

WP3- FLASH beam monitoring & dosimetry

INFN-CT activities

Giuliana Milluzzo INFN- Sezione di Catania giuliana.milluzzo@ct.infn.it

FRIDA general meeting Trento 29-30 Marzo 2023

Deliverables

Giuliana Milluzzo¹, Maurizio Marrale ^{1,2}, Cristina D'Oca ^{1,2}, Giorgio Collura ^{1,2}, Antonio Bartolotta ^{1,2}, Riccardo Borgese ^{1,2}, Ernesto Amato ^{1,3}, Antonio Italiano ¹ and Francesco Romano ¹

¹ INFN – Sezione di Catania
 ² Università di Palermo, Dipartimento di Fisica e Chimica
 ³ Università di Messina

Deliver	Short name	Description	When (M)
D3.1.1	air fluorescence	Design, realization and test of air monitoring based detector for electrons	16
D3.1.2	ICB	Design, realization and test of an ICT specifically tailored for intense and short proton/ion beams	16
D.3.1.3	Silicon and Diamond	Tests of silicon/diamond prototypes with proton and electron beams	16
D.3.1.4	SiC	"Free standing Membrane" SiC detectors tests with electrons/protons for beam monitoring	16
M3.1	BM R&D end	Production and test of the first BM prototypes	16
D.3.2.1	Calorimeter	Portable calorimeter prototype development and characterization with electrons/protons	16
D.3.2.2	Scintillators	Development and test of scintillator-based dosimeters with RO electronics	16
D.3.2.3	SiC Dosimeters	SiC detectors optimization and test for relative dosimetry with proton/electron beams	16
M3.2	Dosimeters R&D end	Production and test of the first dosimeter prototypes	16
D3.3.1	Beam characterization	Dosimetric characterization of the beams with available BM systems (dual gap chamber, SEM, FC) and reference dosimeters (Faraday cup, alanine, RCF, IC)	24
D.3.3.2	Intercomparisons	Intercomparisons and calibrations of the developed BMs and dosimeters	32
D3.3.3	Guidelines	Guidelines and recommendations for the monitoring and dosimetry of FLASH beams (what we learnt so far)	36
M3.3	Prototypes commissioning	BM and Dosimetric systems prototypes commissioning	36

Advanced example: eFLASH_radiotherapy

- We accurately replicated the most relevant components of the ElectronFlash LINAC at CPRF by following the manufacturing specifications provided by Sordina lort Technologies S.p.A.
- Variable applicator dimensions for different dose per pulse setup (diameter 1cm to 10cm).
- Simulation of a water phantom and detectors placed within the phantom to predict dose distributions and scattering
- From both the PDD and dose profiles, we can see a good agreement between simulation and validation.

Current authors: J. Pensavalle (University of Pisa, Italy) G. Milluzzo (INFN Catania, Italy), F. Romano (INFN Catania, Italy)

Validation of PDD and beam profiles with RCF

WP3. Dosimetry

Activity of INFN Catania

D.3.3.1

Dosimetric characterization of the beams with reference dosimeters: **alanine** dosimeters (M24)

SIT

Experiment with Electron FLASH linac accelerator @ CPFR

Experimental conditions

- E = 9 MeV
- Pulse duration: 0.5-4 us
- Dose per pulse: from 0.1-15 Gy
- Istantaneous dose rates up to MGy/s
- Single alanine detector placed in a phantom at the build-up
- 40-100 mm Applicator

DPP comparison with FLASH diamond

Measurements

- Comparison of alanine dose response with the reference dosimeter (Flash diamond) varying the DPP (working points) and pulse duration
- Intercomparison of alanine response with the metrology service of NPL

DPP VS pulse length

WP3. Beam monitoring

Activity of INFN Catania

D.3.1.4

SiC detectors tests with UHDR electron/protons for beam monitoring (M16)

STLAB Silicon carbide detectors for beam monitoring and dosimetry

Silicon carbide (SiC) detectors have been realized at the STLab company. The devices are semiconductor PIN junctions: a thin p+, highly doperation of a n+ thick substrate. In case of the free-standing membranes the substrate n+ is removed by electrochemical etching

First characterization of SiC detectors with UHDR electrons @SiT **Sordina Electron FLASH facility**

Accelerator parameters

- SiT-Sordina Electron ELASH •
- E = 7, 9 MeV
- Pulse duration: 1-4 us
- Dose per pulse: from 0.01-10 Gy •
- Average dose rates up to few kGy/s

Measurements

- E = 9 MeV
- Pulse t = 2 us
- 10 um thick SiC
- V = 480 V
- D/p = 0.01 10 Gy
- 35 mm collimator •
- Comparison with PTW diode
- Electrometer issues at larger doses per • pulse

(b)

80

Cumulative dose [KGy]

