

VHEE for the treatment of deep seated tumors: an update

Annalisa Muscato

Scuola post-laurea in Fisica Medica, Dipartimento di Scienze e Biotecnologie medico-chirurgiche, Sapienza Università di Roma, Italy

Trento 29/03/2023

A. Muscato

FLASH Radiotherapy with hlgh Dose-rate particle beAms

VHEE potential

After having verified the potential of FLASH and conventional irradiation of prostate cancer, we have carried out a detailed study of intra-cranial lesions comparing the VHEE results with state-of-the-art irradiations performed with p and IMRT.

We chose a case of **meningioma** and **chordoma** to study the potential of VHEEs for those treatments in which adequate tumor coverage is complex to achieve because of the extreme proximity of PTV to OARs. In addition, intracranial lesions are <u>a good example</u> to the test the potential of conventional and FLASH irradiation in order to obtain **additional sparing to the OARs** that are currently limiting the dose prescription to the PTV.

With Electrons of High Energy Delivered at FLASH Rates: The Example of Prostate Cancer

Alessio Sarti^{1,2}, Patrizia De Maria³, Giuseppe Battistoni⁴, Micol De Simoni^{2,5}, Cinzia Di Felice⁶, Yunsheng Dong⁴, Marta Fischetti^{1,2}, Gaia Franciosini^{2,5}, Michela Marafini^{2,7}, Francesco Marampon⁸, Ilaria Mattei⁴, Riccardo Mirabelli^{2,5}, Silvia Muraro⁴, Massimiliano Pacilio⁶, Luigi Palumbo^{1,2}, Loredana Rocca¹, Damiana Rubeca¹, Angelo Schiavi^{1,2*}, Adalberto Sciubba^{1,9}, Vincenzo Tombolini⁸, Marco Toppi^{1,9}, Giacomo Traini², Antonio Trigilio^{2,5} and Vincenzo Patera^{1,2}

A. Muscato

Treatment planning of intra-cranial lesions with VHEE: comparing conventional and FLASH irradiations potential with state-of-the-art RT and PT. A. Muscato⁹, G. Battistoni⁸, L. Campana⁹, D. Carlotti^{2,11}, F. De Felice⁷, A. De Gregorio^{2,3,*}, M. De Simoni^{12,3}, C. Di Felice⁷, Y. Dong⁸, G. Franciosini^{1,3}, M. Marafini^{5,3}, I. Mattei⁸, R. Mirabelli^{1,3}, S. Muraro⁸, M. Pacilio⁷, L. Palumbo^{1,3}, V. Patera^{1,3}, A. Schiavi^{1,3}, A. Sciubba^{1,4}, M. Schwarz¹⁰, S. Sorbino⁹, V. Tombolini⁶, M. Toppi^{1,3}, G. Traini³, A. Trigilio^{2,3} and A. Sarti^{1,3}

Intracranial lesions: C1&M1

C1, chordoma tumor

Patient C1	dosimetric constraints
PTV and PTV Boost	$V_{95\%} > 95\%$, never above 107%
Brainsteam	$D_1 \leq 55 \text{ GyRBE}$
Spinal cord	$D_1 \leq 54 \text{ GyRBE}$
Parothids	$D_{mean} \leq 26 \text{ GyRBE}$
Ear canals	$D_{mean} \leq 30 \text{ GyRBE}$
Cochlea	$D_{mean} \leq 35 \text{ GyRBE}$

A. Muscato

VHEE treatment plan

input information came from APSS (proton plans) and Policlinico Umberto I (IMRT plans):

- 1. The same equidistant fields have been used for IMRT/proton and VHEE planning;
- 2. VHEE beams have transverse size of few mm and a negligible divergence;
- 3. The electron pencil beam (PB) paints each irradiation field like in **active PB** scanning techniques;
- 4. The energy of each electron fields was chosen so to have the **maximum** of dose release in the tumor center;

With these assumption we performed a **FLUKA MC simulation**

Treatment optimization

By optimizing the fluence of individual PBs, the optimizer searches for the global minimum of the following cost function:

Treatment evaluation

The treatment plan is evaluated by analyzing the resulting **DVH** (Dose-Volume Histograms) and by verifying that the plan satisfies the **Dose-Volume constraints**.

