

IXPE calibration from ground to space

High precision X-ray Measurements Frascati, 2023-06-23

Sergio Fabiani (INAF-IAPS) and the IXPE Calibration Team (INAF-IAPS, INFN, NASA/MSFC)

INAF-IAPS: Enrico Costa, Ettore Del Monte, Alessandro Di Marco, Sergio Fabiani, Riccardo Ferrazzoli, Fabio La Monaca, Fabio Muleri, John Rankin, Paolo Soffitta, Fei Xie INFN : Luca Baldini, Simone Castellano, Simone Maldera, Alberto Manfreda, Carmelo Sgrò NASA/MISFC: Wayne Baumgartner, Steve Bongiorno, Jeff Kolodziejczak, Steve O'Dell, Brian Ramsey, Allyn Tennant, Nicholas Thomas, Martin Weisskopf

on behalf of the IXPE Science Team (https://ixpe.msfc.nasa.gov/partners_sci_team.html)

IXPE ingredients

Are to take the total and total and the total and total and the total and the total and the total and the total an

Photoelectron Track

An overview on the IXPE on ground calibration

- IXPE observatory comprises 3 identical Telescopes
 - <u>3 Detector Units (DUs)</u> (Italian contribution including the Detector Service Unit) at the focus of <u>3 Mirror Module Assemblies (MMAs</u>) (contributed by USA)
 - All DUs and MMAs on board IXPE were calibrated separately in Italy at INAF-IAPS and at the Stray Light Test Facility (SLTF) of MSFC, respectively.
- The spare DU with the spare MMA were, moreover, calibrated also in the Telescope configuration at the SLTF of the MSFC

IXPE @ Ball Aerospace, Boulder (Colorado, USA) Page 3

Instrument Calibration @ INAF-IAPS

- Nominally, 40 days of calibration for each one of the 4 DUs:
 - First measurement 26th July 2019, last measurement 14th Sept. 2020
 - 7 days per week, 24 h a day
 - Set-up and alignments during working hours, then remote monitoring
 - 530 measurements, 4052.2 h of acquisitions and 2.250 bilion counts collected
- Calibration mainly dedicated to the polarized and unpolarized respense
 - Requirement on the knowledge of the response <0.1%
- Deep and extended calibration
 - Designed and produced custom sources (problem solving during the calibration)
 - Defined new procedures, never experimented before
- Due to satellite dithering strategy, a dual approach was applied
 - Deeper calibration at the center of the field of view
 - Illumination with a lower statistics on the full field of view
- Built ICE versatile facility at INAF-IAPS in a ISO 7 Clean Room (Muleri et al. 2022)
 - Operating in air with He flowing for reducing absorption at low energy
 - Manual and motorized stages
 - Positioning ~ 10 μ m, inclination ~1 arcmin
 - Spot measurements from ~25 μm
 - Commercial SDD (energy spectra) and CDD (images) for source testing before calibration with DUs

Instrument calibration with unpolarized radiation: spurious modulation

- Unpolarized measurements at 6 energies:
 - Commercial X-ray tubes or ⁵⁵Fe: direct or fluorescence
 - Use of filters to select the desired energy
- Residual polarization (due to Bremsstrahlung continuum and X-ray tube geometry, diffraction on fluorescence target) removed by summing up two measurements rotated by 90° (residual polarization and Spurious Modulation sum differently for the two measurements)
- Spurious modulation removed by SOC pipeline thanks to calibration (Rankin et al. 2022)

Map of SM @ 2.7 keV for DU-FM2

SM vs energy in a 3 mm diameter spot

rage 5

Instrument calibration with polarized radiation: modulation factor

- **Commercial X-ray tubes coupled to custom designed** ٠ monochromator-polarizers exploiting Bragg diffraction at nearly 45°
 - Different crystals to diffract photons at different energies
 - Up to five polarization angles for each energy ٠

XPE

X-Ray Polarimetry xplore

Adjustable collimator/diaphragm

1/40 CAPILLARY PLATE-

-AMPTEK DIAPHRAGM (OPTIONAL)

Instrument Calibration: other measurements and results

Other measurements:

