Multitrack extension tests

Lorenzo Castelli

University of Pisa

 $29 \ {\rm March} \ 2023$

Overview

Lorenzo Castelli (University of Pisa) Radiation Biophysics 29 March 2023 2/20

MC Track Structure

Monte Carlo Methods

MC methods are particularly suitable for the study of radiation interactions with a target material since their stochastic nature

Two main approaches have been adopted by these simulation tools, the macroscopic or condensed history transport method and the event-by-event track structure approach

∜

◊ Macroscopic:

computationally fast and perfectly reliable for high energy and large scales

♦ Track Structure:

computationally expensive and thus inefficient to simulate the whole ion trajectory.

TRAX water radiolysis

Daria Boscolo: Nanoscale insights on hypoxia radiosensitization with ion beams

Physics

INPUT

Cross sections for shell-specific ionization (5) and excitation (8)

The tracks of incident proj. are followed **event by event** until reaching a cutoff

OUTPUT

Spatial distribution of all the shell-specific ionization and excitation events and of all the sub-excitation electrons

Lorenzo Castelli (University of Pisa)

Radiation Biophysics

Pre-chemical (fs - ps)

INPUT

Distribution of H_2O^+ , H_2O^* and e_{aq}^- and their kinetic energy.

- Dissociation:Depends on ionization type and excitation state
- ♦ Thermalization: fragments release the kinetic energy (cannot interact until thermalized).

Pre-chemical stage

OUTPUT

The initial position of all the chemical species generated by water radiolysis

Chemical (ps - μ s)

INPUT

Dissociation products distribution

 \downarrow

All radiolytic products diffuse and interact with each other with a **step by step approach** (Δt changes during evolution)

 $Chemical\ stage$

OUTPUT

It is possible to determine the position of each chemical species at every step of the simulation.

Radiation type

Different radiation qualities, i.e. radiation type and energy, vary in their energy deposition patterns \hookrightarrow Different ionization density

Lorenzo Castelli (University of Pisa)

Radiation Biophysics

TRAX-CHEM simulation

G-value: the number of molecules produced per 100 eV of energy deposited.

- $\diamond~$ Point-like Source : monoenergetic 500keV electrons and 40MeV/u carbon ions.
- \diamond Target geo: Cylinder with 5 μ m radius and 1 μ m depth

Intertrack simulation e

- \diamond Point-like Source : monoenergetic 500keV electrons (2-3-6)
- \diamond Target geo: Cylinder with 5 μ m radius and 1 μ m depth

10/20

Intertrack simulation Carbon ion

- \diamond **Point-like Source :** monoenergetic 40MeV/u carbon ions (2-3-6)
- \diamond Target geo: Cylinder with 5 μ m radius and 1 μ m depth

11/20

New Features

Recently, the option of examining the system while controlling the temporal and spatial separation of incident particles has been added.

 \hookrightarrow Combination of different Δx and Δt for 2 particles

 \cdot Proton 20MeV

 \cdot Helium 5MeV/u

$\Delta t \text{ [ps]}$	0	1	10	10^{2}	10^{3}	10^{4}	10^{5}
0	\checkmark						
1	\checkmark						
10	\checkmark						
100	\checkmark						
1000	\checkmark						

New Features

Recently, the option of examining the system while controlling the temporal and spatial separation of incident particles has been added.

 \hookrightarrow Combination of different Δx and Δt for 2 particles

LET =	3 keV/	μm
-------	--------	---------

$\Delta t \text{ [ps]}$	0	1	10	10^{2}	10^{3}	10^{4}	10^{5}
0	\checkmark						
1	\checkmark						
10	\checkmark						
100	\checkmark						
1000	\checkmark						

New Features

Recently, the option of examining the system while controlling the temporal and spatial separation of incident particles has been added.

 \hookrightarrow Combination of different Δx and Δt for 2 particles

• Proton 20MeV

 $LET = 3keV/\mu m$

$\Delta t \text{ [ps]}$	0	1	10	10^{2}	10^{3}	10^{4}	10^{5}
0	\checkmark						
1	\checkmark						
10	\checkmark						
100	\checkmark						
1000	\checkmark						

20MeV Proton

♦ Point-like Source : monoenergetic 20MeV Protons ♦ Target geo: box with 2.5μ m depth and 5μ m lenght

Comparison with Kreipl

G-value for $\operatorname{OH}^{\scriptscriptstyle\bullet}$ at $1\mu \mathrm{s}$ (left mine, right Kreipl)

Proton 20MeV

New Features

Recently, the option of examining the system while controlling the temporal and spatial separation of incident particles has been added.

 \hookrightarrow Combination of different Δx and Δt for 2 particles

• Helium 5MeV/u LET

 $LET = 38 \text{keV}/\mu\text{m}$

$\Delta t \text{ [ps]}$	0	1	10	10^{2}	10^{3}	10^{4}	10^{5}
0	\checkmark						
1	\checkmark						
10	\checkmark						
100	\checkmark						
1000	\checkmark						

5 MeV/u Helium

- \diamond **Point-like Source :** monoenergetic 5MeV/u Helium
- \diamond Target geo: box with 1.5 μ m depth and 5 μ m lenght

Comparison with Kreipl

G-value for OH ${}^{\bullet}$ at $1\mu s$ (left mine, right Kreipl)

He 5MeV/u

Conclusion

Carbon?