Vxx < YY%: YY% of the referred organ or region must absorb less than XX Gy. D is the mean dose absorbed by a given organ

The DVH represents the 3D information of the **absorbed** dose (Gy or %) as a function of the volume (%) of the studied organs.

C1: p vs VHEE 4 field

A. Muscato

VH (Dose-Volume Histograms) for the Proton, photons and VHEE treatment.

FRIDA meeting

C1: IMRT vs VHEE 7 field

A. Muscato

VH (Dose-Volume Histograms) for the Proton, photons and VHEE treatment.

FRIDA meeting

M1: p vs VHEE 3 field

DVH (Dose-Volume Histograms) for the Proton, photons and VHEE treatment.

A. Muscato

FRIDA meeting

M1: IMRT vs VHEE 7 field

DVH (Dose-Volume Histograms) for the Proton, photons and VHEE treatment.

A. Muscato

FRIDA meeting

FLASH effect potential

From the optimized dose maps, we evaluated the potential of the FLASH effect by applying FMF, the result obtained was used to rescale the optimized dose.

FLASH effect potential: C1 case

preserving dosimetric constraints on OARs.

PTV Brainstem	Spinal cord Parothid Cochlea Middle e		lands rs
		FLASH	
C1	Constraints	VHEE 7F	
PTV Boost	$V_{95\%} \ V_{105\%}$	96.43 % 93.08 %	
Brainstem	D_1 Gy(FMF)	54.37	
Spinal cord	D_1 Gy(FMF)	47.70	
Parothid	D _{mean} Gy(FMF)	22.67	
Ear canal	D _{mean} Gy(FMF)	26.69	
Cochlea	Dmean Gy(FMF)	31.07	

A. Muscato

For C1 case, without FLASH effect, we observed a not achieving satisfactory tumor coverage. So we studied with the FLASH effect how it is possible to increase the dose delivered to the PTV, while

FRIDA meeting

C1	no FLASH	Constraints	Protons	Photons	VHEE 4 field	VHEE 7 field
PTV I	Boost	$V_{95\%} \ V_{105\%}$	93.57 % 0 %	92.96 % 3.05 %	85.52 % 28.32 %	90.61 % 6.12 %
Brainstem		D_1	54.64 Gy	53.79 Gy	55.04 Gy	55.15 Gy
Spinal cord		D_1	53.39 Gy	54.04 Gy	53.54 Gy	47.77 Gy

FLASH effect potential: M1 case

In that case, as the PTV coverage is already satisfactory without FLASH effect the latter would produce an additional reduction of the dose absorbed to OARs so resulting in additional OAR sparing.

PTV Brainstem	Optic nerves Cochlea	 Carotid arteries Normal tissue 	
Posterior optical	- Eyeballs		
		FLASH	
M1	Constraints	VHEE 3F	
PTV	$V_{95\%} \ V_{105\%}$	98.97 % 0.05 %	
Optic nerves	D_1 Gy(FMF)	47.64	
Chiasm	D_1 Gy(FMF)	47.38	
Posterior optical path.	D_1 Gy(FMF)	47.59	

A. Muscato

FRIDA meeting

FLASH effect potential: M1 case

M1	no FLASH	Parameter	Protons	Photons	VHEE 3 field	VHEE 7
PTV		$egin{array}{c} V_{95\%} \ V_{105\%} \end{array}$	100 % 0.01 %	99.30 % 0.009 %	98.97 % 0.05 %	97.00 % 1.27 %
Optic nerves		D_1	52.98 Gy	53.76 Gy	54 Gy	54 Gy
Chiasm		D_1	53.52 Gy	54 Gy	53.68 Gy	53.71 Gy
Posterior optical path.		D_1	53.58 Gy	53.82 Gy	53.94 Gy	53.67 Gy

A. Muscato

e	PT Bra Pos	V instem terior optical	 Optic nerves Cochlea Eyeballs 	s (Carotid arte Normal tissi	ries 🕇	
*							
	M1	FLASH	Constraints	PROTON	IMRT	VHEE 3F	
	PTV		$V_{95\%}$	100 %	99.30 %	98.97 % 0.05 %	(

 $V_{105\%}$

 D_1 Gy(FMF)

 D_1 Gy(FMF)

 D_1 Gy(FMF)

0.009 %

47.51

46.81

47.47

0.05 %

47.64

47.38

47.59

0.01 %

46.39

47.47

46.86

FRIDA meeting

Optic nerves

Posterior optical path.

