PEROV project: perovskite devices for visible light and potential for X-ray detection

High Precision X-ray Measurements 22 June 2023

Marianna Testa (LNF-INFN) On behalf of the PEROV collaboration:

- LNF-INFN A. De Santis, M. Testa
- INFN Sezione di Roma 1 C.Rovelli, S.Morganti
- Dipartimento Ingegneria Elettronica Tor Vergata : M Auf der Maur, F. Matteocci

1

- Dipartimento Chimica, Uni Milano: L. Lo Presti, S. Rizzato
- CNR NanoTec, ISR, ISM: L. Di Marco, I. Viola, R. Mastria, S. Sennato
- TIFPA: Lucio Pancheri, Alberto Taffelli

LNF electronic services: G. Papalino, G. Felici

Organo-Metal Halide Perovskite

2

- **Organo Metal-Halide Perovskites (OMHP)** are a class of hybrid organic-inorganic semiconductor materials with a perovskite unit-cell structure ABX₃ with
 - $A = CH_3NH_3^+, B = metallic cation (Pb^{2+}),$ X= halide anions (Cl⁻, Br⁻, l⁻)
- Opto-electronic properties combine advantages from organic and inorganic semiconductors

- Intense R&D in the last decade
 - OMHP are emerging as new generation photovoltaic material
 - promising candidate
 - large area and flexible sensitive photodetectors
 - More recently for radiation detection

Organo-Metal Halide Perovskite properties

OMHPs combine the advantages of inorganic and organic semiconductors.

Organic semiconductors:

- Disordered system
- Localized electronic states
- Hopping transport \Rightarrow low mobility
- Low cost, low temperature processing
- Can be solution processed
- Scalable to large area

Inorganic semiconductors:

- Ordered periodic crystal ⇒ band structure
- Delocalized Bloch states
- band transport ⇒ high mobility
- Usually wafer based technology
- Costly, high temperature processes

		Silicon	CH ₃ NH ₃ Pb(I,Br) ₃	
Density		2.33 g/cm ³	4.15 g/cm ³	
Band gap (eV)		1.12 (indirect)	1.5-1.6 / 2.24 (direct)	
Mobility (cm²/Vs)	electrons	1400	< 70/190	
	holes	450	< 160/220	
Absorption (cm ⁻¹)		< 104	> 4x10 ⁴	
Threshold energy for impact ionization (eV)		1.2	~2 / 2.5 (estimated)	
Mean free path (nm)		≤ 100	~100 (theory)	

• band gap tunable changing halide (I,Br,Cl)

contain highly mobile defects and have instabilities issues

Many features of interest for visible light detection and Radiation detection

Halide Perovskite for ionizing radiations

• The typical composition of HP contains heavy elements (Cs, Pb, Ag, Bi, Sn, I, Br) with atomic numbers in the range of 47-82, larger in comparison to widely used X-ray absorber - CZTS (max atomic number is 52).

Linear attenuation coefficient as a function of photo energy for several materials including halide perovskite Adapted from (*)

