Quantum Machine Learning in High Energy Physics

Examples from CERN

Sofia.Vallecorsa@cern.ch

Quantum Observables For Colliders – November 2023

Outline

- The CERN Quantum Technology Initiative
- Quantum Machine Learning
 - Trainability and generalisation
- Example applications at CERN
 - Anomaly Detection
 - Beam Optimisation in linear accelerators
- Summary & Outlook

Quantum potential... and computer science

Principles of quantum mechanics enhance computations

Superposition leads to parallelism → **exponential speedup?**

Entanglement → non linear correlation and classical intractability?

Operations (gates) are unitary transformations \rightarrow reversible computing?

Output is the result of a measurement according to Born rule \rightarrow stochastic computation ?

No-cloning theorem \rightarrow information security

Quantum state coherence and isolation \rightarrow computation stability and errors Qubit state collapses \rightarrow reproducibility?

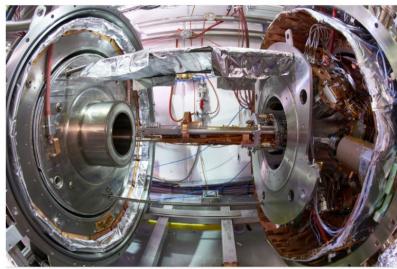
QML: Quantum computing to "improve" ML

- Speed-up and complexity
- Sample efficiency
- Representational power
- Energy efficiency???

	Type of Algorithm							
1		Classical	Quantum					
Type of Data	Classical	CC	CQ					
	Quantum	QC	QQ					

• Evaluate performance on realistic use cases

• QPU as accelerators within classical infrastructure?


The CERN Quantum Technology Initiative was launched in 2020

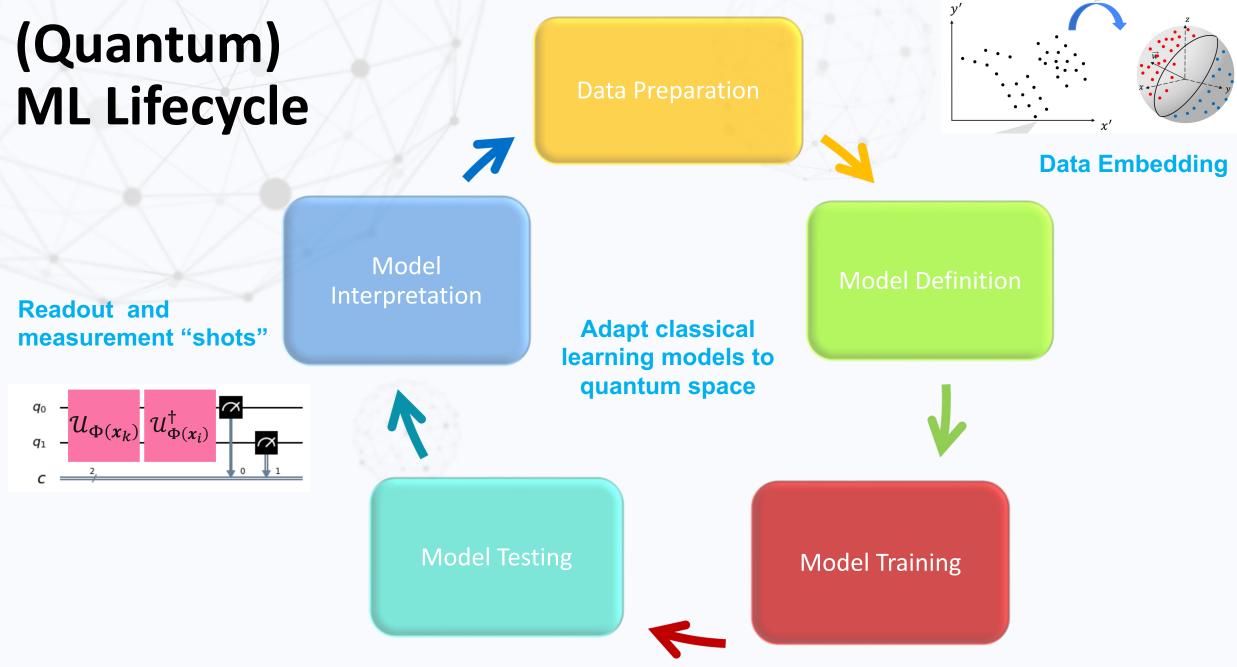
Voir en <u>français</u>

CERN meets quantum technology

The CERN Quantum Technology Initiative will explore the potential of devices harnessing perplexing quantum phenomena such as entanglement to enrich and expand its challenging research programme

30 SEPTEMBER, 2020 | By Matthew Chalmers

The AEgIS 1T antimatter trap stack. CERN's AEgIS experiment is able to explore the multi-particle entangled nature of photons from positronium annihilation, and is one of several examples of existing CERN research with relevance to quantum technologies. (Image: CERN)


Understanding the impact of quantum technologies in HEP

Quantum simulation and HEP theory applications Quantum Computing Quantum Sensing Quantum Communication

QTI Roadmap: https://doi.org/10.5281/zenodo.5553774

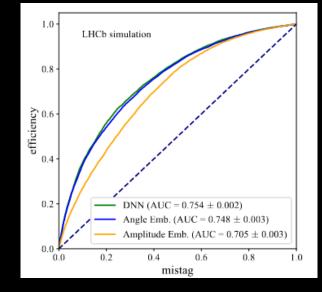
Quantum Machine Learning :

Some basic concepts

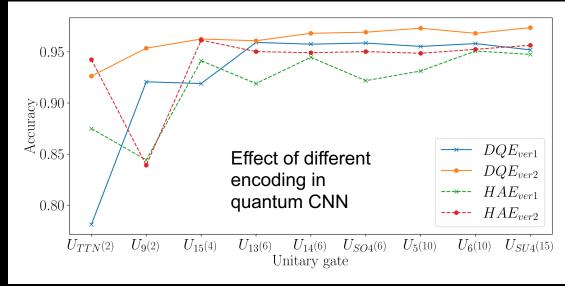
The advantage of many known QML algorithms is impeded today by I/O bottleneck

Quantum embedding for classical data

Compromise between **exponential compression and circuit depth**


Ex: Amplitude Encoding

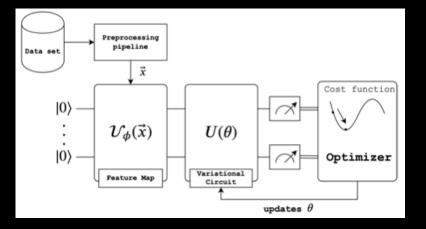
$$|\phi(x)\rangle = \frac{1}{\|x\|} \sum_{i=0}^{N} x_i |i\rangle$$



Exponential compression $n_{qubit} \propto O(log(N))$

Polynomial number of gates n_{gate} ∝ O(poly(N)) Gianelle, A., Koppenburg, P., Lucchesi, D. *et al.* **Quantum Machine Learning for** *b***-jet charge identification.** *J. High Energ. Phys.* **2022,** 14 (2022). https://doi.org/10.1007/JHEP08(20 22)014

S.Y. Chang, poster at "Quantum Tensor Network in Machine Learning, NeurIPS 2021



Models

Variational algorithms (ex. QNN)

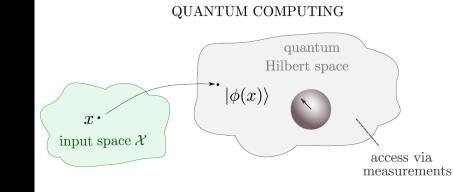
Gradient-free or gradient-based optimization Data Embedding can be learned

Ansatz design can leverage data symmetries¹

lmage credit SwissQuantumHub

Representer theorem:

Implicit models achieve **better accuracy**³


Explicit models exhibit better generalization performance

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training (convex losses)

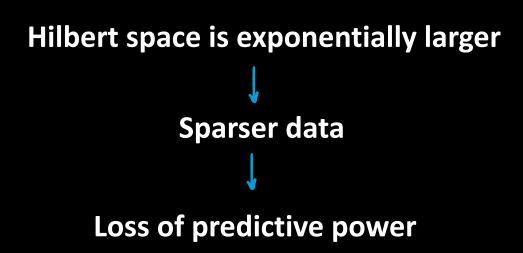
Identify classes of kernels that relate to specific data **structures²**

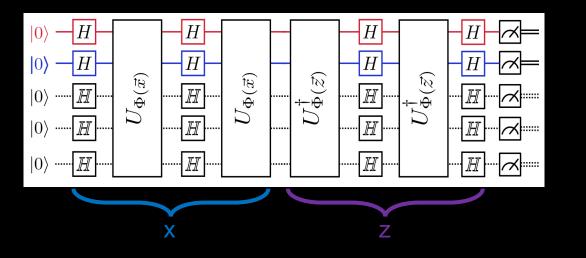
Energy-based ML (ex. QBM)