Chiasm

Pancreas case

Organ	Dosimetric constraints			
PTV	V _{95%} >95% never above 107%			
Kidney	D _{mean} <10 Gy			
Stomach	D _{max} <45 Gy			
Duodenum	D _{max} <35 Gy			
Spinal Cord	D _{max} <18 Gy			
Liver	D _{mean} <15 Gy			

A. Muscato

Patient with pancreas tumor, was treated with hypo-fractionated treatment of 30 Gy in 5 fractions using VMAT.

29/03/2023

A. Muscato

	ſ

gan	Photons	VHEE 7 field
ΓV	$V_{95\%}99.13\%V_{105\%}83.35\%$	$V_{95\%}98.01\%V_{105\%}71.2$
ey (R)	$D_{mean} 5.88 \; Gy$	D_{mean} 7.08 Gy
nach	D_{mean} 13.65 Gy	D_{mean} 18.99 Gy
lenum	D _{max} 29.98 Gy	D_{max} 29.50 Gy
ver	$D_{mean} 3.77 \text{ Gy}$	$D_{mean} 4.08 \text{ Gy}$
al cord	D _{max} 9.42 Gy	D _{max} 9.09 Gy

FRIDA meeting

29/03/2023 17

Update TPS for VHEE-FLASH algorithm

Thanks to Angelica De Gregorio!

FRIDA meeting

TPS are software that, by combining the physical models of the particles at the energies of interest with the accelerator parameters, allow to **optimize the dose distribution in the** patient with the intent to maximize tumour control and minimize normal tissue complications.

• The **features** that we would like to implement in a **VHEE/FLASH TPS** are:

1. Optimize **field direction**; Not done yet

2. Field **Energy** and **Pencil Beam flux** optimization **simultaneously**;

Angelica De Gregorio

• In order to investigate the potential of VHEE based radiotherapy, a VHEE Treatment Planning System (TPS) is needed.

The main **goal** of the Optimizer is to select:

- The **Energy** of each field;
- 2. The **number of particles** of each PB.

In order to **maximize tumor coverage e** minimize the dose delivered to the **OARs** and the normal tissue, the algorithm explore different set of energies and fluences.

Dose absorbed by the voxel

 χ **Voxel based**

Simultaneously

Calculate the cost function for a given configuration.

Minimize the cost function using minimization methods.

d

Angelica De Gregorio

Optimization process: Cost Function

Minimizing the so called **Cost Function**: A Cost Function is used to measure how wrong the model is in finding a relation between the input (the planned dose for the tumor and the organs) and output (the absorbed dose according to the simulation).

Planned dose

$^{2} =$	$\sum_{i \epsilon PTV}$	$\omega_i rac{(d_i - D_{PTV})^2}{d_i^2}$	$+\sum_{i \in OAR} \omega_i \underbrace{(d_i)}$	$-\frac{D_{OAR}}{d_i^2})^2$	$*g(d_i - L)$

Organ	dosimetric constraints
Target volume	$V_{95\%} > 95\%$, never above 107%
Rectum	$V_{50} < 50\%, V_{60} < 35\%, V_{65} < 25\%, V_{70} < 20\%, V_{75}$
Anus	$V_{30} < 50\%$
Bulbourethral Glands	$\overline{\mathrm{D}} < 50 \mathrm{~Gy}$
Femurs	$\overline{ m D}$ $<$ 52 Gy, V $_{60}$ $<$ 5%
Bladder	$\overline{\rm D}<65$ Gy, $V_{65}<\!\!50\%,V_{70}<\!\!35\%,V_{75}<\!\!25\%,V_{80}$.
	Organ Target volume Rectum Anus Bulbourethral Glands Femurs Bladder

The minimization methods used in the software are:

1. Simulated Annealing (SA); 2. Quantum Annealing (QA).

Able to get **out of local** minima

Optimization process: Minimization methods

- The minimization algorithm, randomly varying the PB fluence and the beam energy, defines specific configurations called "grain".
- At each iteration, the change induced in the cost function is evaluated: if the cost is less than value obtained in the previous iteration then the grain is accepted and the state stored.

