.
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Benchmarking instruments performance � arXiv:2308.06313

We compare the ideal pulse sequence execution performance to instruments execution duration.

100 101 102

Experiment duration [s]

Resonator spectroscopy
(20 points)

Resonator spectroscopy
(100 points)

Qubit spectroscopy
(300 points)

Rabi amplitude
(75 points)

Ramsey detuned
(30 points)

T1 experiment
(40 points)

T2 experiment
(32 points)

Single shot classification

Standard RB

Calibration routines benchmarks
Ideal
ZI
RFSoC
QM
QBlox

1 10 100
Experiment duration
(ratio with ideal time)

Zurich Instruments (ZI), Quantum Machines (QM), QBlox and RFSoC FPGA (Qibosoq+QICK). 40
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Benchmarking instruments performance � arXiv:2308.06313
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Experiment duration [s]

Resonator spectroscopy
(100 points)

Qubit spectroscopy
(300 points)

Rabi amplitude
(75 points)

Ramsey detuned
(30 points)

T1 experiment
(40 points)

T2 experiment
(32 points)

Single shot classification

Standard RB

Ideal
Quantum Machines
RFSoC4x2
ZCU216
ZCU111

1 10 100
Experiment duration
(ratio with ideal time)

FPGA RFSoC vs commercial products.
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Full-stack deployment: RB and Bell inequality � arXiv:2308.06313

Examples of results executed on quantum hardware (single-qubit) after calibration with Qibo:
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QPU status monitoring tool

Qibo also provides monitoring tools for QPU control and alarms for calibration through

Grafana and other custom tools.
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Remote connection

Qibo provides remote access plugins for:

• Advanced users: using slurm plugin.

• Basic users: through a web-interface and

HTTP rest API.
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Remote connection
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A full-stack case study



Full-stack procedure: PDF determination � arXiv:2308.06313

1. High-Level API (Qibo)

• Define model prototype.

• Implement training loop.

• Perform training using simulation.

2. Calibration (Qibocal)

• Calibrate qubit.

• Generate platform configuration.

3. Execution (Qibolab)

• Allocate calibrated platform.

• Compile and transpile circuit.

• Execute model and return results.
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Training time < 2h
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Real-time error mitigation in QML trainings

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

Data

Cost 
function

Learn noise model 
Noise map

when loses reliability

Gradient 
descent step

Predictions

Gradients
Until convergence

• consider a Variational Quantum Algorithm trained with gradient descent;

• learn the noise map ℓ every time is needed over the procedure;

• use ℓ to clean up both predictions and gradients. 47



Learning the noise model � arXiv:2112.06255

We use the Importance Clifford Sampling (ICS) procedure to learn the noise map ℓ.

Target

Learn noise map

Training set 

Noise parameters 

1. sample a training set of Clifford circuits S on top of a target C0;

2. process them so that their expectation values on Pauli strings is +1 or −1;

3. extract mitigation parameter λeff comparing ⟨Ô⟩noisy and ⟨Ô⟩;
4. build ℓ ≡ ℓ(·|λeff) following the Phenomenological-Error-Model Inspired (PEMI) protocol. 48
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One dimensional HEP target: the u-quark PDF

Parameter Ntrain Nparams Nshots MSErtqem MSEnomit Noise

Value 30 16 104 0.008 0.018 local Pauli
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1. thanks to the RTQEM procedure, we reach a good minimum of the cost function;

2. the QEM is not effective is applied to a corrupted scenario (orange curve).
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Multidimensional target

We tackle a multi-dimensional target computing predictions as expected value of a Z⊗Ndim

after executing an Ndim circuit.

Job ID Ntrain Nparams Nshots MSErtqem MSEnomit Noise

Ndim = 4 30 48 104 0.003 0.043 local Pauli

Ndim = 6 30 72 104 0.002 0.083 local Pauli

Ndim = 8 30 96 104 0.004 0.118 local Pauli
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Multidimensional target
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RTQEM on a superconducting qubit

Parameter Ntrain Nparams Nshots MSErtqem
best MSEunmit

best Noise

Value 15 16 500 0.0042 0.0055 real noise
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RTQEM allows exceeding the natural bound imposed by noise.
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Can RTQEM generalise?

We perform a longer training on two different devices, same initial conditions and 100 epochs.

& iqm5q by IQM controlled using Zurich Instruments;

& qw5q by QuantWare controlled using Qblox.

All the hardware results are obtained deploying θbest on iqm5q.
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Outlook



Outlook

We have observed a great set of interesting proof-of-concept applications in HEP.

For the future:

• Improve results quality, moving from prototype to production.

• Mitigate hardware noise by implementing real-time error mitigation techniques.

• Provide software tools for further enhancement of quantum technologies.

• Enhance calibration, characterization and validation techniques.

• Codevelop quantum hardware and instruments for application specific tasks.

53


	Quantum machine learning
	Middleware challenges
	A full-stack case study
	Outlook