Build network of stochastic binary units and optimise their energy.QBM has quadratic energy function that follows the Boltzman distribution (Ising Hamiltonian)

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2109.03406 (2021). ³Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv preprint arXiv:2110.13162 (2021)


QML Convergence


Classical Intractability & expressivity vs trainability and generalization

F. Di Marcantonio et al., CHEP2023

Quantum embedding and kernel methods

- Create classically intractable features in the Hilbert space
- Estimate Fidelity kernel
- Use classical training (convex losses)

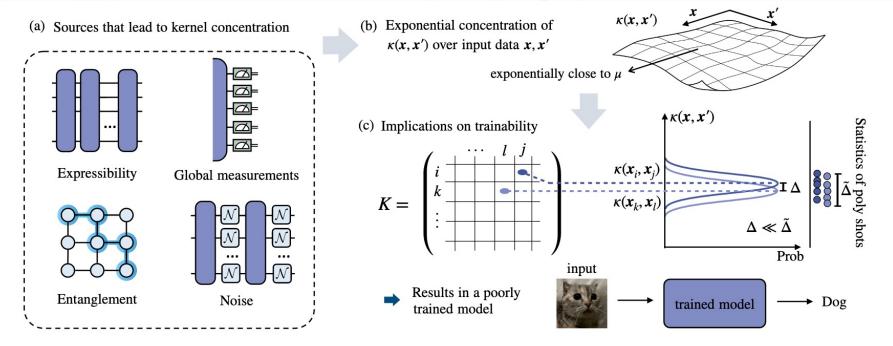
$$\hat{y} = l_{abe} |(z) = sigm(\Sigma_{\alpha}; y; K(x; z) + b)$$

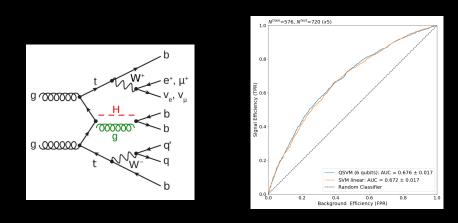
$$|\langle \Phi(\bar{x}) | \Phi(\bar{z}) \rangle|^{2} = |\langle O^{m} | U_{\Phi(\bar{x})}^{\dagger} U_{\Phi(\bar{z})} | O^{m} \rangle|^{2}$$

Kernel trainability and kernel concentration

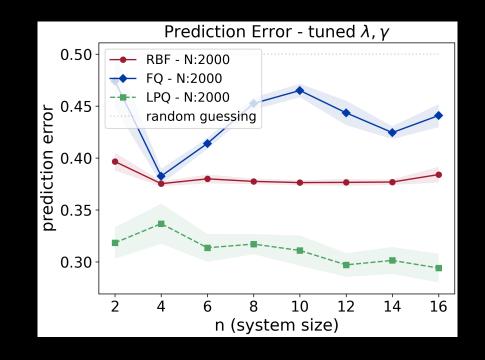
Kernel values can concentrate exponentially around a common value

Need **exponentially larger number of measurements** to resolve




Figure 1. Kernel concentration and its implications on trainability: The exponential concentration (in the number of qubits n) of quantum kernels $\kappa(\boldsymbol{x}, \boldsymbol{x}')$, over all possible input data pairs $\boldsymbol{x}, \boldsymbol{x}'$, can be seen to stem from the difficulty of information extraction from data quantum states due to various sources (illustrated in panels (a) and (b)). The kernel concentration has a detrimental impact on the trainability of quantum kernel-based methods. As shown in panel (c), for a polynomial (in n) number of measurement shots, the sampling noise $\tilde{\Delta}$ dominates for large n and, as $\Delta \ll \tilde{\Delta}$, $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$ cannot be resolved from some other $\kappa(\boldsymbol{x}_k, \boldsymbol{x}_l)$, leading to a poorly trained model.

Study kernel trainability in our Anomaly Detection model (arxiv:2208.11060)

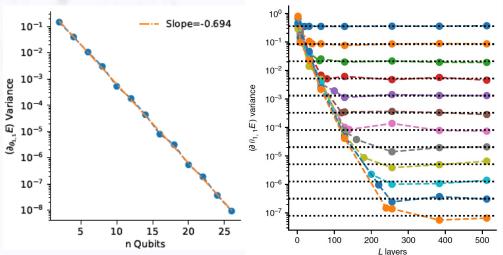

Projected Quantum Kernel

Project quantum kernels to lower dimensionality (i.e. local density matrix)¹:

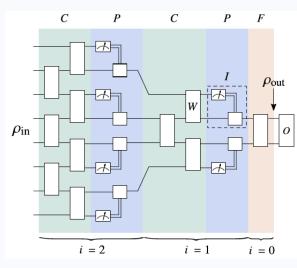
- Improved generalizion while keeping features into states classically hard
- Example: ttH(bb) binary classification²2

 $k^{p}(x_{i}, x_{j}) = \sum_{k} \frac{T_{r} \left[P_{k}(x_{i}) P_{k}(x_{j}) \right]}{m}$

¹Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." *Nature communications* 12.1 (2021): 2631. ² V Belis et al, (2021), *Higgs Analysis with Quantum Classifiers*, EPJ Web Conf

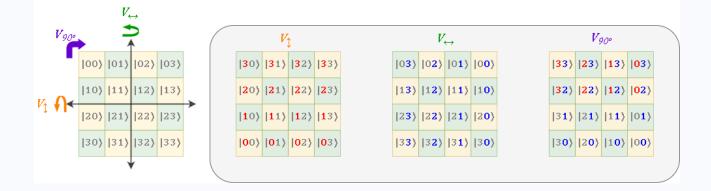

Gradients decay and Model Convergence

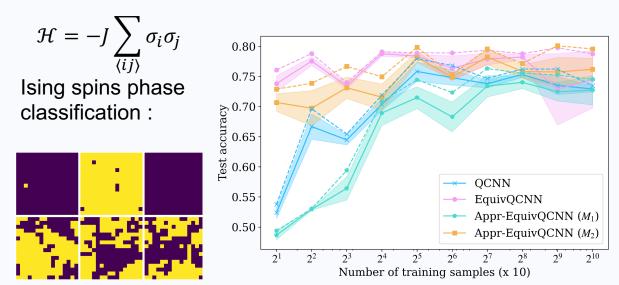
Classical gradients vanish exponentially with the number of layers (J.McClean *et al.*, arXiv:1803.11173)


• Convergence still possible if gradients consistent between batches.

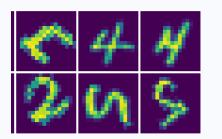
Quantum gradient decay exponentially in the number of qubits (number of graph paths is exponential in the number of gates)

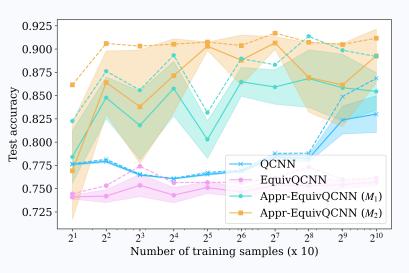
- Random circuit initialization
- Loss function locality in shallow circuits (M. Cerezo *et al.,* arXiv:2001.00550)
- Ansatz choice: TTN, CNN (Zhang *et al.*, arXiv:2011.06258, A Pesah, *et al.*, *Physical Review X* 11.4 (2021): 041011.)
- Noise induced barren plateau (Wang, S *et al.*, Nat Commun 12, 6961 (2021))

