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Quantum potential…  and computer science
3

Investment in quantum 
technology

Principles of quantum mechanics enhance computations

Superposition leads to parallelism à exponential speedup?

Entanglement à non linear correlation and classical intractability?

Operations (gates) are unitary transformations à reversible computing?

Output is the result of a measurement according to Born rule à stochastic computation ?

No-cloning theorem à information security

Quantum state coherence and isolation à computation stability and errors

Qubit state collapses  à reproducibility?
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• Speed-up and complexity
• Sample efficiency
• Representational power
• Energy efficiency???

• Evaluate performance on realistic use cases

• QPU as accelerators within classical infrastructure?

QML: Quantum computing to “improve” ML
Type of Algorithm
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The CERN Quantum Technology
Initiative was launched in 2020

Understanding the impact of quantum 
technologies in HEP

Quantum simulation and HEP theory 
applications
Quantum Computing 
Quantum Sensing
Quantum Communication

QTI Roadmap: https://doi.org/10.5281/zenodo.5553774



Quantum Machine 
Learning :

Some basic concepts



(Quantum) 
ML Lifecycle

Data Embedding

The advantage of many known QML algorithms is impeded today by I/O bottleneck 

Readout  and 
measurement “shots”

Data Preparation

Model Definition

Model TrainingModel Testing

Model 
Interpretation

Adapt classical 
learning models to 

quantum space
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Compromise between exponential compression and 
circuit depth

Ex:  Amplitude Encoding

Quantum embedding for 
classical data
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Exponential compression
nqubit ∝ O(log(N)) 

Polynomial number of gates
ngate ∝ O(poly(N))

Gianelle, A., Koppenburg, P., 
Lucchesi, D. et al. Quantum 
Machine Learning for b-jet charge 
identification. J. High Energ. Phys.
2022, 14 (2022). 
https://doi.org/10.1007/JHEP08(20
22)014

S.Y. Chang, poster at ”Quantum Tensor Network in Machine Learning, NeurIPS 2021 

Effect of different 
encoding in 
quantum CNN 



Models

Gradient-free or gradient-based optimization
Data Embedding can be learned
Ansatz design can leverage data symmetries1

Variational algorithms (ex. QNN)

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data
structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

Representer theorem:

Implicit models achieve better accuracy3

Explicit models exhibit better generalization performance

3Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv preprint arXiv:2110.13162 (2021).
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Energy-based ML (ex. QBM)
Build network of stochastic binary units and 
optimise their energy. 
QBM has  quadratic energy function that follows 
the Boltzman distribution (Ising Hamiltonian)



QML Convergence

Classical Intractability & expressivity vs
trainability and generalization 



• Create classically intractable features 
in the Hilbert space

• Estimate Fidelity kernel
• Use classical training (convex losses)

x z

Quantum embedding and kernel methods

Hilbert space is exponentially larger 

Sparser data

Loss of predictive power

F. Di Marcantonio et al. , CHEP2023



Kernel values can 
concentrate 
exponentially around a 
common value

Need exponentially 
larger number of 
measurements to 
resolve

Kernel trainability and kernel concentration

Study kernel trainability in our Anomaly Detection model (arxiv:2208.11060)



Project quantum kernels to lower 
dimensionality (i.e. local density matrix)1:

• Improved generalizion while keeping 
features into states  classically hard

• Example: ttH(bb) binary classification22

Projected Quantum Kernel

1Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nature communications 12.1 (2021): 2631. 
2 V Belis et al, (2021), Higgs Analysis with Quantum Classifiers, EPJ Web Conf



Classical gradients vanish exponentially with the 
number of layers (J.McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent 
between batches.

Quantum gradient decay exponentially in the number 
of qubits (number of graph paths is exponential in the 
number of gates)

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., 

arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., 

Physical Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 

(2021))

Gradients decay and Model Convergence

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

J. McClean et al., arXiv:1803.11173



Equivariant Quantum CNN 
§ Construct equivariant quantum CNN 

under rotational & reflectional 
symmetry 

§ Improved generalization power

Extended MNIST 
Image classification: 

(digits 4,5) 

09.11.23

Su Yeon Chang, IEEE QCE23

ℋ = −𝐽%
⟨"#⟩

𝜎"𝜎#

Ising spins phase 
classification :



§ Loss landscape plotted with orqviz

Non-convexity of loss landscape

11/9/23 16

Non-equivariant QCNN ApprEquivQCNN



Quantum Machine 
Learning examples:

Generative Models



Generative QML and trainability barriers
Representation learning: encoding probability distributions

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). 
Trainability barriers and opportunities in quantum generative modeling. arXiv:2305.02881.