Foger et al	Adv	Mater	2018	1800691

h^+ effective mass $[m_e]$	e [–] effective mass $[m_e]$	$\mu_{\rm h+}[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$	$\mu_{\rm e-}[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$			
0.54 ^[109]	0.32 ^[110]	500 ^[109]	1500 ^[110]			
0.53[113]	0.06 ^[113]	400 ^[113]	8000 ^[113]			
0.72 ^[115,116]	0.11[115,116]	100 ^[117]	1100[117]			
es [[120]	0.16 ^[120]	≈20 ^[120]	≈150 ^[120]			
0.26 ^[122, 123]	0.23 ^[122, 123]	≤160 ^[124]	≤70 ^[124]			
0.15 ^[127]	0.25 ^[127]	≤220 ^[128]	≤ 1 90 ^[129]			
	h ⁺ effective mass $[m_e]$ 0.54 ^[109] 0.53 ^[113] 0.72 ^[115,116] $\approx 1^{[120]}$ 0.26 ^[122,123] 0.15 ^[127]	h ⁺ effective mass $[m_e]$ e ⁻ effective mass $[m_e]$ 0.54 ^[109] 0.32 ^[110] 0.53 ^[113] 0.06 ^[113] 0.72 ^[115,116] 0.11 ^[115,116] $\approx_1^{[120]}$ 0.16 ^[120] 0.26 ^[122,123] 0.23 ^[122,123] 0.15 ^[127] 0.25 ^[127]	h ⁺ effective mass $[m_e]$ e ⁻ effective mass $[m_e]$ μ_{h+} [cm ² V ⁻¹ s ⁻¹] 0.54 ^[109] 0.32 ^[110] 500 ^[109] 0.53 ^[113] 0.06 ^[113] 400 ^[113] 0.72 ^[115,116] 0.11 ^[115,116] 100 ^[117] \approx 1 ^[120] 0.16 ^[120] \approx 20 ^[120] 0.26 ^[122,123] 0.23 ^[122,123] \leq 160 ^[124] 0.15 ^[127] 0.25 ^[127] \leq 220 ^[128]			

- (μ x τ) product from 10⁻⁷ to 10⁻² cm²/V
- The typical values of the bulk resistivity for HPs exceed the level of 10⁷ Ohm.cm (300K), good signal/noise ratio

• Self Healing

(*)Wei & Huang, J. Nat Commun 2019, 10, 1066; Del Sordo et al. Sensors 2009, 9, ; H.M. Thirimanne et al. Nature Comm 2018, 9, 2926

PEROV: Overview of CH₃PbBr₃ crystal growth

Technology and Thickness	Pro	Contra
Film 300 nm thickness	 large area small transit time due to low thickness flexible substrate 	 polycristalline grain boundaries large variability between samples
Micro channels 2-6 microns realized	 large flexibility in dimension moderate area pixelization flexible substrate Deposited directly on substrate 	 need high optimization of parameters (pressure, temperature)
Single crystals Up 0.5 cm realized	 ideal for single crystal large dimension, up to O(1) cm³ low defects 	 No scalability to large area systems Need to be cut mechanically for low thickness

PEROV: Overview of CH₃PbBr₃ crystal growth

Technology and Thickness	Pro	Contra
Film 300 nm thickness	 large area small transit time due to low thickness flexible substrate 	 polycristalline grain boundaries large variability between samples
Micro channels 2-6 microns realized	 large flexibility in dimension moderate area pixelization flexible substrate Deposited directly on substrate 	 need high optimization of parameters (pressure, temperature) technologies can technologies can technologies can technologies can
Single crystals Up 0.5 cm realized	 ideal for single crystal larg The dimension, up to O(1) cm³ low defects 	best two divised to adapted lused to large area systems be adapted to be cut mechanically for low thickness

1 MABr + PbBr₂

Film-based devices production

Film-based devices: gain observation and modelling

Experimental observation of

- Breakdown-like behavior at around -4–5 V
- Small amount of photocurrent gain of ~ 2
 - Incident photon to current efficiency IPCE = J_{ph} hc / ($P_{in} \in \lambda$) ~ 200 %
- Developed phenomenological model to explain the observed reverse bias behavior and gain though
 - tunneling-assisted electron extraction at the TiO 2 /MAPbBr₃ interface
 - carrier multiplication
- Both processes mediated by the electric field due to *mobile ions Br-*
- Mobile ionic species in halide play an important role in photodetector and solar cell performance and stability
 - Not fully understood but critical

M. Testa, M. Auf der Maur, F. Matteocci, A. di Carlo APPLIED PHYSICS LETTERS 10.1063/5.0082425

Film-based devices: application for radiation detection

- Film devices can be used in combination with a scintillator (eg LYSO)
- Film not suitabble if sensitivity to single photon required (SiPM have gain ~10⁶)
- If large areas need to be covered, light intesity is high and timing performance not stringent, films are good candidate

Micro-wires on patterned substrate

Microfluidics-assisted technique to realize a controlled growth of OMHP single crystals, in the form of microwires, directly on a conductive patterned substrates W x L x H = 150 μ m x 500 μ m x 6(2) μ m