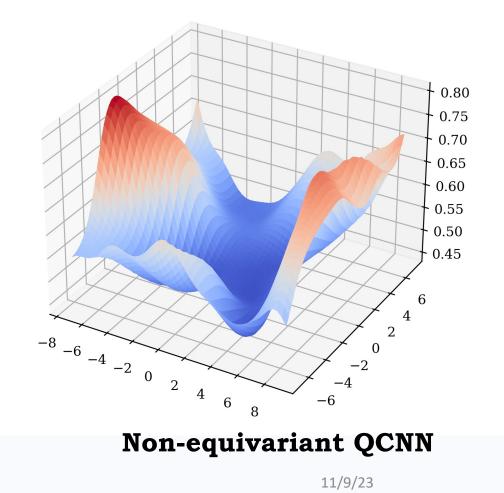

QCNN: A Pesah, et al., Physical Review X 11.4 (2021): 041011

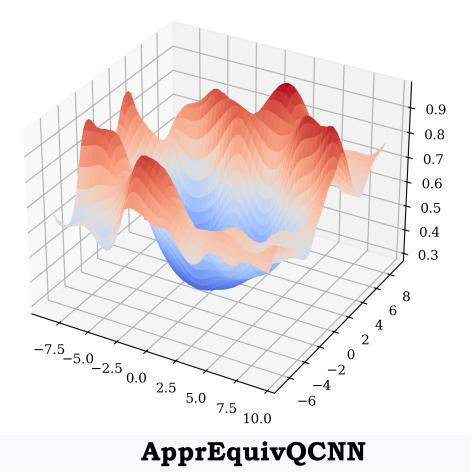


J. McClean et al., arXiv:1803.11173


Equivariant Quantum CNN

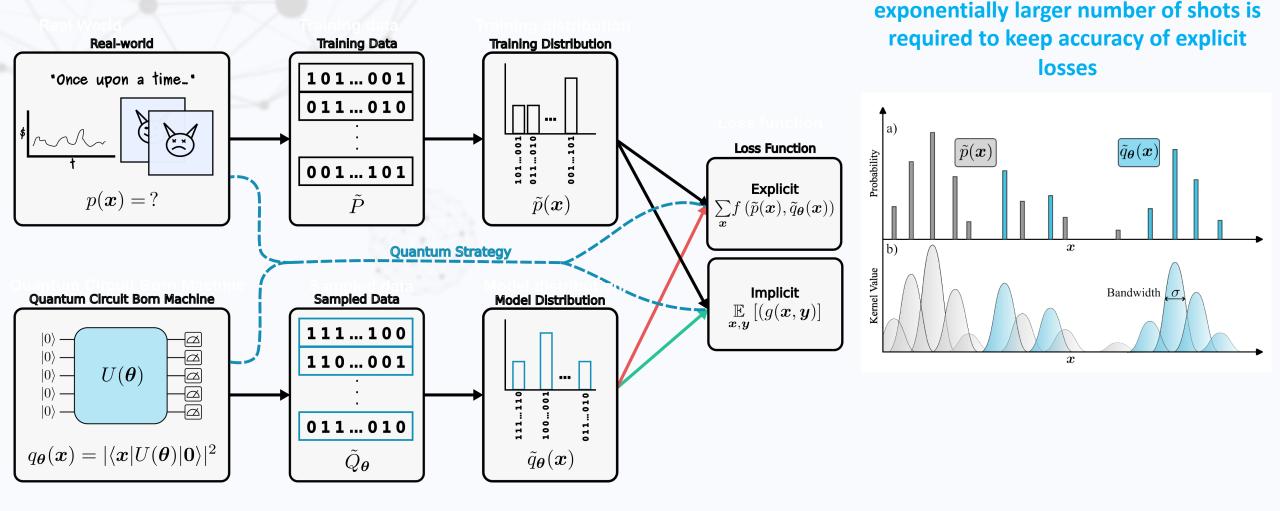

- Construct equivariant quantum CNN under rotational & reflectional symmetry
- Improved generalization power


Extended MNIST Image classification: (digits 4,5)



Non-convexity of loss landscape

Loss landscape plotted with orqviz

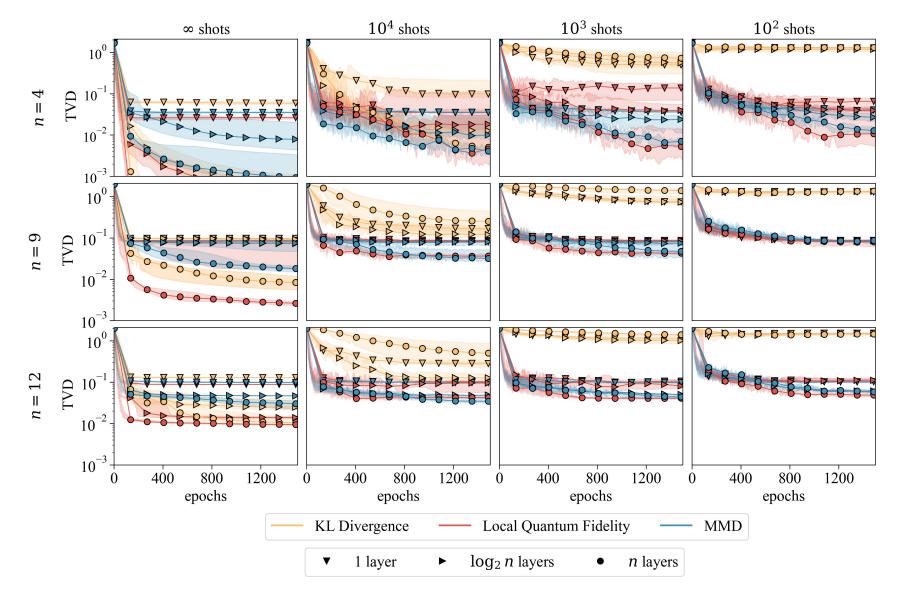

Quantum Machine Learning examples:

Generative Models

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). **Trainability barriers and opportunities in quantum generative modeling.** *arXiv:2305.02881*.

Generative QML and trainability barriers

Representation learning: encoding probability distributions

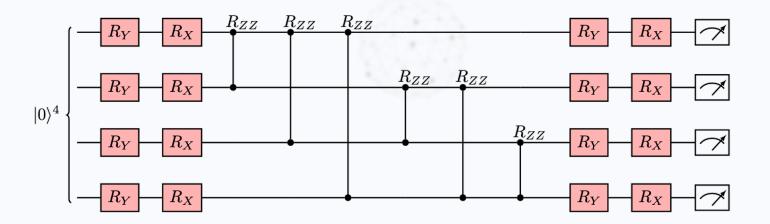


Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers and opportunities in quantum generative modeling. *arXiv:2305.02881*.

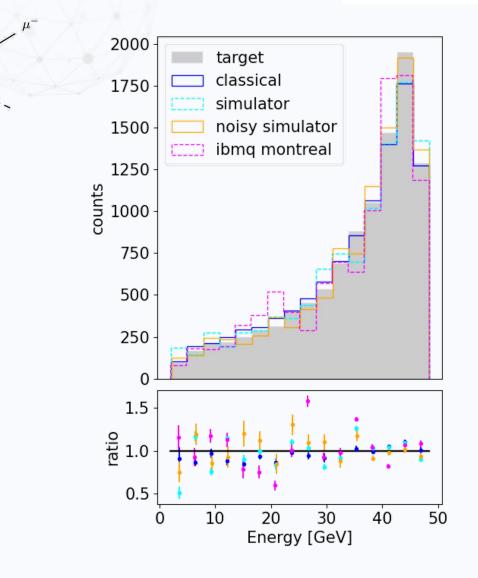
Quantum Circuit Born Machine for HEP

QCBM

Sample variational pure state $|\psi(\theta)\rangle$ by projective measurement through Born rule: $p_{\theta}(x) =$ $|\langle x | \psi(\theta) \rangle|^2$.


UNIVERSITÉ DE GENÈVE

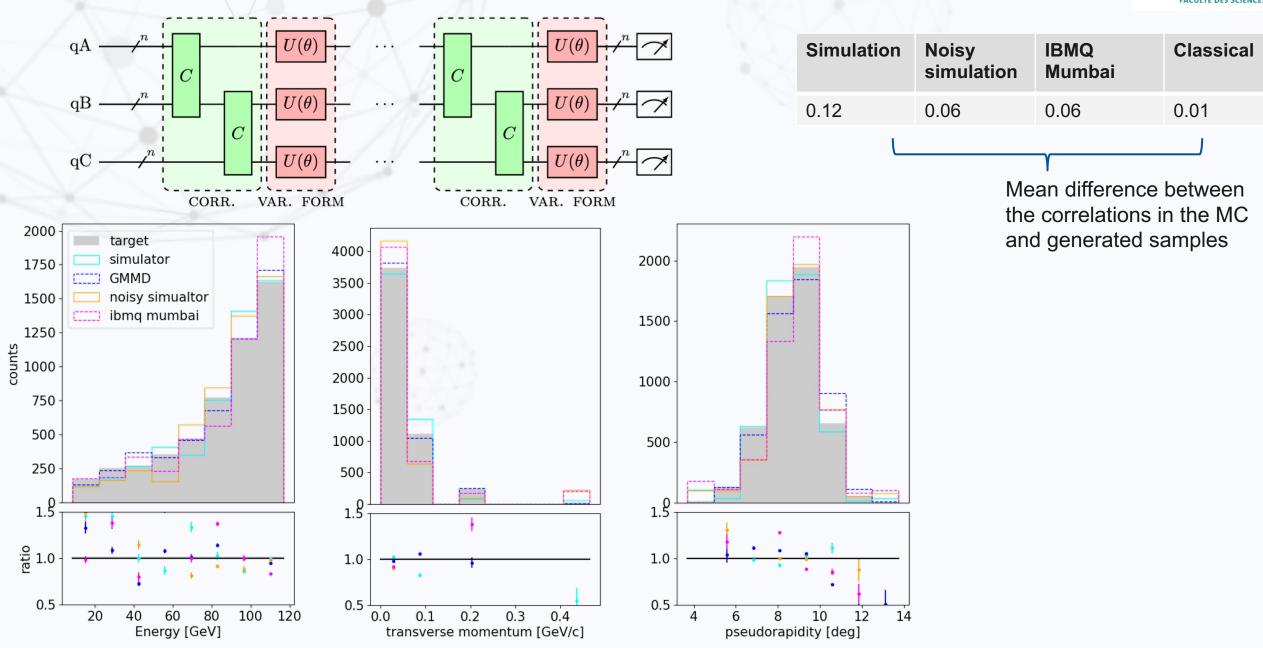
QCBM for event generation


Muon Force Carriers, in muon fixed-target experiments (FASER) or muon interactions in calorimeters (ATLAS)¹.