- Absolute Quantum Efficiency: count rate comparison with a reference SDD detector
 - A QE lower than expected due to gas cell absorption (the effect is nearly saturated). Limited impact on the sensitivity, because modulation factor slightly increases due to pressure reduction (more elongated tracks).
- Relative QE measured with a 55Fe reference source
- Pixel-to-pixel equalization
 - By-product of polarimetric response calibration
 - Gain of each of the 300×352 pixels equalized with respect to others
- Gain calibration
 - Gain changes with illumination (charging effect)
 - Attempt to remove it by modelling it on ground, needed in flight calibration sources

Energy resolution

XPE

X-Ray Polarimetry Explorer

Response to inclined beam (to anticipate the effect of the optics)

Energy [keV]

Dead time

Spatial resolution

- Modulation factor at 2.7 keV for a beam which is inclined by 2 degrees. The measurement is repeated at four azimuthal angles, to simulate the focusing from an IXPE mirror.
- No deviations from on-axis modulation factor

- MMA Optics calibration of MMA 1-3 [16 Jul 28 Aug 2020], MMA4 [30 Nov 27 Jan, 2021] in parallel with E2E Telescope calibration
- <u>E2E Telescope calibration during Covid-19 pandemic : training of MSFC colleagues to operate the DU,</u> remote data analysis and feedback, also real time during some measurements (... 8 h time zone difference !). No delays due to pandemic during calibration !
- X-ray calibration of the optics took place at MSFC's 100 m X-ray test facility

MMAs and Telescope Calibration set-up @ NASA/MSFC

- The SLTF set-up comprises :
 - A monitor SDD beside the MMA (reference detector for Effective Area meas.)
 - Focal plane detectors:
 - an SDD (for EA measurement)
 - a CCD (for angular resolution meas. PSF)
 - the spare DU (during E2E Telescope calibration)

MMAs Calibration @ NASA/MSFC

• <u>Angular resolution on and off axis with a CCD</u>

On axis	MMA1	MMA2	MMA3	MMA4 Spare
2.3 keV	19.0	25.0	27.6	20.0
4.5 keV	19.9	26.0	28.0	20.8

- MMA <u>Effective Area</u> measured with two Silicon Drift Detectors, one beside the MMA (Beam Monitor SDD as reference) and one at the focus (Focal Plane SDD)
 - Found and corrected a small difference of QE of the two SDDs: both illuminated simultaneously at the same distance
 - FP slightly lower count rate than BM: Correction is ~1.03 * EA (at Mo) , 1.01 * EA (at Ti)
 - Effective area measured at finite source distance (98m) and corrected to infinite source distance using ray trace

			Inf src dist Focal Length [mm]					
		MMA		3997.2				
		MMA2	2		3997.8			
		MMA	3		39			
	Angle	0.2°	0.4	•	0.6°	0.8°	1.0°	
	Azimuth = 0°	280	735	5	872	1381	1780	
/MA1	Azimuth = 90°	241	595	5	858	897	650	
	Angle	0.2°	0.4	•	0.6°	0.8°	1.0°	
41.4.4.0	Azimuth = 0°	229	71	2	890	1160	1517	
/IIVIAZ	Azimuth = 90°	237	50	8	818	834	529	
	Angle	0.2°	0.4	°	0.6°	0.8°	1.0°	
N / N / A O	Azimuth = 0°	262	77	6	770	1533	1543	
IVIIVIAJ	Azimuth = 90°	221	51	0	981	796	681	
	Angle	0.2°	0.4	°	0.6°	0.8°	1.0°	
	0°	203	77	5	1192	2872	2585	
WIWA4	90°	218	59	3	994	1113	1010	

• MMA focal lengths measured with Leica laser tracker system

• Finite distance focal length measured between MMA and CCD camera, then corrected to infinite source distance focal lengths using the thin lens equation and an X-ray source to optic distance of 98 meters

Ghost rays measured attenuation factor

- Ghost rays are unwanted rays that reach the detector from off-axis angles through unfocused paths (single bounce, or straight through the optic instead of nominal double-bounce path)
- Ghost-ray intensity measured and compared with on-axis intensity to give attenuation factor.

