

Aldo Mozzanica :: Photon Science Detector Group :: Paul Scherrer Institute

Photon science detector developments at PSI

HPXM 2023 :: Frascati :: June 2023

- Introduction to our group activities
- Our single photon counting and charge integrating detectors
 - why do we have two architectures?
 - status and applications
 - Jungfrau at FELs and Syncrothron sources
 - Dealing with the data
- Challenges from next generation sources and experimental techniques
- Our next steps:
 - •Charge integrating ASIC with high frame rate
 - •Photon counting ASIC with high(er) count rates
 - •Low noise applications

The Photon Science Detector Group - History

CMS pixel detector at the LHC, CERN

- 48 million pixels, 40 million images per second
- 1992 proposal, 2008 first collisions, Higgs 2012 X-ray detector development:
- Late 90s, photon detectors at the time were too slow, bottleneck for SLS
- Technology transferred from CMS group \rightarrow our group was born

The Photon Science (PSD) Detector Group

- Bernd Schmitt
- Rebecca Barten
- Anna Bergamaschi
- Carlos Lopez Cuenca
- Maria Carulla
- Sabina Chiriotti
- Simon Ebner
- Shquipe Hasanaj
- Roberto Dinapoli
- Erik Fröjdh
- Dominic Greiffenberg
- Thattil Dhanya
- Julian Heymes
- Viktoria Hinger
- Thomas King
- Davide Mezza
- Kostantinos Moustakas
- Kirsty Paton
- Christian Ruder
- Jiaguo Zhang
- Xie Xiangyu

The PSD Detector Group - How

The PSD Detector Group - How

The PSD Detector Group - How

The PSD Detector Group - Impact

8

Systems built by us:

- main detectors for SwissFEL
- extensively used at SLS
- Operated in tens of facilities. Systems from Dectris of PSI legacy:
- In all facilities, often mayority of beamlines
- Used for more than 60% of solved structures

[.] Contribution of detectors to PDB entries released in 2019.

The PSD Detector Group - Technology

Hybrid detectors for imaging

Sensor and readout electronics optimized separately

- © Direct conversion in semiconductor
- \odot Fast drifting of charge to the pixel
- $^{\odot}$ Room temperature operation
- ☺ Fast highly parallelized readout
- Interconnection (bump bonding)
 limits the pixel pitch
- 😕 Costs (?)
- ☺ Input capacitance increases the electronic noise (vs. monolithic)

The two architectures

Low flux on the detector* (<1MHz per pixel)

*some applications already exceed this at gen3 sources

- Large dynamic range
 Fluorescence rejection
 Pile-up at high fluxes
- S No energy information
- No flux limitation
 Limited dynamic range
- No energy information if more than one ph.
- [©] Large dynamic range
- ☺ No flux limitation
- [©] Needs fast readout
- 😕 Challenging calibration

Single photon counting (SPC) detectors

• "Noiseless", stable, reliable, user friendly, rad-hard, fluorescence suppression, large area systems, fast frame rate, pump-probe...

15 years ago

Thousands of protein structures solved using PILATUS/EIGER 10 years ago Enabled ptychography

Now few nanometers resolution can be achieved in 3D

Time resolved experiments

Time resolution better than 50(15)µs (20(70)kHz) possible with EIGER

9M EIGER In operation at CSAXs 22kHz burst

The 2 architectures

Low flux on the detector* (<1MHz per pixel)

*some applications already exceed this at gen3 sources

- © Large dynamic range
- © Fluorescence rejection
- \odot Pile-up at high fluxes
- [☺] No energy information

- ☺ Limited dynamic range
- No energy information if more than one ph.
- © Large dynamic range
- ☺ No flux limitation
- [©] Needs fast readout
- [©] Challenging calibration

Gain switching: theory of operation

Per pixel and per frame, JUNGFRAU automatically adjusts the gain to the input charge:

- small input charge: high gain
- medium input charge: medium gain
- high input charge: low gain

This achieves both

- single photon sensitivity
- high dynamic range

Per pixel and per frame, 16 bits output:

- 2 bits: what gain was used
- 14 bits: what was the amplified charge

This needs correcting to retrieve the A. Bergamaschi, HPXM2021 number of photons detected

Gain switching: practice.

A. Bergamaschi, HPXM2021

Jungfrau at SwissFEL

- 5y+ of operation
- More than 50Mpixels installed,
- 15 individual cameras
 - Complex experiments require up to 5 detector heads
- Running 24/7 with high stability:
 - Data always goes to a temporary buffer (>6h, 100s of TB)
 - Written to file as needed ex-post, at user request (pulse-id)

More recently: @Athos, the low energy branch

JUNGFRAU at other FELs

In operation:

LCLS 4M+1M+500k PAL 16M+3x4M+5M +6x500k EU-XFEL 4M+2x1M+4x500k

To be delivered: LCLS 16M SHINE 4M

In addition: EMs, plasma sources, ediffraction.