Generate multivariate distribution (E, p_t , η) using a QCBM

Maximum Mean Discrepancy for training

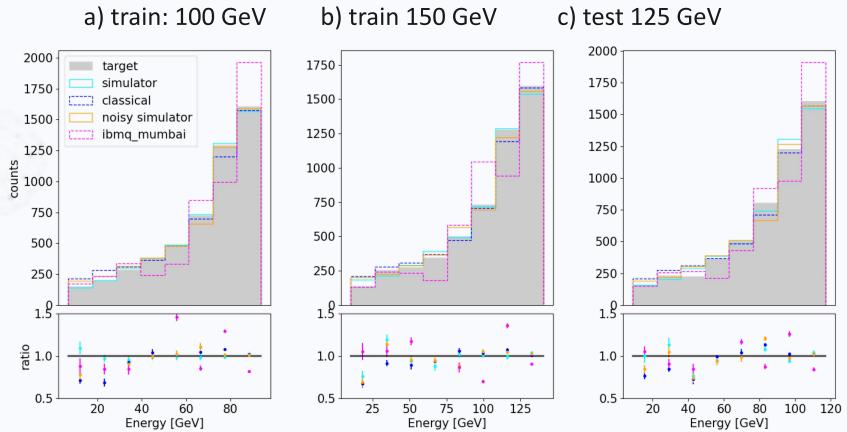
1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)



MFC

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES



Conditional probability distribution

 $R_{Y}(\vec{X}_{1})$ $R_{Y}(\vec{X}_{2})$ $U(\vec{\theta}_{0})$ $U(\vec{\theta}_{L-1})$ $R_{Y}((\vec{\theta}_{L})_{1})$ $R_{Y}((\vec{\theta}_{L})_{2})$ $R_{Y}((\vec{\theta}_{L})_{2})$ $R_{Y}((\vec{\theta}_{L})_{2})$ $R_{Y}((\vec{\theta}_{L})_{3})$ VARIATIONAL FORM

We want to **modelize** p(y|x) where x is the incoming energy E_{in} .

- 1. Data re-uploading does not improve the sampling.
- 2. Training on hardware is important to assimilate the noise.

Quantum Machine Learning examples:

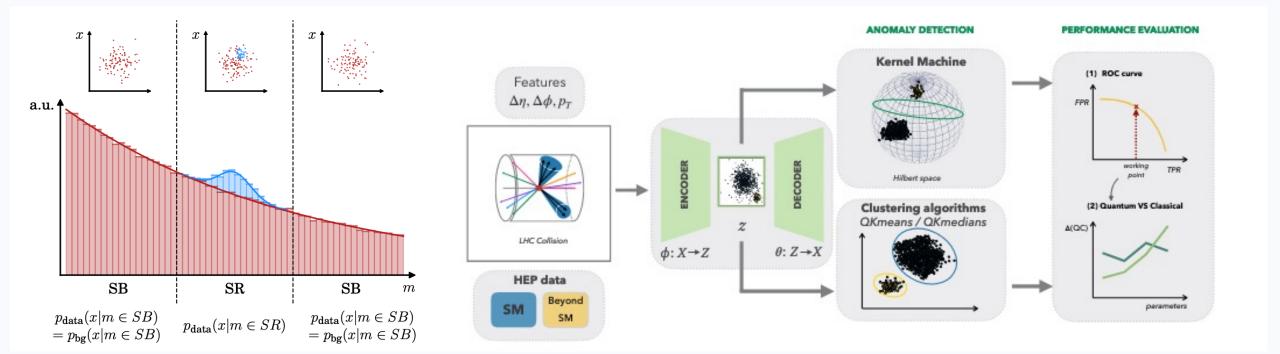
Anomaly Detection

Quantum anomaly detection in the latent space of proton collision events at the LHC *arXiv:2301.10780*.

New Physics at the LHC

So far only **negative results** in **direct** (model dependent) searches

	ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits Status: July 2022ATLAS Preliminary $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$										
	Model	<i>ℓ</i> ,γ	Jets†	$E_{\mathtt{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Limit		$\int \mathcal{L} u t = (3)$.0 – 139) 10	Reference
extra dimensio	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD BH nullijet RSI $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow WV \rightarrow \ell \nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2\gamma \\ - \\ 2\gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j 2j $\geq 3j$ - 1 2j / 1J $\geq 1 b, \geq 1J/2$ $\geq 2 b, \geq 3j$	Yes - - - Yes Yes Yes	139 36.7 139 3.6 139 36.1 139 36.1 36.1 36.1	Мо М5 М5 М4 М4 М4 М4 М4 М4 Скк таз5 Скк таз5 Скк таз5 Скк таз5 КК таз5 КК таз5		4.5 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	9.4 TeV 9.55 TeV	$ \begin{array}{l} n=2 \\ n=3 \ \text{HZ} \ \text{NLO} \\ n=6 \\ n=6, M_0=3 \ \text{TeV}, \text{rot BH} \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=1.0 \\ k/\overline{M}_{PI}=1.0 \\ F/m=15\% \\ \text{Tr}(1,1), \mathbb{B}(A^{(1,1)} \rightarrow \text{tt})=1 \end{array} $	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 2004.14836 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to tt \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\tau \\ \text{SSM } W' \to \ell\tau \\ \text{SSM } W' \to \psi \\ \text{HVT } W' \to WZ \to \ell r \ell' \ell' \text{ model} \\ \text{HVT } W' \to WZ \to \ell r \ell' \ell' \text{ model} \\ \text{HVT } W' \to WH \to r \ell b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \nu b \text{ model} \\ \text{HVT } Z' \to \ell' \mu \mu h \mu h \mu \mu h \mu \mu h \mu h \mu h \mu h \mu h $	elC 3 <i>e</i> ,μ Β 1 <i>e</i> ,μ	- 2 b ≥1 b, ≥2 J - 2 j / 1 J 2 j (VBF) 1-2 b, 1-0 j 1-2 b, 1-0 j 1 J	- Yes Yes Yes Yes Yes Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass W' mass	340 GeV	5.1 TeV 2.42 TeV 4.1 TeV 6.0 5.0 TeV 4.3 TeV 3.3 TeV 3.2 TeV 5.0 TeV	TeV /	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_F = 0$ $g_V = 3$ $g_V = 3$ $g_V R_H = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.08299 2005.05138 1906.05509 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2021-005 2207.00230 2207.00230 1904.12679
G	Clqqqq Clℓℓqq Cleebs Clµµbs Cltttt	2 e,μ 2 e 2 μ ≥1 e,μ	2 j 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 TeV 2.0 TeV 2.57 TeV		21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $g_* = 1$ $ C_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
DM	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM Pseudo-scalar med. 2HDM+a	Λ) 0 e, μ	1 – 4 j 1 – 4 j 2 b	Yes Yes Yes	139 139 139 139	m _{med} m _{med} m _{med}	376 GeV 560 GeV	2.1 TeV 3.1 TeV		$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ \tan\beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ \tan\beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \ge 2 \ e, \mu, \ge 1 \ \tau \\ 0 \ e, \mu, \ge 1 \ \tau \\ 1 \ \tau \end{array}$	$ \begin{array}{c} \geq 2 j \\ \geq 2 j \\ 2 b \\ \geq 2 j, \geq 2 b \\ \geq 1 j, \geq 1 b \\ 0 - 2 j, 2 b \\ 2 b \end{array} $	_	139 139 139 139 139 139 139	LQ mass LQ mass LQ ¹ mass LQ ¹ mass LQ ¹ mass LQ ¹ mass LQ ¹ mass	1.26 1	eV 3 TeV		$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_{1}^{u}\rightarrow br)=1\\ \mathcal{B}(\mathrm{LQ}_{2}^{u}\rightarrow tr)=1\\ \mathcal{B}(\mathrm{LQ}_{2}^{d}\rightarrow tr)=1\\ \mathcal{B}(\mathrm{LQ}_{2}^{d}\rightarrow br)=1\\ \mathcal{B}(\mathrm{LQ}_{1}^{d}\rightarrow br)=1\\ \mathcal{B}(\mathrm{LQ}_{1}^{d}\rightarrow br)=0.5, \mbox{ YM coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Vector-like fermions	$ \begin{array}{l} VLQ\ TT \to Zt + X \\ VLQ\ BB \to Wt/Zb + X \\ VLQ\ T_{5/3}\ T_{5/3} \to Wt + X \\ VLQ\ T \to Ht/Zt \\ VLQ\ T \to Ht/Zt \\ VLQ\ S \to Hb \\ VLL\ \tau' \to Z\tau/H\tau \end{array} $	1 e,μ 1 e,μ	i ≥1 b, ≥1 j ≥1 b, ≥3 j ≥1 b, ≥1 j ≥2b, ≥1j, ≥1	Yes Yes Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass	1.34	1 TeV TeV .64 TeV 1.8 TeV 1.85 TeV 2.0 TeV		$\begin{array}{l} {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \\ {\mathcal B}(T_{5/3} \to Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ {\rm SU(2) \ singlet, } \ \kappa_7 = 0.5 \\ {\mathcal B}(Y \to Wb) = 1, \ c_\kappa(Wb) = 1 \\ {\rm SU(2) \ doublet, } \ \kappa_{B} = 0.3 \\ {\rm SU(2) \ doublet} \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 ATLAS-CONF-2022-044
Excite	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton v^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –		139 36.7 139 20.3 20.3	q* mass q* mass b* mass ℓ* mass ν* mass		6. 5.3 Te 3.2 TeV 3.0 TeV 1.6 TeV		only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1910.0447 1411.2921 1411.2921
Other	Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	2,3,4 e, μ 2 μ 2,3,4 e, μ (SS 2,3,4 e, μ (SS 3 e, μ , τ = 5 = 13 TeV artial data			139 36.1 139 139 20.3 139 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass H ^{±±} mass multi-charged particle mass monopole mass 	910 GeV 350 GeV 400 GeV 5 1.08 TeV 5 1. 7	3.2 TeV 59 TeV 2.37 TeV	 1 1	$\begin{array}{l} m(W_R) = 4.1 \ \text{TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, g_L = \xi_R \\ \text{DY production}, g_L H_{L^{\pm\pm}}^{\pm\pm} \to (\tau) = 1 \\ \text{DY production}, g = \xi_B \\ \text{DY production}, g = 1 \\ g_D, \text{ spin } 1/2 \end{array}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130
Other	LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	2μ 2,3,4 e, μ (SS 2,3,4 e, μ (SS 3 e, μ , τ = = = = = = = = = = = = =	2 j́ various , – – – – – – – – 13 full da	Yes - - - - - - - - - - - - - - - - - - -	36.1 139 139 20.3 139 34.4	Nr mass H ^{±±} mass H ^{±±} mass H ^{±±} mass multi-charged particle mass monopole mass 10 ⁻¹	350 GeV 1.08 TeV 400 GeV	.59 TeV	I 10	DY production DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1 2 ATLAS- 1 ATLAS-


