Quantum simulation and hardware control for HEP

Challenges and achievements in the NISQ era

Stefano Carrazza, Università degli Studi di Milano November 8th, 2023

Quantum observables for collider physics, GGI, Firenze

HEP challenges for LHC and future colliders

Monte Carlo simulation and data analysis are **intensive** and requires lots of **computing power**.

Parton-level Monte Carlo generators

Theoretical predictions in hep-ph are based on:

 $\sum_{a,b} \int_{x_{\min}}^{1} dx_1 dx_2 |\mathcal{M}_{ab}(\{p_n\})|^2 \mathcal{J}_m^n(\{p_n\}) f_a(x_1, Q^2) f_b(x_2, Q^2),$

a multi-dimensional integral where:

- $|\mathcal{M}|$ is the matrix element,
- $f_i(x, Q^2)$ are Parton Distribution Functions (PDFs),
- $\{p_n\}$ phase space for n particles,
- \mathcal{J}_m^n jet function for n particles to m.

 \Rightarrow Procedure driven by the integration algorithm.

Monte Carlo generator pipeline

R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices \Rightarrow application specific

R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices \Rightarrow application specific

Examples of initiatives and institutions involved:

Quantum Computing topics in HEP

The HEP community is testing quantum computing algorithms in topics related to:

hep-exp	hep-ph	quant-ph
Data analysis	Theoretical modelling	Software / Middleware

Quantum computing for HEP experiments

Goal:

Replace **classical ML data analysis** methods with variational quantum computing (QML) and observe **advantage** with quantum computing methods.

How?

- Developing **variational models** using classical quantum simulation.
- Adapting problems and deploying strategies on **NISQ hardware**.

Goal:

Design **new algorithms** for QFT and Hadronic physics observables, identify **advantage** from quantum computing methods.

How?

- Designing **hybrid quantum-classical** methods using classical quantum simulation.
- Deploying **classical quantum simulation** techniques on HPC infrastructure.

QC4HEP WG

Quantum machine learning

From classical Machine Learning to quantum

Classical **Machine Learning** solves statistical problems such as data generation, classification, regression, forecasting, etc.

♦ Aims to know some hidden law between two variables: y = f(x); □ Defines a parametric model with returns $y_{est} = f_{est}(x; \theta)$; ■ Defines an optimizer, which task is to compute $\operatorname{argmin}_{\theta} [J(y_{meas}, y_{est})]$.

Parametric Quantum Circuits

 \checkmark Classical bits are replaced by **qubits**: $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$;

Parametric Quantum Circuits

 \checkmark Classical bits are replaced by **qubits**: $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$;

The qubit state is modified by applying **gates** (unitary operators). Rotational gates $R_i(\theta) = e^{-i\theta\hat{\sigma}_j}$ are used to build parametric circuits $C(\theta)$;

Parametric Quantum Circuits

- \checkmark Classical bits are replaced by **qubits**: $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$;
- The qubit state is modified by applying **gates** (unitary operators). Rotational gates $R_j(\theta) = e^{-i\theta\hat{\sigma}_j}$ are used to build parametric circuits $C(\theta)$;
- Information is accessed calculating expected values $E[\hat{O}]$ of target observables \hat{O} on the state obtained executing C.

Quantum Machine Learning

Quantum Machine Learning

We define an uploading channel $U(x; \theta)$, and we repeat the uploading N times.

It has been proved this approach is equivalent to approximate a function with an $N\mbox{-term}$ Fourier Series.

Example 1: Parton Distribution Functions

Parton distribution functions (Machine Learning)

Determination of parton distribution functions

┛ arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

 \blacksquare Define a quantum circuit: $\mathcal{U}(\theta,x)|0\rangle^{\otimes n}=|\psi(\theta,x)\rangle$

$$2 U_w(\alpha, x) = R_z(\alpha_3 \log(x) + \alpha_4) R_y(\alpha_1 \log(x) + \alpha_2)$$

3 Using $z_i(\theta, x) = \langle \psi(\theta, x) | Z_i | \psi(\theta, x) \rangle$:

$$qPDF_i(x, Q_0, \theta) = \frac{1 - z_i(\theta, x)}{1 + z_i(\theta, x)}.$$

Results from classical quantum simulation and hardware execution (IBM) are promising:

Example 2: Event generation

Event generation

arXiv:2110.06933

Train with a **small dataset**, use **unsupervised machine learning models** to learn the underlying distribution and generate for free a much larger dataset.