Area

Material Characterization

homogeneous 3D crystalline microstructures, consistent with microchannel used for confinement

- typical photoluminescence of
- expected cubic phase with cell

Xray diffraction

Characterization of micro-channels crystals: JV, IPCE

- 2 and 6 um thick-devices with active area of 0.034 mm² and 0.013 mm²
- JV curve: trap-filled-limited region at 2 V
 - trap density ~ $10^{14} 5 \times 10^{14}$ cm⁻³.
- Incident photon to current efficiency IPCE = J_{ph} hc / ($P_{in} \in \lambda$) > 100 % at bias > 2-2.5 V \rightarrow Gain observed

 Similar dark and light JV → gain probably due to photoresistive effect, possibly mediated by trap states

Characterization of micro-channels crystals: Light Intensity dependence

- A slightly super-linear behaviour is found within a light intensity variation of about a factor of eight
- Increase of IPCE as a function of the light intensity

6

Current density (µA/mm²)

0

0

6 µm

 $2 \,\mu m$

0.05

0.1

Incident intensity (μ W/mm²)

<mark>⊫e⊣</mark> ⊢e⊣ ⊨lei

 at least a component of the gain mechanism is related to a photoconductive effect

0.15

Advanced Material Technology 10.1002/admt.202300023

Characterization of micro-channels crystals: Rise Time

- Rise-time measured with light intensity of 0.16 μ W/mm²
 - connection to preamplifier and a pulse shaper and the output voltage signal has been measured with an oscilloscope
- Rise-time decrease of ~40 μs to ~27 μs for applied voltages between -1.5 V and -3 V, corresponding to gain variation of 4
 - Does not suggest gain mechanisms that increase rise times, like those related to trapping

Advanced Material Technology 10.1002/admt.202300023

Large Single crystal

- Dimensions up to 1.0 x 1.5 cm² and up to 0.5 cm thick down to 300 µm by cutting the crystals along one of the {100}cubic planes
- Device realized with Indium Tin Oxide / CH₃NH₃PbBr₃ / Au
- Stable response measured
- Due to large thickness, suited for radiation detection (X-rays, charged particles)

G. Tinti (LNF)

Charged particles detection

- Test Beam performed with electrons of 400 MeV at Beam Test Facility at LNF
- Bunch of 10 ns, 3.5 mm width
- Beam multiplicity from 1 to 1000 measured from downadstream calibrated calorimeter
- Sensitivity down to single particle

- Observed cosmics rays passying through the crystal
- Similar response as single electrons, as expected (MIP)

Deposited patent 102023000012477

With help of G. Papalino, G. Felici. A. Paoloni (LNF) $_{15}$

Perovksite on CMOS for ionizing detection

- Goal: the feasibility of a hybrid X-ray detector structure combining a perovskite absorption layer and a CMOS silicon active layer
 - Principle: X-ray-generated electrons in the perovskite layer are transferred to silicon and collected by low-capacitance sensing diffusions coupled to in-pixel readout electronics
- The CMOS chips with an area of the order of 1cm² are available from ARCADIA INFN project

- On going activity:
 - Test on deposition of perovskite microchannels through microfluidics technique on CMOS substrates with aluminium pads, used as passive substrates

Figure 1. Simplified cross section of the proposed hybrid detector

PRIN 2022 project granted

HyPoSiCX = Hybrid Perovskite on Silicon CMOS X-ray Detectors L.Pancheri, M. Testa, I.Viola

Perovksite on CMOS: Microfluidic-assisted growth

- High <u>crystalline quality</u> of each single crystal (SC);
- **Controlled SC <u>dimensions</u>** from 500 nm up to 200 μm;
- High <u>aspect ratios</u> for large area devices;
 - Growth directly on the device interface;
- Tunability of precursor composition;
- Flexibility in the SC shapes.

Confocal z-stack on a single crystal grown on the chip pad. Dotted lines indicate pad's position.