How to insure we do not miss potential discoveries?

We can design model agnostic searches!

*Only a selection of the available mass limits on new states or phenomena is shown †Small-radius (large-radius) jets are denoted by the letter j (J).

Unsupervised learning for Anomaly Detection

A typical hybrid QML workflow

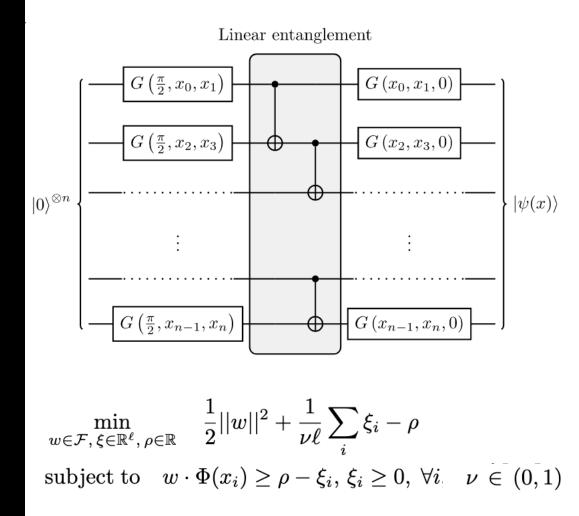
Standard Model jets

Simulate QCD multi-jets at the LHC

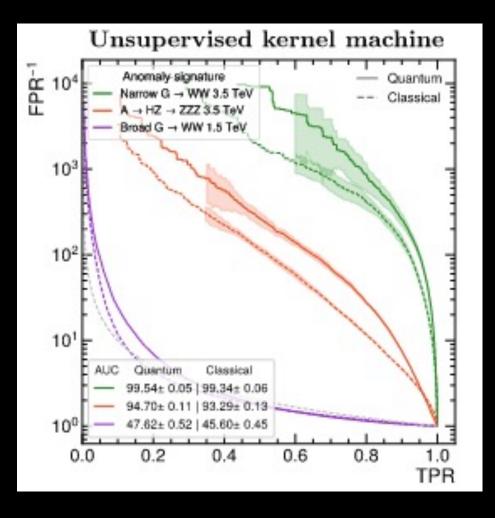
Build jet from 100 highest pt particles Apply realistic event selection

Convolutional AutoEncoder learns the jet internal structure

 $\mathbb{R}^{300} \rightarrow \mathbb{R}^{\ell}$, $\ell = 4, 8, 16$

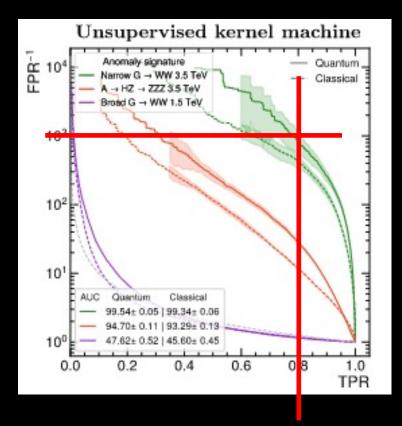

Data recorded: Sun Nov 14 19:31:39 2010 CEST Run/Event: 151076 / 1328520 Lumi section: 249 Leading Jet Jet table $|\Delta\eta|\Delta\eta|\Delta\eta|\Delta\eta|\cdots|\Delta\eta|\Delta\eta|\Delta\eta|$ p_{T1} $|\Delta \phi| \Delta \phi |\Delta \phi| \Delta \phi | \cdots |\Delta \phi| \Delta \phi |\Delta \phi|$ Subleading Jet Jet 0, pt: 205.1 GeV p_{T2} Jet 1, pt: 70.0 GeV

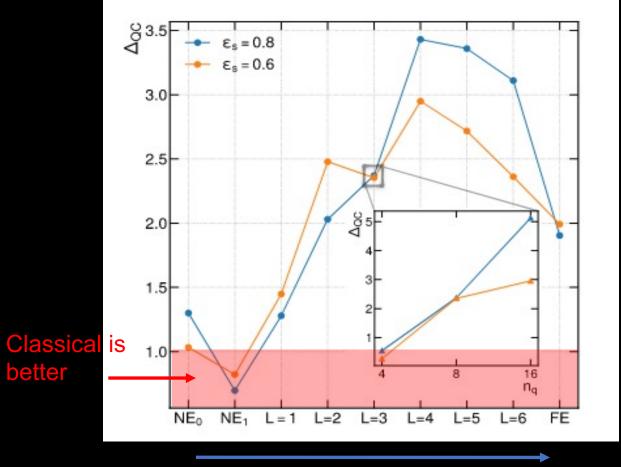
Unsupervised kernel machine


Find the hyperplane that maximizes the distance of the data from the origin of the feature vector space

Upper bound on fraction of anomalies in training data at 0.01 (at most 1% QCD training data are falsely flagged)

 $k(x_i, x_j) \coloneqq \operatorname{tr}[
ho(x_i)
ho(x_j)] = \left|\langle 0|U^{\dagger}(x_i)U(x_j)|0
ight|^2$ $ho(x_i) \coloneqq U(x_i) \left|0
ight
angle \left< 0|U^{\dagger}(x_i)
ight.$


Results



Is this an «advantage» we can use?

Quantum anomaly detection in the latent space of proton collision events at the LHC arXiv:2301.10780.

In reality....

Increasing entanglement & expressivity

Quantum anomaly detection in the latent space of proton collision events at the LHC *arXiv*:2301.10780.

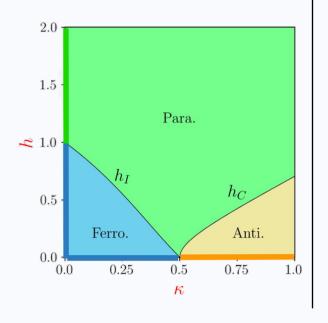
Higher

is better

Quantum Machine Learning examples:

Phase Transitions identification

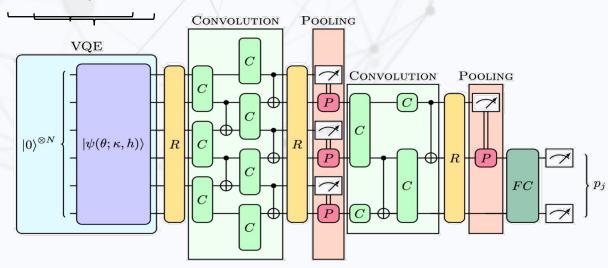
QML for quantum data: drawing phase diagrams


Model: Axial Next Nearest Neighbor Ising

(ANNNI) Hamiltonian:

$$H = J \sum_{i=1}^{N} \sigma_x^i \sigma_x^{i+1} - \kappa \sigma_x^i \sigma_x^{i+2} + h \sigma_z^i,$$

Senk, Physics Reports, 170, 4 (1988)


Integrable for $\kappa = 0$ or h = 0.