Classical setup:

Hybrid quantum-classical setup:

Style-based quantum generator

┛ arXiv:2110.06933

Quantum generator: a series of quantum layers with rotation and entanglement gates

Style-based approach

the noise is inserted in every gate and not only in the initial quantum state

•
$$R_{y,z}^{l,m}(\boldsymbol{\phi}_{g}, \boldsymbol{z}) = R_{y,z}\left(\phi_{g}^{(l)} z^{(m)} + \phi_{g}^{(l-1)}\right)$$

Reminiscent of the reuploading scheme A. Pérez-Salinas, et al., *Quantum* **4**, 226 (2020)

Simulation with LHC generated data

18

Testing the style-qGAN with real data: proton-proton collision $pp \rightarrow t\bar{t}$

Training and reference samples for **Mandelstam variables** (s,t) and rapidity y generated with MadGraph5_aMC@NLO.

Simulation results: 3 qubits, 2 layers, 100 bins

Testing different architectures

arXiv:2110.06933

• Access constraints to *ionQ*: test limited to 1000 samples only

Very similar results: implementation largely hardware-independent

Example 3: Monte Carlo Integration / Sampling

Monte Carlo Integration

Determining Probability Density Functions (PDF) by fitting the corresponding Cumulative Density Function (CDF) using an adiabatic QML ansatz.

- Algorithm's summary:
 - Optimize the parameters θ using adiabatic evolution: $H_{\rm ad}(\tau; \theta) = [1 - s(\tau; \theta)]\hat{X} + s(\tau; \theta)\hat{Z}$ in order to approximate some target CDF values;
 - **②** Derivate from $H_{\rm ad}$ a circuit $C(\tau; \theta)$ whose action on the ground state of \hat{X} returns $|\psi(\tau)\rangle$;
 - The circuit at step 2 can be used to calculate the CDF;
 - Ocompute the PDF by derivating C with respect to using the Parameter Shift Rule.

┛ arXiv:2303.11346

Multi-variable integration with classical INN

┛ arXiv:2211.02834

Multi-variable integrals using Neural Networks:

- both NN and dNN are models of the integral and integrand respectively;
- once trained, the NN can be called with any combination of data and parameters. Monte Carlo Integration (MCI), instead, has to be recomputed every time;
- in the INN is the integrand to be approximated, instead of the integral (as in MCI), swaps **variance** for approximation error.

Quantum inspiration - Parameter Shift Rule

┛ arXiv:1811.11184

Considering the unitary $U(x) = e^{-ixU}$ affected by one parameter x, if the hermitian generator U has at most two eigenvalues $\pm r$, an exact estimator of $\partial_x G$ is:

$$\partial_x G = r \big[G(x^+) - G(x^-) \big].$$

Where $x^{\pm} = x \pm s$ and, considering rotational gates, we have $s = \pi/2$ and r = 1/2.

At this point, we know that:

- 1. variables can be injected into a quantum circuit as rotational angles;
- 2. the same circuit architecture C can be used to compute **both** the estimator and its derivatives.

If independent variables, $\frac{\mathrm{d}G(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}}$ is obtained by summing all PSR contributions.

Parameter	Value
$N_{x,\text{train}}$	500
Q	1.67
N_{layers}	4
N_{params}	27
$ I - \tilde{I} $	$1.2 \cdot 10^{-5}$
$N_{\rm shots}$	Exact simulation
Optimizer	L-BFGS

	arXiv:2308.05657
--	------------------

Parameter	Value	
$(N_x, N_Q)_{\text{train}}$	(120, 100)	
$N_{Q, est}$	20	
$N_{ m runs}$	100	
$N_{ m layers}$	4	
$N_{ m params}$	36	
$ I - \tilde{I} $	$7.4 \cdot 10^{-5}$	
$N_{ m shots}$	10^{6}	
Optimizer	L-BFGS	