SIT

Characterization with Electron FLASH Linac accelerator @ CPFR

Experimental conditions

- E = 9 MeV
- Pulse duration: 0-5-4 us
- Dose per pulse: from 0.1-20 Gy
- Istantaneous dose rates up to 5 MGy/s
- 10x10, 5x5, 2x2 mm² 10 um thick SiC placed at the build-up connected to a Keithley electrometer
- Alanine dosimeters at the build-up
- 30,40,100 Applicator and Open Field
- RC circuit connected to the detector to slow down the current acquisition in the electrometer

Measurements

- SiC response as a function of the BIAS voltage
- SiC response as a function of the dose per pulse to verify linearity in single pulse
- Comparison with alanine detectors
- Intra pulse instantaneous dose-rate measurements

SiC response in charge VS DPP-All applicators and SiC

G. Milluzzo et al., in prep for Medical Physics

G. Milluzzo et al, talk accepted at ESTRO Congress
G. Milluzzo et al, talk accepted at **12° Congresso Nazionale AIFM**

SiC response in charge VS DPP

G. Milluzzo et al., in prep for Medical Physics

G. Milluzzo et al, talk accepted at **12° Congresso Nazionale AIFM**

Measurements with the oscilloscope of the intra-pulse instantaneous dose rate@CPFR

Experimental conditions

- E = 9 MeV
- Pulse duration: 0.1-4 us
- Dose per pulse: from 0.1-8 Gy
- 10x10, 5x5 10 um thick SiC & 20 um freestanding membrane
 placed at the build-up connected to a
 Keithley

electrometer

- Alanine dosimeters at the build-up
- 30,40,100 mm Applicator
- RC circuit connected to the detector to slow down the current acquisition in the electrometer

Keithley

Intra-pulse instantaneous dose-rate measurements

Planned activity for Silicon carbide detectors

- Comparison of the ACCT-SiC signals at the same position for instantaneous dose-rate monitoring
- Extend the linearity curve up to high DPP in the perspective of beam monitoring
- Design and realization of 2D array Silicon carbide for single shot beam profile monitoring

• Test with FLASH proton beams @ PARTREC-UMCG, TIFPA ...

WP3. Beam monitoring

Activity of INFN Catania

D.3.1.4

Portable calorimeter prototype development and characterization with electrons/protons

FRIDA general meeting Trento 29-30 Marzo 2023

Calorimetry for absolute dosimetry

Charge liberated in the medium results in an energy cascade - the liberated energy ends up as heat → measured as a temperature rise

$$D_m = c_m \Delta T$$

Where c_m stands for the specific heat capacity of the material and ΔT for the temperature rise.

- Water calorimeters: bulky systems typically used as a primary standard for metrology
- The temperature rise of water is **very small**:

$$\Delta T (water) = 2.4 \times 10^{-4} \text{ K/Gy}$$

Graphite calorimeters: operational modes

Main common operation modes for graphite calorimeters:

- Isothermal mode:
 - o temperature of all the components is kept constant
 - electrical energy is supplied to heat the components and keep them at a chosen constant temperature
 - o during irradiation the beam will heat the components
 → the electrical energy supplied drops to maintain a constant temperature.
 - the drop in electrical energy supplied will be equal to the radiation energy supplied to the calorimeter

Adiabatic mode

 \circ the temperature in all components is allowed to drift

 o any energy deposited in the calorimeter by the radiation presents as a rise in the temperature of the components.

 \circ no electrical heating involved

o only measuring of temperatures using the sensing thermistors

Quasi-adiabatic mode

olf room temperature is not stable

ightarrow it is difficult to see radiation induced temperature rises

 the temperature of the outer jacket is fixed, but the core and inner jacket are allowed to drift

o provides an environment with greater stability for the inner components

Graphite calorimeters

- Higher temperature rise as respect water for same dose
 → Developed much earlier than water calorimeters
- lattice impurities and chemical reactions
 → assumed to be negligible (confirmed by experiments)
- High thermal diffusivity:

heat deposited in a graphite volume distributes within the volume in \sim ms \rightarrow no possibility to measure T rise at point of measurement inside the phantom

■ A core needs to be thermally isolated from the surrounding graphite by one or more air or vacuum gaps → nested configuration

- Correction factor to be applied:
 - o for the effect of gaps (vacuum or air)
 - Volume average correction factor due to the finite size of the core
 - heat transfers
 - pre- post- drift extrapolation

Calorimeters for UHDR beams? Yes, but portable and as secondary standard

Conventional Radiotherapy

Development of a small portable graphite calorimeter

- Requirement: small, portable, easy-to-use
 - *thin-walled calorimeter* in order to minimize divergence/absorption of the beam
 - No vacuum pump (air gaps) → not an issue for high T rise gradients due to UHDRs
 - Cylindrical shape (core nested in a jacket + additional graphite slabs)
 - Four thermistors connected to the core
 - Two thermistors connected to the jacket: i) enabling jacket temperature measurement (more accurate assessment of the corejacket heat transfer); ii) providing capability to operate in a constant temperature mode (further improving isolation)
 - One thermistor for **monitoring the ambient temperature**