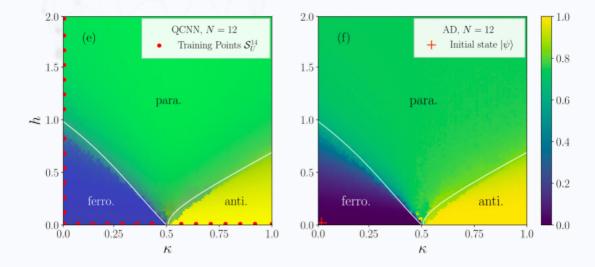
- 1. Supervised classification of the ground state using a convolutional QNN
- 2. Quantum states are **exponentially hard to save classically**.
- **3. Bottleneck** from access to classical training labels (Interpolation does not work)
 - Train in integrable subregions
 - Generalize to a full model¹

Results

Variational quantum data

Binary Cross-entropy

Loss:
$$\mathcal{L} = -\frac{1}{|\mathcal{S}_X^n|} \sum_{(\kappa,h)\in\mathcal{S}_X^n} \sum_{j=1}^K y_j(\kappa,h) \log(p_j(\kappa,h))$$


Labels:

-

- [0,1] ferromagnetic
- [1,0] antiphase
- [1,1] paramagnetic
- [0,0] trash label

Autoencoder¹

- **1. Out of Distribution** Generalization²?
- 2. Performance increases with the system's size $N=6 \rightarrow N=12$).
- 3. QCNN gives quantitative predictions

¹Kottman, *et al., Phys. Rev. Research* **3**, 043184 (2021) ²M..Caro et al., arxiv:2204.10268, Banchi et all., PRX QUANTUM 2, 040321 (2021)

Quantum Machine Learning examples:

QNN for Quntum Monte Carlo Integration

Agliardi, Gabriele, et al. "Quantum integration of elementary particle processes." *arXiv preprint arXiv:2201.01547* (2022)

Monte Carlo Integration is widely used in multiple applications.

Computationally challenging

In HEP:

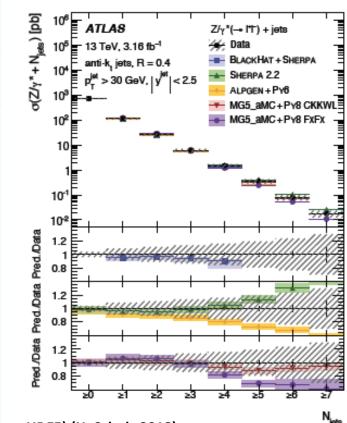
Phase space sampling scales exponentially with number of final state particles¹


HL-LHC @ 3 10⁻³ fb⁻¹ will have percent-level precision $@N_{jet} = 9$

Need comparable (higher-order) MC

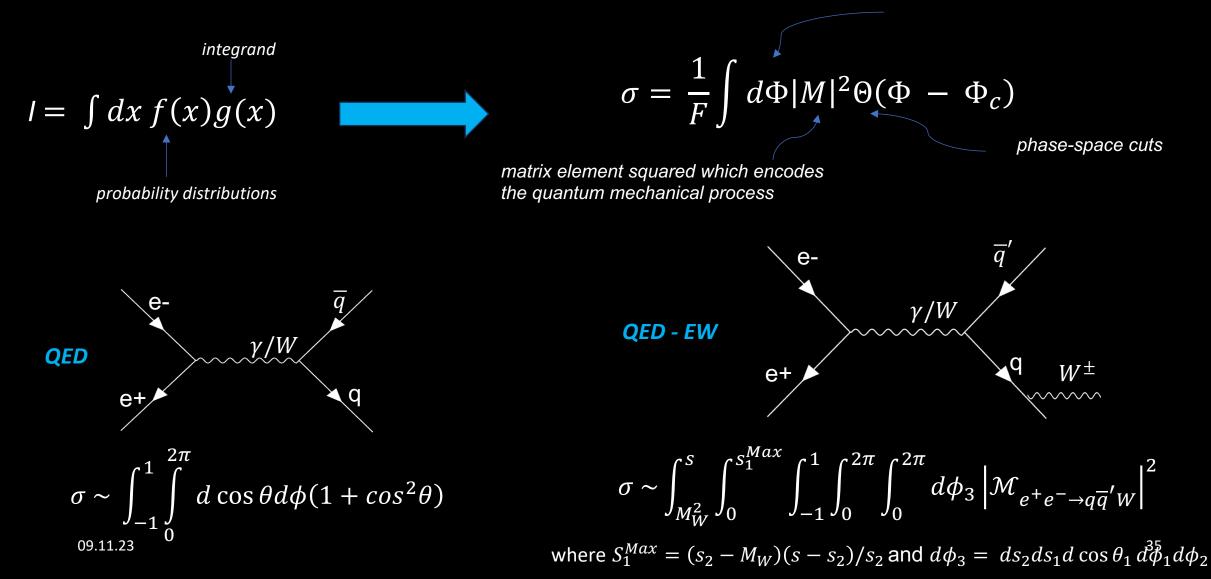
 N_{jet} increases with center-of-mass energy

Recent estimates give ~3 billion CPU-hours per year!


¹ arxiv:1905.05120 See also 1908.00167, 2004.13687 09.11.23

Process W^+ +	5j	6j•	7j*	8j†
RAM Usage	189 MB	484 MB	1.32 GB	1.32 GB
Init/startup time	3m5s / 1s	24m52s / 5s	3h6m / 18s	5h55m / 20s
Integration time	128×4h38m	256×13h53m	512×19h0m	1024×23h8m
MC uncertainty	1.0%	0.99%	2.38%	4.68%
Unweighting eff	9.56 · 10 ⁻⁵	7.66 · 10 ⁻⁵	7.20 . 10-5	$7.51 \cdot 10^{-5}$
10k evts	24h 40m	2d 11h	10d 15h	78d 1h

Numbers generated on dual 8-core Intel® Xeon® E5-2660 @ 2.20GHz


*[†] Number of quarks limited to ≤6/4

Agliardi, Gabriele, et al. "Quantum integration of elementary particle processes." *arXiv preprint arXiv:2201.01547* (2022)

Monte Carlo integration for HEP

phase-space factor [possibly including parton-distribution function (PDF)]

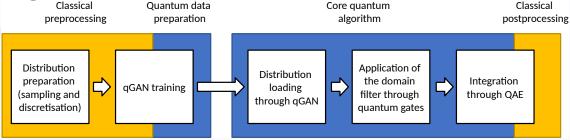
Quantum Monte Carlo

Quantum Monte Carlo is based on Quantum Amplitude Estimation (Brassard, Hoyer, Mosca, Tapp, arxiv:0005055)

 \rightarrow quadratic speedup from Grover's algorithm

$$\mathcal{A}|0\rangle=\sqrt{1-a}|\Psi_0\rangle+\sqrt{a}|\Psi_1\rangle$$

QAE estimates **a** with high probability such that the estimation error scales as **O(1/M**) instead of **O(1/VM)**



Agliardi, Gabriele, et al. "Quantum integration of elementary particle processes." *arXiv preprint arXiv:2201.01547* (2022)

integrand

qGAN for data encoding

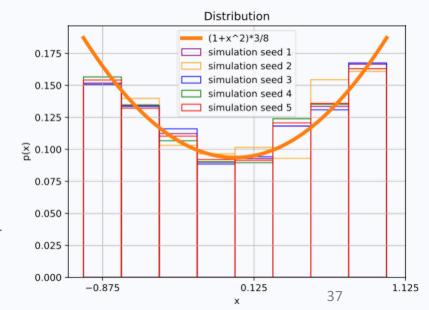
Classical *f* encoding affects the quality and speed of integration

Use a quantum GAN:

• Efficient learning of probabilities over discrete values

q

Control resolution through number of qubits


Test on 1 + x² distribution:
10k events, 3 qubits, circular entanglement

Loading	Differe Min.	ence per Max.	bin [%] Average	σ_x
Direct	+0.207	-1.88	1.35	1.80×10^{-3}
qGAN default	+2.36	-21.1	8.51	0.0118
GAN optimised	-0.995	-12.4	4.65	$7.00 imes 10^{-3}$

$$\sigma = \frac{1}{F} \int d\Phi |M|^2 \Theta(\Phi - \Phi_c)$$

probability distributions

$$G(\phi) |\psi_{in}\rangle = |g(\phi)\rangle = \sum_{i=0}^{N-1} \sqrt{p_g^i(\phi)} |i\rangle$$