JUNGFRAU works well at Synchrotron

- data quality compares very well with state of the art PC detectors (EIGER)
- It allows faster data collection with strong beam
- Native SAD in 0.6s !

JF4M 2 kHz @ BioMAX

- Collaboration between MAX IV and PSI (MX + Detector + Bio
- JF 4Mpixel from PSI + MAX IV computing infrastructure with Jungfraujoch
- Demonstrated 1 ms time resolution at a synchrotron for a time resolved target (first to our knowledge)
- Continuous measurements up to 2 kHz (17 GB/s) frame rate on real biological target with good results
 - Consecutive 8 minute runs of 1 million frames

Online reduction and compression allowed to reduce initial 17 GB/s to below 4 GB/s (which is GPFS limit)

F. Leonarski, J. Nan, ..., F. Dworkowski (submitted) «Kilohertz Serial Crystallography with the JUNGFRAU Detector at a 4th Generation Synchrotron Source»

Pink beam and burst mode applications

Charge integrating are great!

Then, why insist on SPC?

Pros of CI

 very high count rate limit: 24Mcps @ 12.4keV, 40Mcps at 8keV can be extended 10x with a DR extension methods or even higher if dead time is acceptable

- No "corner effect"
- low energies: single photon resolution at 2.5keV
- at low flux, JF gives energy information, without Th scan.
- works with strong single bunches, suitable for serial pink beam crystallography

BUT

huge data rates : we have to run full speed, always

- •cooling
- Operation not as easy as a SPC
 Calibration is more complex
 Pedestals required

F. Leonarsky Struct Dyn. 2020;7(1). doi:10.1063/1.5143480

This has been developed for the 10M at the SLS – PXIII beamline. It's a 2U server with dedicated FPGAs network card receivers. Downstream rate still many GB/s after compression/downsampling

This has been developed for the 10M at the SLS – PXIII beamline. It's a 2U server with dedicated FPGAs network card receivers. Downstream rate still many GB/s after compression/downsampling

To cope with that, more IT infrastructure needed (in the schema, the temporary MaxIV setup for the experiment shown)

Clearly this is not something suitable for every beamline!

Next generation sources

Diffraction limited light sources: MAXIV ESRF APS And next year SLS huge increase in coherent flux more photons on the detectors!

FELs: LCLS-II HE: 1MHz soon SHINE : 1MHz in 2026 EU-XFEL : 1MHz CW from early '30

Next generation sources

Jungfrau 2.0 – faster and easier to use

- Same 75x75 um² pixel size
- Similar performance of the pixel frontend in terms of noise, DR
- Improved linearity (0.5%->0.05% i.n.l.) of the readout chain
- Improved pix-pix uniformity (helps calibration)
- Improved calibration capabilities (current sources) and pedestal collections modes

• Higher speed -> 10kHz readout target.

All this already In layout. E.g.:

2 paths towards 10kHz

- Today, off chip ADCs, 4x40MS/s 14bit
- 2.2kHz
- Higher speed analog chain 80+MHz
- 80MHz external ADCs
- 2X the number of outputs per chip Challenges:
- Analog cross talk
- ADC-FPGA communication protocols

Analog chain with 13bit precision @65MS/s already in silicon

- On chip 20MS/s ADCs
- On chip data sorting and I/O via 3.25Gs/s serializers
 Challenges:
- Small footprint ADC with >11ENOB, obtained without complex ADC calibration

Experience with the Gotthard II ADC.

Matterhorn – fast and reliable SPC

- 75x75 um² pixel size
- 4 thresholds (w. 16 bit counters)
- Up to 80 keV frontend dynamic range
- Electron and hole collection
- 100Gbit/s readout board
- 160 kHz in 1 bit mode
- <20ns gating
- 20M photons/pixeDs (multithresholding)

Matterhorn MH0.1 pixel layout

Improving rate capabilities: multithresholding

Multithresholding (in Mythen3)

 $m + m_2 + m_3$ 1e7 1.0 Counter 0: 0.5 Counter 1: 1.3 Counter 2: 1.7 Measured rate [photons/s/strip] Sum τ_0 : 105ns (fit) $\tau_{\rm s}$: 104ns (fit) 0.2 0.0 0.2 0.0 0.4 0.6 0.8 1.0 1e7 Incident rate [photons/s/strip]

Extended Paralyzable counter model:

Settings: standard Energy: 15 keV Noise 175e- RMS

10% lost counts at: th₀: 1.03M th_{sum}: 6 M

Andrä M, et al. JINST (2019) 14: C11028 https://doi.org/10.1088/1748-0221/14/11/C11028

Matterhorn 0.1

- 75x75 µm² pixel size
- ASIC: ~5x5 mm² (3.6x3.6 active=48x48=2304 pixels)
- 4 comparators; 4x 16 bit counters
- 250 eV- 20 keV dynamic range
- Hole collection
- 17 kHz in 16bit/4cnt mode
- 140kHz in 8bit/1cnt mode
- <20ns gating speed (on small array)
- 20 Mcts/pix/sec at 80% efficiency (with pileup tracking)
- <100e- ENC for low photon rates</p>

Prototype submitted 05.12.2022, received 07.06.2023

Matterhorn 0.1

Serializers: 1.6GHz, Data rate: 1.28Gbit/s including 10b/8b encoding Slow control for chip configuration and debugging Addressing Readout 1152pixels/serializer Serializer speed=1.28Gbit/s @8 bit 1152x8= 9216bit Frame rate: =138.9kHz Target for full size= 20kHz @8bit, 160kHz @1bit

Preview: Matterhorn 0.1

Basic configuration works PLL works <10ps jitter 10b8b, Serializer, CML, all work At 1.6 Gbps! (raw- 1.28 after 8b10b) Pixel and pixel matrix still have to be tested.

Sensor development for soft X-rays

• Improve quantum efficiency

- Enhance single photon resolution
 - Lower noise in readout electronic
 - Low Gain Avalanche Detectors (LGADs)
 - Improves SNR, no dark counts
 - Challenging thin entrance window and segmentation
 - Ideal for
 - Soft X-ray single photon counters
 - RIXS with MÖNCH

Andrä, Zhang et al., Jour. Synch. Rad. 2019.

ILGADs make SPC possible down to 500eV.

LGADs (450ev-2keV)

- Ptychographic Imaging BiFeO₃ at Fe L3 Edge (712 eV)
- Tim Butcher @ SIM beamline
- Current resolution ~8 nm

Eiger 512x512 with LGAD sensor in in a Vacuum flange setup.

Spin Cycloids

500 nm

PAUL SCHERRER INSTITUT

Wir schaffen Wissen – heute für morgen

The Photon Science detector group at PSI...

- ... delivers state of the art detectors worldwide.
- ... strives to optimize hybrid detectors in every aspect.
 Next challenges...
- ... soft X-ray detectors.
 ... a new single photon counting pixel detector for diffraction limited light sources.
- ... a faster frame rate charge integrating detector.

My thanks go to

- Bernd Schmitt
- Rebecca Barten
- Anna Bergamaschi
- Carlos Lopez Cuenca
- Maria Carulla
- Sabina Chiriotti
- Simon Ebner
- Shquipe Hasanaj
- Roberto Dinapoli
- Erik Fröjdh
- Dominic Greiffenberg
- Thattil Dhanya
- Julian Heymes
- Viktoria Hinger
- Thomas King
- Davide Mezza
- Kostantinos Moustakas
- Kirsty Paton
- Christian Ruder
- Jiaguo Zhang
- Xie Xiangyu

Direct vs. Indirect conversion for hard X-

- Signal of single X-rays usually much larger than electronic noise
 DQE ~ Quantum efficiency
- Interconnection (bump bonding) limits the pixel pitch

- No single photon resolution because of highly inefficient visible light conversion and collection
 DQE << Quantum efficiency
- Optical magnification can increase the spatial resolution

5

Faster detectors for SLS2.0 and XFELs

- Single photon counting detectors require higher count rate capability for experiments at SLS2.0
 - Faster shaping time thanks to new **CMOS** technology
 - Multiple thresholds improve count rate capability by an order of magnitude

- High frame rate readout
 - For charge integrating detectors
 - Larger dynamic range at synchrotrons
 - Higher flux for single photon experiments
 - CW-mode XFELs
 - Time resolved experiments
 - Huge amount of data
 - Almost 1 TB/s on the whole detector

41

• Tiling of modules required for larger field of view

- More pixels [] more data
 - Fully parallel readout at full speed:
 - EIGER 9M []36 GB/s [] 0.4 PB/day
 - JUNGFRAU 16M [] 64 GB/s [] 0.7 PB/day
 - MÖNCH 0.3 160k []2 GB/s [] 170 TB/day
- Dedicated data backend required

Network Storage Display

burst mode applications

A. Bergamaschi, HPXM2021

The Gotthard II ADC

DNL after calibration @10-bit

- 20MS/s12b operation
- 200x600um2
- Low power consumption BUT:
- ENOB = 10.1-10.3 bit
- Hard to calibrate.

arXiv:2103.15405