Calorimetry for UHDR laser-driven protons

- NPL OR OUEEN'S UNIVERSITY
- First ever recorded absorbed dose measurement using calorimetry → proof-of-principle test with laser-driven protons at RAL (Rutherford Appleton Laboratory, UK) using VULCAN PW laser of CLF

Calorimeter

- VULCAN PW pulses of energy 600 J and ~500 fs durations
- focused to intensities > 10^{20} W/cm² onto $15 \mu m$ Au targets
- Protons produced in the range 20– 45 MeV
- High-energy component separated using a **0.9 T** dipole magnet
- Doses between 1-3 Gy in one single pulse
- Instantaneous dose rate exceeding 10⁹ Gy/s
- Protection from EMP → Discrete components strategically positioned to protect the circuitry

F. Romano et al., Journal of Physics (2020)

Secondary standard graphite calorimeter for reference dosimetry with UHDR beams The "FRIDA-CALO"

- High accuracy **reference** dosimetry (*active dosimeter*)
- Simple usage and low cost
- 2 mm graphite core
- 1 single termistor connected to the Wheatstone bridge to measure the temperature increase during the irradiation
- IBA PPC05 ion chamber geometry (same holders)

First test with UHDR beams @ CPFR

SINGLE PULSE TEMPERATURE RISE

App 100-40, pulse length= 4 us

F. Romano et al, talk accepted at **12° Congresso Nazionale AIFM**

First test with UHDR beams @ CPFR

TEST @SIT APRILIA

EXP CONDITIONS

- Reference dosimetry with alanine detector
- Only two modalities (beam currents) of irradiation FLASH/CONV

Consuntivi 2022

TALK

- 1. G. Milluzzo ,, "Characterization of novel ultra-thin Silicon Carbide detectors with ultra-high dose rate electron beams for FLASH radiotherapy", Flash Radiotherapy and Particle Therapy (FPRT), Barcellona, 30 Novembre-2 Dicembre 2022 (Poster presentation)
- 2. F. Romano : "Flash and mini beams effects: towards a combined approach?", Flash Radiotherapy and Particle Therapy (FPRT), Barcellona, 30 Novembre-2 Dicembre 2022 (Poster presentation)
- 3. M. Marrale: "Dosimetric characterization of an ultra-high dose rate beam for flash radiotherapy through alanine epr dosimetry", Flash Radiotherapy and Particle Therapy (FPRT), Barcellona, 30 Novembre-2 Dicembre 2022 (Poster presentation)
- 4. G. Milluzzo : "Challenges and opportunities of ultra-high dose rate dosimetry for FLASH radiotherapy", 47th Annual meeting of the European Radiation Research Society (ERRS), 21-24 Settembre 2022 (Poster presentation)
- 5. F. Romano "Dosimetry for FLASH radiotherapy: challenges and recent developments " invited talk ERSS
- 6. M. Marrale et al., "Could alanine/EPR dosimetry be useful for ultra-high dose rate beams used for FLASH radiotherapy?", EPRBioDose conference, 2022.
- 7. F. Romano "", Scuola Caldirola Pisa Settembre 2022
- 8. M. D'OCA Alanine/EPR dosimetry for ultra-high dose rate beams used for FLASH radiotherapy , CVIII Congresso Nazionale della Società Italiana di Fisica, September 12th-16th 2022, Milano (Italy) (2022).
- 9. M. MARRALE,, Dosimetric characterization of an ultra-high dose rate beam for flash radiotherapy through alanine epr dosimetry, EPRBiodose2022 Virtual event 28th-30th March 2022 (2022b).

PUBLICAZIONI

- 1. Romano, F.; Milluzzo, G.; Di Martino, F.; D'Oca, M.C.; Felici, G.; Galante, F.; Gasparini, A.; Mariani, G.; Marrale, M.; Medina, E.; et al. First Characterization of Novel Silicon Carbide Detectors with Ultra-High Dose Rate Electron Beams for FLASH Radiotherapy. Appl. Sci. 2023, 13, 2986.
- 2. Medina E.; Sangregorio E.; Crnjac A.; Romano F.; Milluzzo G.; Vignati A.; Jakšic M.; Calcagno L.; Camarda M. Radiation hardness study of Silicon Carbide sensors under high temperature proton beam irradiations. Micromachines 2022, 1, 0.
- 3. Romano, F.; Bailat, C.; Jorge, P.G.; Lerch, M.L.F.; Darafsheh, A. Ultra-high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Med. Phys. 2022, 49, 4912–4932.

TESI

Elettra Castronovo, "Dosimetria tramite Risonanza Paramagnetica Elettronica per fasci di Radioterapia FLASH", Relatori: Prof. Maurizio Marrale, Dr. Francesco Romano, Dott.ssa Giuliana Milluzzo, A.A. 2021/2022 Università degli Studi di Palermo