Jorge J. Martínez de Lejarza, 2305.01686

Fourier series for QMC

2.0

1.8

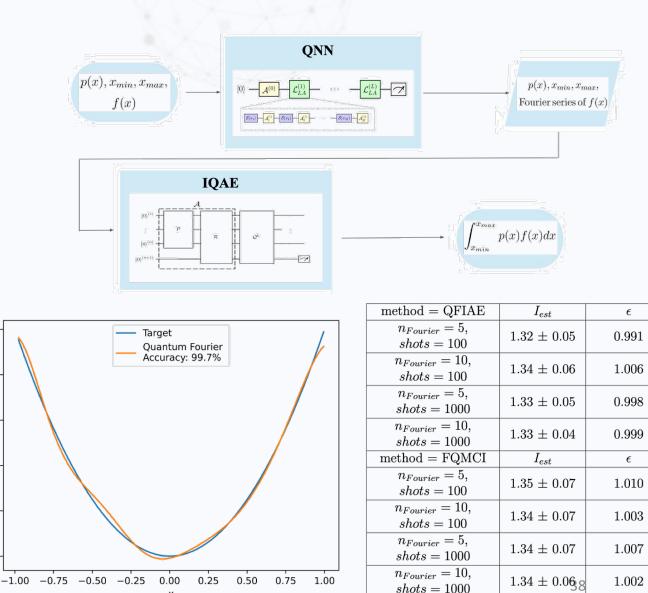
1.6

1.4

1.2 ·

1.0

f(x)


Encode Fourier expansions coefficients and integrate trigonometric functions FQMCI: Herbert Q6, 823 (2022)

 Assumes Fourier coefficients are analytically computed

New approach provides a end-to-end quantum implementation

QFIAE (Quantum Fourier Iterative Amplitude Estimation)

- Fourier series decomposition through a QNN
- Integrate each trigonometric component using QAE

Improving Robustness of QML applications

- Understanding conditions to advantage
- Stabilizing training on NISQ (arXiv:2212.11826, arXiv:2303.11283)
- Trainability vs expressivity for generative models (arXiv:2305.02881)
- Evaluating generalisation
- Quantum vs classical data, phase transitions (Physical Review B, 107(8), L081105)
- Algorithms beyond QML (Physical Review C, 106(3), 034325.)

Why does CERN engage in Quantum Technologies?

QT4HEP

Can CERN stay out of quantum technologies? Develop **technologies**, **capabilities** required by CERN scientific programmes

 Allow CERN to interoperate with future quantum infrastructures

- Extend and share technologies uniquely available at CERN
- Boost development and adoption of QT beyond CERN
- Use CERN reputation to maximise impact

HEP4QT

How can CERN contribute to quantum technologies?

0

CERN QTI Phase 2

HYBRID QUANTUM COMPUTING AND ALGORITHMS

> QUANTUM NETWORKS AND COMMUNICATIONS

CERN QUANTUM TECHNOLOGY PLATFORMS

COLLABORATION FOR IMPACT

CERN QTI Phase 2 Impact

Impact: Bringing together HEP and QC experts

QC4HEP: High Energy Physics Working Group

Kick-off meeting last November

When: Nov 3-4, 2022, within the QT4HEP Conference week Where: CERN, Geneva

Who: organized by CERN/DESY/IBM Quantum with invited HEP and QC experts from IBM Quantum Network and beyond (by invitation only)

Participants

Institutes

Continents

https://doi.org/10.48550/arXiv.2307.03236

DESY.

IBM Quantum

RESEARCH

Quantum Computing for High-Energy Physics State of the Art and Challenges Summary of the QC4HEP Working Group

Alberto Di Meglio^{8*}, Karl Jansen⁵, Ivano Tavernelli³, Constantia Alexandrou¹, Srinivasan Arunachalam³, Christian W Bauer⁴, Kerstin Borras^{5,6}, Stefano Carrazza^{7,8}, Arianna Crippa^{5,29}, Vincent Croft⁹, Roland de Putter³, Andrea Delgado¹⁰, Vedran Dunjko⁹, Elias Fernández-Combarro¹¹, Elina Fuchs⁸, Lena Funcke¹², Jay Gambetta³, Daniel González Cuadra^{13,14}, Michele Grossi⁸, Zoe Holmes¹⁵, Stefan Kühn^{5,2} Denis Lacroix¹⁶, Randy Lewis¹⁷, Donatella Lucchesi¹⁸, Miriam Lucio Martinez¹⁹, Federico Meloni⁵, Antonio Mezzacapo³, Simone Montangero²⁰, Lento Nagano²¹, Voica Radescu³, Enrique Rico Ortega²², Alessandro Roggero^{23,24}, Julian Schuhmacher³, Joao Seixas²⁵, Pietro Silvi²⁰, Panagiotis Spentzouris²⁶, Francesco Tacchino³, Kristan Temme³, Koji Terashi²¹, Jordi Tura⁹, Cenk Tüysüz^{5,29}, Sofia Vallecorsa⁸, Uwe-Jens Wiese²⁷ and Jinglei Zhang²⁸

Correspondence:

alberto.di.meglio@cern.ch ⁸CERN, Switzerland Full list of author information is available at the end of the article

Abstract

Quantum computers offer a fascinating path for a paradigmatic change of computing in the natural sciences and beyond, with the potential of achieving a so-called quantum advantage, namely a significant (in same cases exponential) speed-up of numerical simulations. The rapid development of hardware devices with various realizations of qubits allows already now to execute small scale but representative applications on quantum computers. In particular, the High Energy Physics community plays a pivotal role in accessing the power of quantum computing, since the field is a driving source for challenging computational problem. This concerns, on the theoretical side, the exploration of models which are very hard or even impossible to address with classical techniques and, on the ental side, the enormous data challenge of newly emerging experime

Next meeting at CERN on November 16-17, 2023

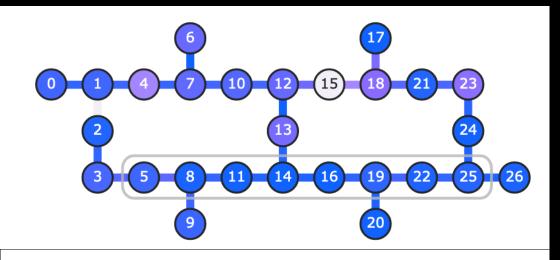
Outlook and open questions

- Quantum computing offers great opportunties while HEP provides challenging problems
 - What are the most promising applications?
 - How do we define performance and validate results on realistic use cases?
- Experimental data has high dimensionality
 - Can we train Quantum Machine Learning algorithms effectively?
 - Can we reduce the impact of **data reduction** techniques?
- Experimental data is shaped by physics laws
 - Can we leverage them to build better algorithms?
- CERN is committed to creating impact on QT research in the coming years

Thank you!

November 20th-24th, 2023 @CERN

https://qtml-2023.web.cern.ch/


Sofia.Vallecorsa@cern.ch

Quantum Techniques in Machine Learning

Preliminary hardware runs

Stable performance on *ibmq_toronto* :

- Design circuit taking **qubits topology** into account
- Use 8 qubits and native gates
- Reduced training set size (100) →
 increased statistical uncertainty
- Use AUC (less affected by statistics)
- Monitor **mean purity of states** to verify state coherence during computation
 - Fully mixed state yields a purity of 0.39 10⁻² (1/2ⁿ)

Kernel Machine Run	AUC	$\langle {\rm tr} \rho^2 \rangle$
Hardware $L = 1$ Ideal $L = 1$	$0.844 \\ 0.999$	0.271(6) 1
Hardware $L = 3$ Ideal $L = 3$	$0.997 \\ 1.0$	$0.15(2) \\ 1$
Classical	0.998	-

Quantum Machine Learning examples:

Reinforcement Learning

Schenk, M *et al.* Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines. *arXiv preprint arXiv:2209.11044.*, CHEP2023

Reinforcement learning

Trial-and-error learning

Agent takes actions in environment and collects rewards

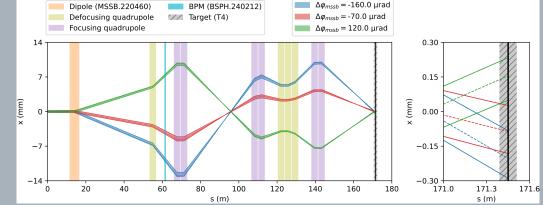
Q-learning

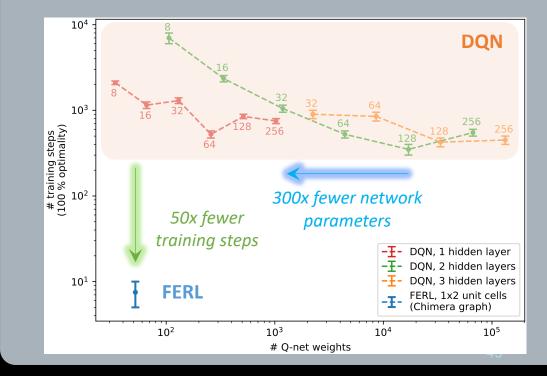
- Estimate return using Q-function Q(s, a)
- Learn iteratively using collected interactions
- Once trained, select action greedily