Real World Training data Training distribution

Quantum Circuit Born Machine Sampled data Model distribution

Loss function

exponentially larger number of shots is 
required to keep accuracy of explicit 

losses
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Quantum Circuit Born Machine for HEP

QCBM
Sample variational pure 
state | ⟩ψ(θ) by projective 
measurement through 
Born rule: 𝐩𝛉 𝐱 =
|*𝐱|𝛙(𝛉 ⟩) |𝟐 .

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers 
and opportunities in quantum generative modeling. arXiv:2305.02881.



Muon Force Carriers, in muon fixed-target 
experiments (FASER) or muon interactions in 
calorimeters (ATLAS)1. 
Generate multivariate distribution (E, pt, η) 
using a QCBM
Maximum Mean Discrepancy for training

QCBM for event generation

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)



Mean difference between 
the correlations in the MC 
and generated samples

Simulation Noisy 
simulation

IBMQ 
Mumbai

Classical

0.12 0.06 0.06 0.01

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)

Multivariate PDFs



Conditional 
probability distribution

a) train: 100 GeV         b) train 150 GeV          c) test 125 GeV
We want to modelize 𝒑(𝒚|𝒙) where x
is the incoming energy Ein. 

1. Data re-uploading does not 
improve the sampling.

2. Training on hardware is 
important to assimilate the 
noise.



Quantum Machine 
Learning examples:

Anomaly Detection

Quantum anomaly detection in the latent space 
of proton collision events at the LHC
arXiv:2301.10780.



So far only negative results in direct (model dependent) searches 

New Physics at the LHC

How to insure we 
do not miss 
potential 
discoveries?

We can design 
model agnostic 
searches!
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Unsupervised learning for Anomaly 
Detection

A typical hybrid QML workflow



Simulate QCD multi-jets at the LHC

Build jet from 100 highest pt particles
Apply realistic event selection

Standard Model jets

Convolutional AutoEncoder 
learns the  jet internal structure

ℝ#$$ → ℝℓ , ℓ = 4, 8,16

Jet table
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Find the hyperplane that maximizes the 
distance of the data from the origin of the 
feature vector space

Unsupervised kernel 
machine

Upper bound on fraction of anomalies in training data at 0.01 (at 
most 1% QCD training data are falsely flagged) 



Quantum anomaly detection in the latent space 
of proton collision events at the LHC
arXiv:2301.10780.

Results

Is this an «advantage» 
we can use?



Quantum anomaly detection in the latent space 
of proton collision events at the LHC
arXiv:2301.10780.

In reality….

Higher 
is better

Increasing entanglement & expressivity

Classical is 
better



Quantum Machine 
Learning examples:

Phase Transitions identification



QML for quantum data: drawing phase diagrams

1. Supervised classification of the ground 
state using a convolutional QNN

2. Quantum states are exponentially hard to 
save classically. 

3. Bottleneck from access to classical training 
labels (Interpolation does not work)
§ Train in integrable subregions 
§ Generalize to a full model1

Model: Axial Next Nearest Neighbor Ising 

(ANNNI) Hamiltonian:

Integrable for 
𝜅 = 0 or ℎ = 0.

Senk, Physics Reports, 170, 4 (1988)



Results

Binary Cross-entropy

Variational quantum data 

Monaco, at al.  arXiv: 2208.08748 (2022), accepted PRB 

Autoencoder1QCNN (95%)

1Kottman, et al., Phys. Rev. Research 3, 043184 (2021)
2M..Caro et al., arxiv:2204.10268, Banchi et all., PRX QUANTUM 2, 040321 (2021)

1. Out of Distribution Generalization2? 
2. Performance increases with the system’s size 

N=6 à N=12). 
3. QCNN gives quantitative predictions



Quantum Machine 
Learning examples:

QNN for Quntum Monte Carlo Integration



Monte Carlo integration

In HEP:
Phase space sampling scales exponentially with number of final state 
particles1

HL-LHC @ 3 10-3 fb-1 will have percent-level precision @Njet = 9 
Need comparable (higher-order) MC 
Njet increases with center-of-mass energy

Agliardi, Gabriele, et al. "Quantum integration of elementary particle 
processes." arXiv preprint arXiv:2201.01547 (2022)

09.11.23 34

1 arxiv:1905.05120
See also 1908.00167, 2004.13687

Time and memory usage (Sherpa 3.x.y + HDF5) (H. Schulz 2018)

Monte Carlo Integration is widely used in multiple 
applications. 
Computationally challenging

Recent estimates give  ~3 billion CPU-hours per year!