Toy model on a superconducting quantum chip

We finally tackle a dummy target using a real superconducting qubit:

$$I = \int_0^1 \frac{1}{2} \sin(2x) \,\mathrm{d}x.$$

Parameter	Value
$N_{x,\mathrm{train}}$	50
$N_{x, est}$	20
$N_{ m runs}$	10
$N_{\rm layers}$	1
N_{params}	6
$ I - \tilde{I} $	$2.8 \cdot 10^{-2}$
$N_{\rm shots}$	$2 \cdot 10^3$
Optimizer	L-BFGS

*a*rXiv:2308.05657

Middleware challenges

How to **design** quantum algorithms and **deploy** on quantum hardware?

- Cloud-based quantum hardware:
 - Use tools provided by providers.
- Self-hosted quantum hardware:
 - Operate self-hosted quantum hardware.
 - Accommodate custom lab setups.
 - Bypass restrictions to execute an experiment.

How to **design** quantum algorithms and **deploy** on quantum hardware?

- Cloud-based quantum hardware:
 - Use tools provided by providers.
- Self-hosted quantum hardware:
 - Operate self-hosted quantum hardware.
 - Accommodate custom lab setups.
 - Bypass restrictions to execute an experiment.

Example

Let's consider the PDF determination project, it requires two stages: **prototyping** and **deployment**.

Stage 1: Prototyping models / algorithms

Stage 2: Deployment on quantum hardware

Deployment

- Gates to microwave pulses sequence compilation (SC qubits)
- Hardware compatible optimization algorithms
- 8 Error-mitigation algorithms

Introducing Qibo

Qibo is an open-source hybrid operating system for self-hosted quantum computers.

Qibo Contributors (November 2023)

Laboratory	Country	Technology	Qubits
INFN	Italy	Superconducting	1
UNIMIB	Italy	Superconducting	1
TII	UAE	Superconducting	1, 2, 5, 25
Qilimanjaro	Spain	Superconducting	1 and 2
CQT	Singapore	SC and trapped ion	10

arXiv:2203.08826

State vector simulation solves:

$$\psi'(\sigma_1,\ldots,\sigma_n)=\sum_{\boldsymbol{\tau}'}G(\boldsymbol{\tau},\boldsymbol{\tau}')\psi(\sigma_1,\ldots,\boldsymbol{\tau}',\ldots,\sigma_n)$$

The number of operations scales exponentially with the number of qubits.

Qibo uses just-in-time technology and hardware acceleration:

Classical quantum simulation benchmarks

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks

Qibo vs other libraries

arXiv:2203.08826

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks

Advantages

- Efficient on large systems > 40 qubits.
- Potential tool to solve gauge theories (quantum annealing / Hamiltonian computing).

Disadvantages

- How many qubits do we really need?
- How to validate results?
- Limited to few observables?
- Software is HPC-infrastructure dependent.

On-going: QiboTN module for Tensor Networks simulation on GPUs.

How to control qubits? Qibolab

Major features:

- Pulse and pulse sequence API.
- Drivers for lab instruments, including AWGs and FPGAs.
- Hardware sweeps for faster execution of calibration routines.

E

arXiv:2308.06313

• Transpilers from arbitrary circuits to pulses.

Qubit characterization and calibration

Major features:

libocal

Action

Calibration of single and multi-qubit platforms are possible using **Qibo**.

ports	
	2023-02-07-010-run2
n	Parliere (36) Bandie 2020-20-20 Statione (37) (36) 3021 Entime (37) (36) 302 Entime (37) (36) 60
	Actions
	Please find below data prevated by actions:
	Rabi Pulse Length
	MSR vs Time - Qubit 1
	The second

Benchmarking instruments performance

40

We compare the ideal pulse sequence execution performance to instruments execution duration.

Zurich Instruments (ZI), Quantum Machines (QM), QBlox and RFSoC FPGA (Qibosoq+QICK).

Benchmarking instruments performance

FPGA RFSoC vs commercial products.

Examples of results executed on quantum hardware (single-qubit) after calibration with Qibo:

Qibo also provides monitoring tools for QPU control and alarms for calibration through Grafana and other custom tools.