 $a = \arg \max_{a} Q(s, a)$

state s_t reward r_t r_{t+1} r_{t+1

Free-energy based RL (FERL)

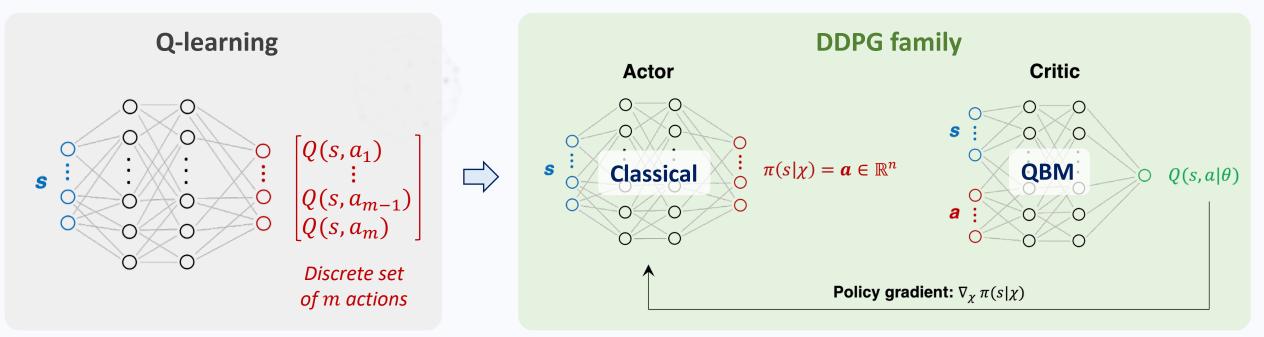

RL performance depends on type of Qfunction approximator


- Classical Deep Q-learning (DQN) Feed-forward neural net
- Free-energy based RL (FERL)
 Quantum Boltzmann machine (QBM)

Key concept: sample-efficiency

Relevant for particle accelerator control given cost of beam time (online training)

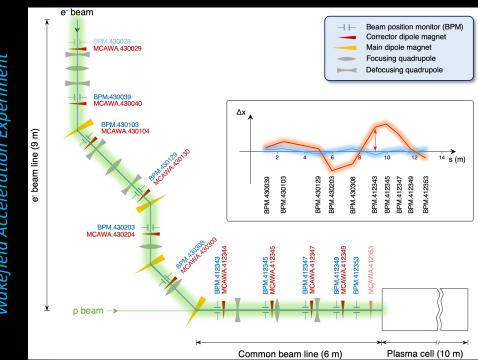
1st study: 1D beam steering CERN North Area transfer line (discrete action space) Dipole (MSSB.220460) BPM (BSPH.240212)

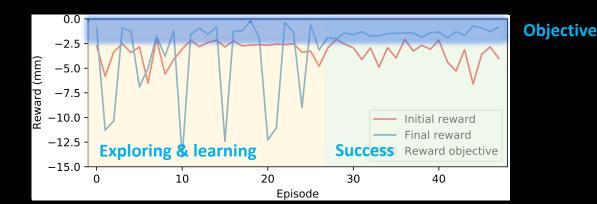


Schenk, M *et al.* Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines. *arXiv preprint arXiv:2209.11044.*, CHEP2023

Developing a hybrid actor-critic scheme

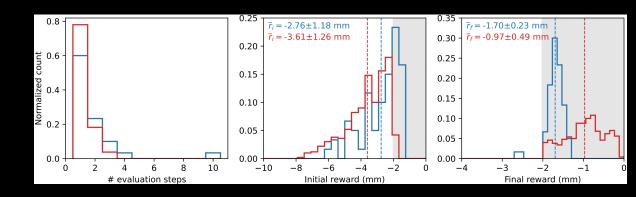
Accelerator optimization requires continuous action space \Rightarrow develop hybrid actor-critic algorithm


> QBM replaces classical critic net



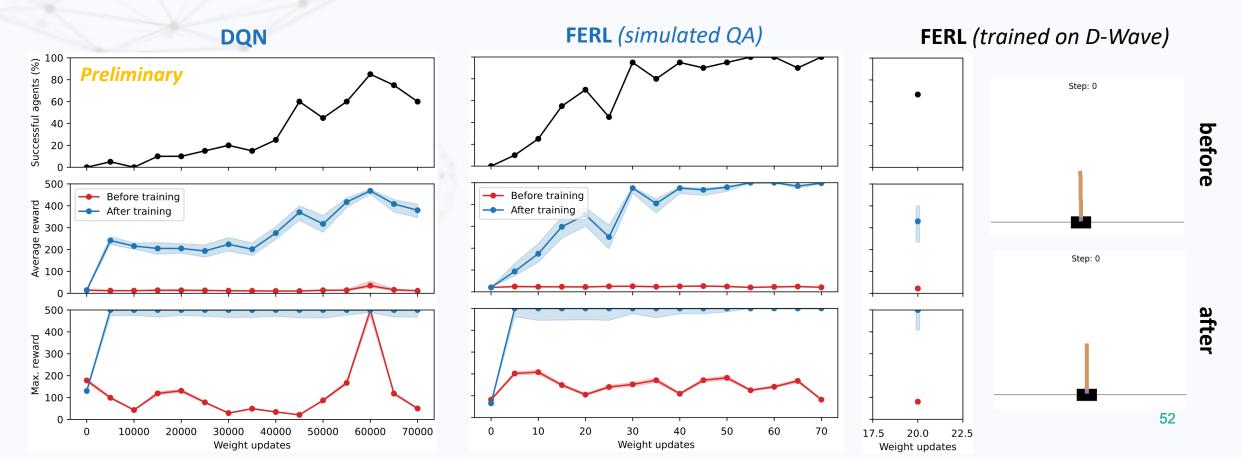
2nd study: 10D continuous beam steering

Environment: e⁻ beam line of AWAKE


- > Action: deflection angles at 10 correctors
- State: beam positions at 10 BPMs
- Objective: minimize beam trajectory rms
 - reward: negative rms from 10 BPMs

Training: on D-Wave Advantage quantum annealer (QA)

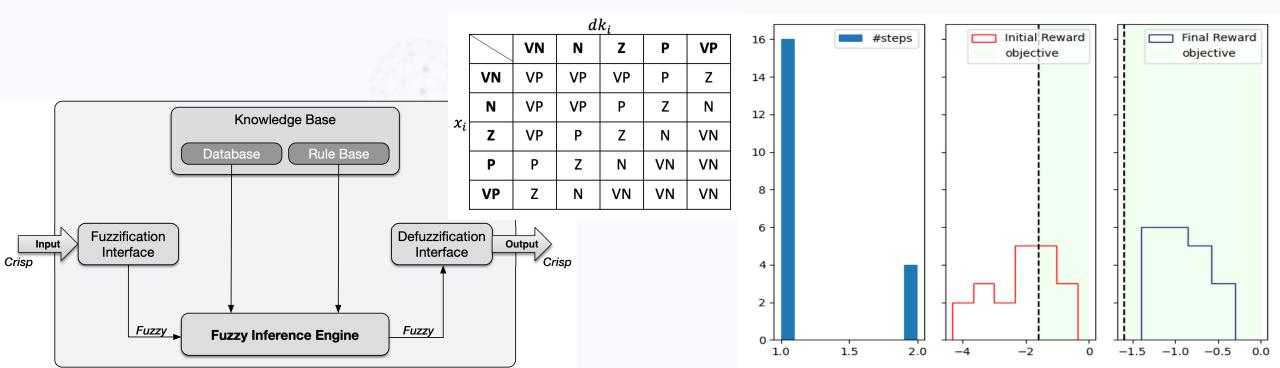
Evaluation: on actual beam line *Real vs. simulated QA*



- > Agent minimizes rms in 1 step in 60 % cases
- Hyperparameter tuning with simulated QA 51

3rd study: Cartpole-v1

Discrete action problem, non-linear dynamics


- Cartpole-v1: official OpenAl gym env from classic control problems domain
- Continuous state (4D), discrete action (right, left) problem with non-linear dynamics
- Terminate episodes after max. 500 steps
- Big gain in sample-efficiency and robustness for FERL vs DQN

1-slide excursion: quantum fuzzy logic controller

- Alternative control algorithm to RL
- Fuzzy Logic is used to develop control systems based on linguistic rules in highly interpretable
- Quantum Fuzzy Control System (G. Acampora, R. Schiattarella, A. Vitiello)
 Exploit exponential advantage in computing fuzzy rules on quantum computers
- Successfully evaluated on AWAKE beam line, no training required

Evaluation: on AWAKE beam line *Objective reached typically in 1 step*