Monte Carlo integration for HEP
Agliardi, Gabriele, et al. "Quantum integration of elementary particle 
processes." arXiv preprint arXiv:2201.01547 (2022)

Examples: 

09.11.23 35

𝜎 =
1
𝐹
8𝑑Φ 𝑀 +Θ Φ − Φ,

matrix element squared which encodes 
the quantum mechanical process 

phase-space factor [possibly including 
parton-distribution function (PDF)] 

I= ∫𝑑𝑥 𝑓 𝑥 𝑔(𝑥)

probability distributions 

integrand

phase-space cuts 
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Quantum Monte Carlo

Quantum Monte Carlo is based on Quantum Amplitude Estimation (Brassard, Hoyer, Mosca, Tapp, arxiv:0005055)

à quadratic speedup from Grover’s algorithm

Agliardi, Gabriele, et al. "Quantum integration of elementary particle 
processes." arXiv preprint arXiv:2201.01547 (2022)

09.11.23

QAE estimates a with high probability such that the estimation error 
scales as O(1/M) instead of O(1/√M)

Different implemetations
available. (Grinko, Gacon, Zoufal, 
Woerner; arxiv: 1912.05559)

Estimation error for 
a = 1/2 @ 95% C.L 
wrt total number of 
oracle queries.



qGAN for data encoding
Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

Exact 

distribu�on 

loading

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Classical 

preprocessing

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

loading 

through qGAN

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

qGAN training

Classical 

preprocessing

Quantum data 

prepara�on 

Classical f encoding affects the quality and speed of 
integration

Test on  1 + 𝑥# distribution:
• 10k events, 3 qubits, 

circular entanglement

Agliardi, Gabriele, et al. "Quantum integration of elementary particle 
processes." arXiv preprint arXiv:2201.01547 (2022)

Use a quantum GAN:

• Efficient learning of probabilities over discrete values

• Control resolution through number of qubits

09.11.23
37

𝜎 =
1
𝐹
8𝑑Φ 𝑀 +Θ Φ − Φ,

probability distributions 

integrand



Encode Fourier expansions coefficients 
and integrate trigonometric functions 
FQMCI: Herbert Q6, 823 (2022)
• Assumes Fourier coefficients are 

analytically computed 
New approach provides a end-to-end 
quantum implementation 

QFIAE (Quantum Fourier Iterative 
Amplitude Estimation)

• Fourier series decomposition through 
a QNN

• Integrate each trigonometric 
component using QAE

Fourier series for  QMC

09.11.23 38

Jorge J. Martínez de Lejarza, 
2305.01686

https://quantum-journal.org/papers/q-2022-09-29-823/
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Improving Robustness of QML applications

• Understanding conditions to advantage 
• Stabilizing training on NISQ  (arXiv:2212.11826, arXiv:2303.11283)

• Trainability vs expressivity for generative models (arXiv:2305.02881)

• Evaluating generalisation
• Quantum vs classical data, phase transitions  (Physical Review B, 107(8), L081105)

• Algorithms beyond QML (Physical Review C, 106(3), 034325.)



Why does CERN engage in Quantum Technologies?

09.11.23 40

QT4HEP HEP4QT
Can CERN stay 
out of quantum 
technologies?

How can CERN 
contribute to 
quantum 
technologies?

• Develop technologies, 
capabilities required by 
CERN scientific
programmes

• Allow CERN to 
interoperate with future 
quantum infrastructures

• Extend and share
technologies uniquely
available at CERN

• Boost development and 
adoption of QT beyond
CERN

• Use CERN reputation to
maximise impact



CERN QTI Phase 2

09.11.23 41

HYBRID QUANTUM 
COMPUTING AND 
ALGORITHMS

QUANTUM 
NETWORKS AND 
COMMUNICATIONS

COLLABORATION FOR 
IMPACT

CERN QUANTUM 
TECHNOLOGY 
PLATFORMS



CERN QTI Phase 2 Impact 
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HYBRID QUANTUM 
COMPUTING AND 

ALGORITHMS

QUANTUM 
NETWORKS AND 

COMMUNICATION
S

CERN QUANTUM 
TECHNOLOGY 
PLATFORMS

COLLABORATION 
FOR IMPACT
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Impact: Bringing together HEP and QC 
experts

45+ 319
Participants Institutes Continents

QC4HEP: High Energy Physics Working Group

When: Nov 3-4, 2022, within the QT4HEP Conference 
week
Where: CERN, Geneva 
Who:  organized by CERN/DESY/IBM Quantum with 
invited HEP and QC experts from IBM Quantum 
Network and beyond (by invitation only)

Kick-off meeting last November

https://doi.org/10.48550/arXiv.2307.03236

Next meeting at CERN on November 16-17, 2023
09.11.23



Outlook and open questions
• Quantum computing offers great opportunties while HEP provides challenging 

problems
• What are the most promising applications?
• How do we define performance and validate results on realistic use cases?