Remote connection

Qibo provides remote access plugins for:

- Advanced users: using slurm plugin.
- Basic users: through a web-interface and HTTP rest API.

Remote connection

[2]: Counter({'0': 516, '1': 496})

A full-stack case study

Full-stack procedure: PDF determination

┛ arXiv:2308.06313

1. High-Level API (Qibo)

- Define model prototype.
- Implement training loop.
- Perform training using simulation.

2. Calibration (Qibocal)

- Calibrate qubit.
- Generate platform configuration.

3. Execution (Qibolab)

- Allocate calibrated platform.
- Compile and transpile circuit.
- Execute model and return results.

Parameter	Value
$N_{ m data}$	50 points
$N_{\rm shots}$	500
MSE	10^{-3}
Electronics	Xilinx ZCU216
Training time	< 2h

Real-time error mitigation in QML trainings

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

- consider a Variational Quantum Algorithm trained with gradient descent;
- learn the noise map ℓ every time is needed over the procedure;
- use ℓ to clean up both predictions and gradients.

Learning the noise model

We use the Importance Clifford Sampling (ICS) procedure to learn the noise map ℓ .

- 1. sample a training set of Clifford circuits S on top of a target C^0 ;
- 2. process them so that their expectation values on Pauli strings is +1 or -1;
- 3. extract mitigation parameter λ_{eff} comparing $\langle \hat{\mathcal{O}} \rangle_{\text{noisy}}$ and $\langle \hat{\mathcal{O}} \rangle$;
- 4. build $\ell \equiv \ell(\cdot|\lambda_{\rm eff})$ following the Phenomenological-Error-Model Inspired (PEMI) protocol. 48

One dimensional HEP target: the *u*-quark PDF

thanks to the RTQEM procedure, we reach a good minimum of the cost function;
 the QEM is not effective is applied to a corrupted scenario (orange curve).

Multidimensional target

We tackle a multi-dimensional target computing predictions as expected value of a $Z^{\otimes N_{\rm dim}}$ after executing an $N_{\rm dim}$ circuit.

Job ID	N_{train}	$N_{\rm params}$	$N_{\rm shots}$	MSE_{rtqem}	MSE_{nomit}	Noise
$N_{\rm dim} = 4$	30	48	10^{4}	0.003	0.043	local Pauli
$N_{\rm dim} = 6$	30	72	10^{4}	0.002	0.083	local Pauli
$N_{\rm dim}=8$	30	96	10^{4}	0.004	0.118	local Pauli

Multidimensional target

We tackle a multi-dimensional target computing predictions as expected value of a $Z^{\otimes N_{\rm dim}}$ after executing an $N_{\rm dim}$ circuit.

Job ID	N_{train}	$N_{\rm params}$	$N_{\rm shots}$	MSE_{rtqem}	MSE_{nomit}	Noise
$N_{\rm dim} = 4$	30	48	10^{4}	0.003	0.043	local Pauli
$N_{\rm dim} = 6$	30	72	10^{4}	0.002	0.083	local Pauli
$N_{\rm dim} = 8$	30	96	10^{4}	0.004	0.118	local Pauli

RTQEM on a superconducting qubit

RTQEM allows exceeding the natural bound imposed by noise.

Can RTQEM generalise?

We perform a longer training on two different devices, same initial conditions and 100 epochs.

- >_ iqm5q by IQM controlled using Zurich Instruments;
- >_ qw5q by QuantWare controlled using Qblox.

Train.	Epochs	Pred.	Config.	MSE
qw5q	50	qw5q	noisy	0.0055
qw5q	50	qw5q	RTQEM	0.0042
qw5q	100	qw5q	RTQEM	0.0013
iqm5q	100	qw5q	RTQEM	0.0037
qw5q	100	sim	RTQEM	0.0016

All the hardware results are obtained deploying $heta_{
m best}$ on iqm5q.

Outlook

We have observed a great set of interesting **proof-of-concept** applications in HEP. For the future:

- Improve results quality, moving from prototype to production.
- Mitigate hardware noise by implementing real-time error mitigation techniques.
- Provide software tools for further enhancement of quantum technologies.
- Enhance calibration, characterization and validation techniques.
- Codevelop quantum hardware and instruments for application specific tasks.