Radiation Hardness

Adv. Material 2016 <u>10.1002/adma.201603326</u>

- Solar Cell thin perovskite films
- 68 MeV proton flux 10 13 p/cm²
- Damage thr. much larger than commercial silicon-cell
- Self-healing of perovskite
 - Displaced atoms migrate in lattice and passivates defects

ACS Appl. Electron. Mater. 2023 10.1021/acsaelm.2c01406

- Bulk Crystal 2×1.5×1 mm³
- 3MeV protons flux of 7.3×10¹³ p/cm² (1MGy)
- Self-healing : performance recovered within hours

Conclusions and Outlook

- Halide Perovskite is a promising class of semiconductors for ionizing radiation detection
- Single Bulk crystals:
 - Stable response under visible light and X-rays
 - Sensitivity down to high energy single charged particles

- Single crystal microwires have been growth directly on patterned substrate with precise location and high aspect ratio
 - Visible light detection with high responsivity
 - Next steps:
 - testing with X-rays
 - Integration with CMOS technology

Backup

State of art for perovskite photodetectors

- Thin films, single crystals devices can be divided in two categories:
 - Vertical devices
 - without or with small gain and responsivity; short rise time
 - Rise time/decay time down to O(1) μ s; EQE up to ~ 80%.
 - Lateral devices
 - with gain, slow; generally lateral devices

 Table 2
 Summary of the reported broadband perovskite photodetectors

Materials (device structure)	Response range (nm)	EQE (%)	$R (A W^{-1})$	D* (Jones)	$\tau_{\rm r}/\tau_{\rm f}$	Ref.	J. Mater. Chem.
MAPbI ₃ thin films (vertical)	400-800	_	0.4	10 ¹² <i>c</i>	1.2/3.2 µs	174	2010 7 17/1
$MAPbI_3$ thin films (vertical)	375-800	84	0.339	$5 imes 10^{12 d}$		175	2019,7,1741
MAPbCl ₃ thin films (vertical)	300-400	24	0.071	$2.87 imes 10^{10 d}$	_	211	
MAPbI ₃ thin films (vertical-MSM)	300-800	$\sim 10^4$	>150	_	—/0.67 μs	172	
MAPbI ₃ thin films (lateral-MSM)	300-800	—	0.11	$1.3 imes 10^{11 d}$	<90/<20 ms	212	
MAPbI ₃ thin films (lateral-MSM)	440-800	$4.1 imes10^4$	219	$3.1 imes10^{12d}$	_	171	
MAPbI ₃ thin films (lateral)	400-800	80	320	_	6.5/5.0 μs	43	
$MAPbI_{3-x}Cl_x$ thin films (lateral)	254 & 350-800	3832	7.85	—	0.2/0.7 µs	145	
$MAPbI_{3-x}Cl_x$ thin films (lateral)	405-808	1808	11.5	$4.93 \times 10^{12 d}$	_	146	
MAPbBr _{3-x} I _x thin films (lateral)	300-600	_	0.055	_	<20/<20 µs	147	
MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} I ₃ thin films (vertical)	350-1000	_	>0.2	$> 10^{12c}$	—/7.4 μs	149	
$(FASnI_3)_{0.6}(MAPbI_3)_{0.4}$ thin films (vertical)	300-1000	~ 80	>0.4	$> 10^{12c}$	6.9/9.1 μs	47	
$FA_{1-x}Cs_{x}PbI_{3}$ thin films (lateral)	240-750	—	5.7	$2.7 imes 10^{13 d}$	45/91 ns	150	
MAPbI ₃ single crystal (lateral)	275-790	$2.22 imes10^5$	953	_	74/58 µs	182	
MAPbI ₃ single crystal (lateral) ^{a}	600–950	22	0.15	_	0.12/0.08 s	183	
MAPbBr ₃ single crystal (lateral) ^{a}	400-890	25	0.1		0.08/0.09 s		
Integrated MAPbCl ₃ single crystals (lateral)	340-430	100 (G)	11	10^{12d}	—/1 ms	185	
Integrated MAPbBr ₃ single crystals (lateral)	375-575	$1.4 imes 10^4$ (G)	4500	$> 10^{13 d}$	25/25 µs	184	
FAPbI ₃ single crystalline wafer (lateral)	—	900	4.5	—	8.3/7.5 ms	186	
MAPbI ₃ thin single crystal (vertical)	350-800	62	0.32	$> 10^{13 c}$	—/3.1 μs	187	
MAPbBr ₃ thin single crystal (vertical)	350-550	60	0.26		—/7.2 μs		
MAPbBr ₃ single crystalline thin film (vertical)	—	5×10^7 (G)	$1.6 imes 10^7$	—	81/892 µs	188	
Manaimmuntad MADht nanomating (latonal)			F0 F			100	