• Experimental data has high dimensionality
• Can we train Quantum Machine Learning algorithms  effectively?
• Can we reduce the impact of data reduction techniques?

• Experimental data is shaped by physics laws
• Can we leverage them to build better algorithms? 

• CERN is committed to creating impact on QT research in the coming years
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Thank you!

November 20th-24th, 2023 
@CERN

Sofia.Vallecorsa@cern.ch

https://qtml-2023.web.cern.ch/
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Preliminary hardware runs

Stable performance on ibmq_toronto :

• Design circuit taking qubits topology into 
account

• Use 8 qubits and native gates
• Reduced training set size (100 )  à 

increased statistical uncertainty
• Use AUC  (less affected by statistics)
• Monitor mean purity of states to verify  

state coherence during computation
• Fully mixed state yields a purity of 0.39 

10-2 (1/2n)



Quantum Machine 
Learning examples:

Reinforcement Learning
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Reinforcement learning

48

… in a nutshell

Trial-and-error learning
• Agent takes actions in environment and collects rewards

Q-learning
• Estimate return using Q-function Q(𝐬, 𝐚)
• Learn iteratively using collected interactions
• Once trained, select action greedily

𝑎 = arg max1 𝑄(𝒔, 𝒂)

RL book: Sutton & Barto

State
where am I? Where are 
ghosts, snacks, cookies?
Actions
up, down, left, right
Reward
food (+), ghosts (-)
Return
how much food am I 
going to eat over time

Example: Pacman

Schenk, M et al. Hybrid actor-critic algorithm for quantum reinforcement learning at 
CERN beam lines. arXiv preprint arXiv:2209.11044.,  CHEP2023

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
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1st study: 1D beam steering
CERN North Area transfer line (discrete action space)

50x fewer 
training steps

DQN

FERL

300x fewer network 
parameters

Free-energy based RL (FERL)

49

RL performance depends on type of Q-
function approximator 
Ø Classical Deep Q-learning (DQN)

Feed-forward neural net
Ø Free-energy based RL (FERL)

Quantum Boltzmann machine (QBM)

Key concept: sample-efficiency
Ø Relevant for particle accelerator control 

given cost of beam time (online training)

Schenk, M et al. Hybrid actor-critic algorithm for quantum reinforcement learning at 
CERN beam lines. arXiv preprint arXiv:2209.11044.,  CHEP2023



∈ ℝ!

DDPG family

Developing a hybrid actor-critic scheme

50

Accelerator optimization requires continuous action space        develop hybrid actor-critic 
algorithm
Ø QBM replaces classical critic net

QBMClassical

Q-learning

𝑄(𝑠, 𝑎$)

𝑄(𝑠, 𝑎%&$)
𝑄(𝑠, 𝑎%)

Discrete set 
of 𝑚 actions
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2nd study: 10D continuous beam steering

51

Environment: e- beam line of AWAKE
Ø Action: deflection angles at 10 correctors
Ø State: beam positions at 10 BPMs
Ø Objective: minimize beam trajectory rms

reward: negative rms from 10 BPMs
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Training: on D-Wave Advantage quantum annealer (QA)

Exploring & learning Success

Objective

Evaluation: on actual beam line
Real vs. simulated QA

Ø Agent minimizes rms in 1 step in 60 % cases
Ø Hyperparameter tuning with simulated QA
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3rd study: Cartpole-v1
Discrete action problem, non-linear dynamics

FERL (simulated QA)

• Cartpole-v1: official OpenAI gym env from classic control problems domain
• Continuous state (4D), discrete action (right, left) problem with non-linear dynamics
• Terminate episodes after max. 500 steps

DQN
Preliminary

FERL (trained on D-Wave)

before
after

• Big gain in sample-efficiency and robustness for FERL vs DQN
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1-slide excursion: quantum fuzzy logic controller

53

Knowledge Base

Fuzzification 
Interface

Defuzzification 
Interface

Fuzzy Inference Engine

Database Rule Base

Input Output

Fuzzy Fuzzy

Crisp Crisp

• Alternative control algorithm to RL
• Fuzzy Logic is used to develop control systems based on linguistic rules highly interpretable
• Quantum Fuzzy Control System (G. Acampora, R. Schiattarella, A. Vitiello)

Exploit exponential advantage in computing fuzzy rules on quantum computers
• Successfully evaluated on AWAKE beam line, no training required Evaluation: on AWAKE beam line

Objective reached typically in 1 step