Angelica De Gregorio

Thermal

The majority of the TPS softwares use an analytical dose evaluation approach, which may be not so accurate. However the computational cost of the problem didn't allow so far to make a more precise calculation starting from the Dij matrix given as output by a MC simulation. Our solution is to use **FRED**.

Dose evaluation with FRED

The FRED MC has been developed to allow a **fast optimization of the TPS** in Particle Therapy, while keeping the dose release accuracy typical of a MC tool. Today FRED protons is used in various medical and research centers such as MedAustron (Vienna), APSS (Trento), Maastro (Maastricht) and CNAO (Pavia) while carbon ions and electromagnetic models for FRED are under optimization.

Our TPS software is capable to **optimize energies** and fluences simultaneously using Dij matrix **from FRED** at energies step of 10 MeV.

Angelica De Gregorio

Monte Carlo software: FRED

Real IMRT prostate treatment at Policlinico Umberto I hospital, Rome

- Patient with intermediate-risk prostate cancer, was treated with conventionally fractionated IMRT of 78 Gy in 39 fractions;
- Using FRED we have simulated the treatment, planned using 5 fields with energies that go from **70 MeV to 130 MeV** (step of 10 MeV).

• With this choice of SS we obtained:

Angelica De Gregorio

FRIDA meeting

x (cm)

SAPIENZA (INFN CONFICTENT Some results: Prostate Cancer

- The first goal was to achieve **at least the result we have obtained with the standard approach** (already published, in which only the number of particle of each PB was optimized) but optimizing the energies of the fields and the PB fluences simultaneously.
- Choosing a proper set of weight for each ROI, we are able to achieve a **better sparing of the Organs at risk** with respect to the standard optimization.
- The energies of the 5 fields chosen by the TPS are:

NEW IPS	
Field	E [MeV]
1	120
2	110
3	130
4	130
5	90

OLD (fixed Energies)

Field	E [MeV]
1	70
2	120
3	130
4	130
5	120

dose release on the isocenter of the PTV.

Angelica De Gregorio

Conclusions

This preliminary study suggests that **VHEE** could be exploited in the treatments of deep sated tumor with performances that are **comparable** with the ones achieved in conventional RT or PT. In this context, the **FLASH** effect has a nice potential for improving the treatments efficacy;

The initial studies have been carried out **without optimizing** the **number** of used **fields**, their energy or they direction: the promising results obtained are then 'conservative' in that respect;

Next steps

Develop and implement different clinical treatments with VHEE, like VMAT. Current studies are exploring the potential for different pathologies that are suited for **hypo-fractionated regime** (lung and pancreas pathologies).

A further step will be to optimize the algorithm in order to reduce the execution time and make it compatible to the clinical need.

Even if the FLASH effect is already modelled using the Flash Modifying Factor (FMF) to account for the reduced normal tissue damage, a proper evaluation voxel based of the **Dose Rate** will be introduced as a constraint to be respected;

The study of the beam delivery is becoming more and more important.. different approaches to the PTV coverage (single large field or active scanning) have a large impact on the dose rate.

A. Muscato

FLASH effect

In conventional radiotherapy, the dose is absorbed by the tissues at relatively low rate ($\sim 0.01 \text{ Gy/s}$)

FLASH effect:

We decided to compare the performances of a realistic VHEE treatment, with and without the FLASH effect, with standard photon and proton RT. I focused my study on intra-

First human patient treated with 166 Gy/s

FRIDA meeting

External Beams Radiotherapy (EBRT)

Radiotherapy with External Beams (EBRT) is used to treat almost 50% of solid tumors. Beam of photons (6-15 MeV), protons (150-250 MeV) and electrons (4-20 MeV) can be used to treat different pathologies, exploiting the specific absorbed dose distribution each projectile

PHOTONS (6-15 MV)

FRIDA meeting

Very High Energy Electrons (VHEE)

ELECTRONS WITH E > 70 MeV have been considered already in the past reduced impact of range uncertainties (broader BP).