E2E Telescope Calibration @ NASA/MSFC with our collaboration

- **Telescope Angular Resolution (Half Power Diameter)** ٠
 - GPD angular resolution

XPF

X-Ray Polarimetry xnlore

- intrinsic spatial resolution (pixels, blurring due to diffusion, algorithm)
- inclined penetration
- MMA PSF (only MMA)
- Three energies: Mo, Ti, Fe; on and off-axis

Source on axis	Mo+filter – 2.28 keV	Ti +filter– 4.63 keV	F+filter - 6.62 keV
Only MMA4 (arcsec)	20.0	20.8	20.1
MMA4 + DU-FM1 (arcsec) misalignment effect subtracted in quadrature	22.0	23.8	24.0

Composite image of on- and off-axis telescope PSF measurements across detector plane

gas 3D distribution Entries 51816 (cm) 0.8 0.6 0.4 0.2 0 0.04 y (cm) 0.02 0 0.04 0.02 -0.02 x (cm) -0.02 -0.04 -0.04

Off axis

Simulation of Inclined penetration due to focusing

E2E Telescope Calibration @ NASA/MSFC with our collaboration

• Telescope Effective Area

X-Ray Polarimetry

- Simultaneous with Angular Resolution
- Telescope MMA measured directly with DU+MMA
- Possible to check the MMA EA measured independently by MSFC with CCD + MMA

MMA EA = Telescope EA / DU QE(t)

 By anchoring the model of pressure drop QE(t) to experimental points measured during DU calibration at INAF-IAPS, the MMA Effective Area in Telescope configuration matches direct measurements of MMA with SLTF detectors (small deviation recovered)

• Telescope Modulation Factor

- $\circ~$ Response to 100% polarized X-rays
- Three energies (2.7, 4.5, 6.4 keV) with polarized source
- Modulation factors with and w/o optics agree
- Presence of MMA optics does not affect polarization performance of detector

Spurious Modulation @SLTF vs @INAF-IAPS

- Two measurements rotated by 90 deg at 3 energies
- Measurements performed at MSFC match the ones performed at INAF-IAPS

Spurious Modulation with and without MMA at 2.3 keV

- Two measurements rotated by 90 deg
- No effect of the MMA
 - As known by Fresnel equations

Calibration in flight: the filter and calibration whel

- A set of 4 calibration sources are installed on a wheel
- By rotating this wheel each source illuminates the detector once at time
- □ Why calibration in flight?
 - $\circ~$ Gain calibration:
 - while observing astrophysical sources charges accumulates on the dielectric exposed in the GEM holes and gain reduces (this reversible effect is called "charging")
 - a pressure reduction (still acting, but nearly stable) causes a small long term gain increase (called "secular")
 - Monitoring of main parameters:
 - Modulation factor : response to polarized radiation
 - Spurious modulation : systematic effect on the modulation to be subtracted (measured with high accuracy on ground)
 - Energy resolution
 - Support the update of response matrices and applied HV to GEM
- Astrophysical sources not as standard candles, but someone (i.e Crab PWN) useful to check mutual calibration of the DUs

On board calibration sources

Cal A

- ⁵⁵Fe radioactive source at 5.9 keV
- Passing through a silver foil induces fluorescence at 3.0 keV
- **Bragg diffraction close 45° produce** polarized radiation of both energies

- ⁵⁵Fe radioactive source at 5.9 keV
- Spot
 - Full area illumination

Radiation from ⁵⁵Fe induces fluorescence by a silicon crystal at 1.7 keV

Average to the second s

Gain calibration in flight

The CalC and CalD calibration sources allow a linear energy calibration

- 10x10 calibration maps interpolated over time
- CalC and CalD observed alternatively, during occultations (when astrophysical source is hidden by the Earth)
- After calibration the energy reconstruction is correct to ~1%

Example CalC calibration map

Monitoring of the DUs

- □ Gain, Count Rate, 5.9 keV photoelectron track length are measured directly and a combined fit is performed
- □ Fit model by Luca Baldini+ 2021
 - Double exponential fit of track length, gain and rate to estimate gas pressure in the sealed GPD