• Micro-sized photodetector development steadily growing [Adv. Funct. Mater. 2022, 32, 2200385]

- Few examples for vertical devices with low responsivity and/or slow rise time
 - 0.38 AW⁻¹ [Li et al Advanced Optical Mate-rials 2021, 9 210037]
 - Slow rise time [*Weng et al, Advanced Materials 2020, 32, 1908340,11*]

С,

Film-based devices: what we learned

- Gain observed in a fraction of devices
 - Not dependent on different hole transport layers: PTAA or MD89, none
- Significant differences among devices and pixels on the same devices

 $Gain = \frac{I_{light}(V) - I_{dark}(V)}{I_{light}(V_{ref}) - I_{dark}(V_{ref})}$ - Sample 18 - 4 - Sample 18 - 3 - Sample 18 - 3 - Sample 13 - 1 - Sample 13 - 1 - Sample 13 - 4 - Sample 13 - 4 - Sample 13 - 4

- Rise-time of ~ 2µs dominated by transport in the mesoporous TiO2 transport layer.
- Less impact from area
- Planar TiO₂: $0.5 1 \mu s$
- Mesoporous TiO₂: 1.3-2 μs
- Small area Mesoporous TiO₂: ~1 μs

Small Area

Large Single crystal production

- CH₃NH₃PbBr₃ single crystals synthesized by temperature raising method from a dimethylformamide solution of the reactants
 - Dimensions up to 1.0 x 1.5 cm² and up to 0.5 cm thick down to 300 μm by cutting the crystals along one of the {100}cubic planes
- X-ray diffraction:
 - Transitions observed at various temperatures in agreement with literature
 - At T_{room} complete full sphere of data: The methylammonium cation occupies the cuboctahedral sites and is disordered over 48 crystallographic equivalent directions

L. Lo Presti, S. Rizzato Dip. Chimica Univ. degli studi di Milano

Microfluidic-assisted perovskite crystallization

- Manipulation of fluids at the microscale
- High control over the crystallization kinetics
- Excellent uniformity, crystallinity and structural quality
- Allow perovskite crystallization on functional device
- Reduce significant batch-to-batch variability
- Allow patterning over large area, on nonplanar surfaces, with sub-micrometer resolution

Microfluidics: Soft-Lithography fabrication technique

Electronic/Optical Properties

Material	h ⁺ effective mass [m _e]	e [–] effective mass $[m_e]$	μ_{h+} [cm ² V ⁻¹ s ⁻¹]	μ _e - [cm ² V ⁻¹ s ⁻¹]	
Si ^{b)}	0.54 ^[109]	0.32[110]	500 ^[109]	1500[110]	
GaAs ^{b)}	0.53[113]	0.06 ^[113]	400 ^[113]	8000[113]	
CdTe ^{b)}	0.72 ^[115,116]	0.11[115,116]	100 ^[117]	1100[117]	
CuInS ₂	_⇔ [120]	0.16 ^[120]	≈20 ^[120]	≈150 ^[120]	
MAPbI ₃	0.26 ^[122, 123]	0.23 ^[122, 123]	≤160 ^[124]	≤70 ^[124]	
MAPbBr3 ^{c)}	0.15 ^[127]	0.25 ^[127]	≤220 ^[128]	≤190 ^[129]	

Egger et al. Adv. Mater. 2018, 1800691

Electronic properties are aligned with conventional semiconductors and much better than typical solution process organic semiconductors.