GPD34 (DU2) as an example

- Initial pressure at GPD filing was 800 mbar
- Reduction of gas pressure is due to absorption by materials (slowing down with time)
- This pressure reduction referred ad "secular" pressure variation

Modulation factor

- **D** Polarization = Modulation / Modulation factor
- **Cal A source**
- Modulation factor increases slightly due to pressure decrease

Spurious modulation

- **Response to unpolarised radiation**
- Plots in terms of normalized Stokes parameters q and u
- □ Variations, if any, are smaller than 0.3%

23

- Monitoring of Telescope (Mirrors + DUs) Point Spread Function (PSF) with point astrophysical sources
- □ Monitored the Half Power Diameter (circle diameter containing 50% of photons)

Conclusions

- On ground calibration of IXPE comprises:
 - Calibration of each DU at INAF-IAPS (3 on board IXPE + the spare one)
 - Calibration of the MMA at SLTF of MSFC (3 on board IXPE + the spare one)
 - E2E Telescope calibration of the spare DU coupled with the spare MMA at SLTF of MSFC

• In flight calibration:

- After calibration energy reconstruction is good at 1% level
- Polarimetric response monitored at about 1% level, absolute
- Suppot to calDB update due to pressure reduction vs time

• Summary

- Calibration matched the requirements, excepted the significant deviation for QE reduction due to pressure drop in the gas cell. The effect is nearly saturated.
 - Marginal effect on the sensitivity due to the consequent increased elongation of tracks and thus modulation factor
- E2E calibration confirmed that :
 - Angular resolution due to the coupling of the MMAs with Gas Pixel Detector only slightly increases with respect to the one of the MMA alone
 - No spurious additional effects on polarization measurements due to optics, as already known by theory

ICE polarized sources

Given Series Fabiani + 2021, SPIE

Table 1. Set-ups and energies of the polarized sources available on the ICE. In black color the set-ups used for IXPE DU-FMs calibration.

Crystal	X-ray tube	Energy (keV)	2d	Diffraction angle (deg)	Rp/Rs	Polarization (%)
PET(002)	Continuum	2.01	8.742	45.000	0.0000	~ 100.0
ADP(200)	Mo $L\alpha$	2.29	7.500	46.209	0.0027	99.46
InSb(111)	Mo $L\alpha$	2.29	7.481	46.361	0.0034	99.32
Graphite(0002)	Continuum	2.61	6.708	45.000	0.0000	~ 1000.0
Ge(111)	$\mathrm{Rh}\;\mathrm{L}lpha$	2.70	6.532	44.877	0.0024	99.53
Si(111)	Ag L α	2.98	6.271	41.562	0.0252	95.08
Al(111)	Ca K α	3.69	4.678	45.909	0.0031	99.38
$CaF_2(220)$	Ti K α	4.51	3.840	45.716	0.0023	99.54
Si(220)	Ti K α	4.51	3.840	45.716	0.0023	99.54
$\operatorname{LiF}(220)$	Fe K α	6.40	2.848	42.859	0.0529	~ 89.95
Si(400)	Fe K α	6.40	2.716	45.511		~ 100.0

ICE unpolarised sources

G Fabiani+ 2021, SPIE

Nominal Energy (keV)	Source Set-Up	Measured Polarization (%)
2.04	Fluorescence of Zn target illuminated by Rh X-ray tube	1.02 ± 0.19
2.29	Fluorescence of Mo target illuminated by Ag X-ray tube	0.73 ± 0.12
2.70	Direct X-ray tube with Rh anode with a PVC filter	6.29 ± 0.10
2.98	Direct X-ray tube with Ag anode with an Ag filter	13.02 ± 0.09
3.69	Direct X-ray tube with Ca anode	$\begin{array}{c} \text{Undetected} \\ \text{MDP}(99\%) {=} 0.23\% \end{array}$
5.89	⁵⁵ Fe nuclide, 4mCi	$\begin{array}{c} \text{Undetected} \\ \text{MDP}(99\%) {=} 0.22\% \end{array}$

Table 2. Residual polarization of the ICE "Unpolarized" X-ray sources.